
Information technology —
Mathematical Markup Language
(MathML) Version 3.0 2nd Edition
Technologies de l’information — Langage de marquage
mathématique (MathML) Version 3.0 2e édition

INTERNATIONAL
STANDARD

ISO/IEC
40314

Reference number
ISO/IEC 40314:2016(E)

First edition
2016-03-01

© ISO/IEC 2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

ii © ISO/IEC 2016 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland
All	rights	reserved.	Unless	otherwise	speciϐied,	no	part	of	this	publication	may	be	reproduced	or	utilized	otherwise	in	any	form	
or	by	any	means,	 electronic	or	mechanical,	 including	photocopying,	or	posting	on	 the	 internet	or	an	 intranet,	without	prior	
written	permission.	Permission	can	be	re�uested	from	either	ISO	at	the	address	below	or	ISOǯs	member	body	in	the	country	of	
the requester.

ISO	copyright	ofϐice
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright̷iso.org
www.iso.org

ISO/IEC 40314:2016(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

FOREWORD

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	
Commission)	 form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	
members	of	ISO	or	IEC	participate	in	the	development	of	International	Standards	through	technical	
committees	 established	 by	 the	 respective	 organization	 to	 deal	 with	 particular	 fields	 of	 technical	
activity.	 ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	
international	organizations,	governmental	and	non‐governmental,	 in	liaison	with	ISO	and	IEC,	also	
take	part	 in	 the	work.	 In	 the	 field	of	 information	 technology,	 ISO	and	 IEC	have	established	a	 joint	
technical	committee,	ISO/IEC	JTC	1.	

The	procedures	used	to	develop	this	document	and	those	intended	for	its	further	maintenance	are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular	the	different	approval	criteria	needed	for	
the	different	types	of	document	should	be	noted.	This	document	was	drafted	in	accordance	with	the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	
of	 patent	 rights.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	 identifying	 any	 or	 all	 such	 patent	
rights.	Details	of	any	patent	rights	identified	during	the	development	of	the	document	will	be	in	the	
Introduction	and/or	on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	
not	constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 meaning	 of	 ISO	 specific	 terms	 and	 expressions	 related	 to	 conformity	
assessment,	 as	well	 as	 information	 about	 ISO's	 adherence	 to	 the	WTO	principles	 in	 the	Technical	
Barriers	to	Trade	(TBT),	see	the	following	URL:	Foreword	—	Supplementary	information.	

ISO/IEC	 40314	 was	 prepared	 by	 W3C	 and	 was	 adopted,	 under	 the PAS procedure,	 by	 Joint	
Technical	 Committee	 ISO/IEC	 JTC	 1,	 Information technology,	 in	 parallel	 with	 its	 approval	 by	
national	bodies	of	ISO	and	IEC.	

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved i�i

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

http://www.iso.org/patents
https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Contents

1 Introduction 9
1.1 Mathematics and its Notation . 9

1.2 Origins and Goals . 10

1.2.1 Design Goals of MathML . 10

1.3 Overview . 11

1.4 A First Example . 11

2 MathML Fundamentals 14
2.1 MathML Syntax and Grammar . 14

2.1.1 General Considerations . 14

2.1.2 MathML and Namespaces . 14

2.1.3 Children versus Arguments . 15

2.1.4 MathML and Rendering . 15

2.1.5 MathML Attribute Values . 15

2.1.6 Attributes Shared by all MathML Elements 20

2.1.7 Collapsing Whitespace in Input . 21

2.2 The Top-Level <math> Element . 22

2.2.1 Attributes . 22

2.2.2 Deprecated Attributes . 24

2.3 Conformance . 24

2.3.1 MathML Conformance . 24

2.3.2 Handling of Errors . 27

2.3.3 Attributes for unspecified data . 27

3 Presentation Markup 28
3.1 Introduction . 28

3.1.1 What Presentation Elements Represent . 28

3.1.2 Terminology Used In This Chapter . 29

3.1.3 Required Arguments . 30

3.1.4 Elements with Special Behaviors . 31

3.1.5 Directionality . 32

3.1.6 Displaystyle and Scriptlevel . 33

3.1.7 Linebreaking of Expressions . 34

3.1.8 Warning about fine-tuning of presentation . 35

3.1.9 Summary of Presentation Elements . 37

3.1.10 Mathematics style attributes common to presentation elements 38

3.2 Token Elements . 38

3.2.1 Token Element Content Characters, <mglyph/> 39

3.2.2 Mathematics style attributes common to token elements 41

3.2.3 Identifier <mi> . 45

4

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

CONTENTS 5

3.2.4 Number <mn> . 46

3.2.5 Operator, Fence, Separator or Accent <mo> 47

3.2.6 Text <mtext> . 60

3.2.7 Space <mspace/> . 62

3.2.8 String Literal <ms> . 64

3.3 General Layout Schemata . 64

3.3.1 Horizontally Group Sub-Expressions <mrow> 64

3.3.2 Fractions <mfrac> . 67

3.3.3 Radicals <msqrt>, <mroot> . 69

3.3.4 Style Change <mstyle> . 69

3.3.5 Error Message <merror> . 72

3.3.6 Adjust Space Around Content <mpadded> . 73

3.3.7 Making Sub-Expressions Invisible <mphantom> 78

3.3.8 Expression Inside Pair of Fences <mfenced> 80

3.3.9 Enclose Expression Inside Notation <menclose> 83

3.4 Script and Limit Schemata . 85

3.4.1 Subscript <msub> . 86

3.4.2 Superscript <msup> . 87

3.4.3 Subscript-superscript Pair <msubsup> . 87

3.4.4 Underscript <munder> . 88

3.4.5 Overscript <mover> . 89

3.4.6 Underscript-overscript Pair <munderover> 91

3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/> 93

3.5 Tabular Math . 95

3.5.1 Table or Matrix <mtable> . 95

3.5.2 Row in Table or Matrix <mtr> . 99

3.5.3 Labeled Row in Table or Matrix <mlabeledtr> 99

3.5.4 Entry in Table or Matrix <mtd> . 101

3.5.5 Alignment Markers <maligngroup/>, <malignmark/> 101

3.6 Elementary Math . 110

3.6.1 Stacks of Characters <mstack> . 111

3.6.2 Long Division <mlongdiv> . 113

3.6.3 Group Rows with Similiar Positions <msgroup> 114

3.6.4 Rows in Elementary Math <msrow> . 115

3.6.5 Carries, Borrows, and Crossouts <mscarries> 115

3.6.6 A Single Carry <mscarry> . 116

3.6.7 Horizontal Line <msline/> . 117

3.6.8 Elementary Math Examples . 118

3.7 Enlivening Expressions . 124

3.7.1 Bind Action to Sub-Expression <maction> 124

3.8 Semantics and Presentation . 126

4 Content Markup 127
4.1 Introduction . 127

4.1.1 The Intent of Content Markup . 127

4.1.2 The Structure and Scope of Content MathML Expressions 128

4.1.3 Strict Content MathML . 128

4.1.4 Content Dictionaries . 129

4.1.5 Content MathML Concepts . 130

4.2 Content MathML Elements Encoding Expression Structure 131

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6 CONTENTS

4.2.1 Numbers <cn> . 132

4.2.2 Content Identifiers <ci> . 138

4.2.3 Content Symbols <csymbol> . 140

4.2.4 String Literals <cs> . 142

4.2.5 Function Application <apply> . 143

4.2.6 Bindings and Bound Variables <bind> and <bvar> 146

4.2.7 Structure Sharing <share> . 148

4.2.8 Attribution via semantics . 150

4.2.9 Error Markup <cerror> . 151

4.2.10 Encoded Bytes <cbytes> . 152

4.3 Content MathML for Specific Structures . 152

4.3.1 Container Markup . 153

4.3.2 Bindings with <apply> . 154

4.3.3 Qualifiers . 156

4.3.4 Operator Classes . 162

4.3.5 Non-strict Attributes . 169

4.4 Content MathML for Specific Operators and Constants 170

4.4.1 Functions and Inverses . 170

4.4.2 Arithmetic, Algebra and Logic . 180

4.4.3 Relations . 200

4.4.4 Calculus and Vector Calculus . 205

4.4.5 Theory of Sets . 224

4.4.6 Sequences and Series . 233

4.4.7 Elementary classical functions . 243

4.4.8 Statistics . 247

4.4.9 Linear Algebra . 253

4.4.10 Constant and Symbol Elements . 260

4.5 Deprecated Content Elements . 268

4.5.1 Declare <declare> . 268

4.5.2 Relation <reln> . 268

4.5.3 Relation <fn> . 268

4.6 The Strict Content MathML Transformation . 268

5 Mixing Markup Languages for Mathematical Expressions 272
5.1 Annotation Framework . 272

5.1.1 Annotation elements . 272

5.1.2 Annotation keys . 273

5.1.3 Alternate representations . 274

5.1.4 Content equivalents . 275

5.1.5 Annotation references . 276

5.2 Elements for Semantic Annotations . 276

5.2.1 The <semantics> element . 276

5.2.2 The <annotation> element . 277

5.2.3 The <annotation-xml> element . 278

5.3 Combining Presentation and Content Markup . 281

5.3.1 Presentation Markup in Content Markup . 281

5.3.2 Content Markup in Presentation Markup . 282

5.4 Parallel Markup . 282

5.4.1 Top-level Parallel Markup . 282

5.4.2 Parallel Markup via Cross-References . 283

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

CONTENTS 7

6 Interactions with the Host Environment 286
6.1 Introduction . 286

6.2 Invoking MathML Processors . 286

6.2.1 Recognizing MathML in XML . 286

6.2.2 Recognizing MathML in HTML . 287

6.2.3 Resource Types for MathML Documents . 287

6.2.4 Names of MathML Encodings . 287

6.3 Transferring MathML . 288

6.3.1 Basic Transfer Flavor Names and Contents 288

6.3.2 Recommended Behaviors when Transferring 289

6.3.3 Discussion . 289

6.3.4 Examples . 290

6.4 Combining MathML and Other Formats . 292

6.4.1 Mixing MathML and XHTML . 294

6.4.2 Mixing MathML and non-XML contexts . 294

6.4.3 Mixing MathML and HTML . 294

6.4.4 Linking . 295

6.4.5 MathML and Graphical Markup . 296

6.5 Using CSS with MathML . 297

6.5.1 Order of processing attributes versus style sheets 298

7 Characters, Entities and Fonts 299
7.1 Introduction . 299

7.2 Unicode Character Data . 299

7.3 Entity Declarations . 300

7.4 Special Characters Not in Unicode . 300

7.5 Mathematical Alphanumeric Symbols . 300

7.6 Non-Marking Characters . 303

7.7 Anomalous Mathematical Characters . 303

7.7.1 Keyboard Characters . 303

7.7.2 Pseudo-scripts . 304

7.7.3 Combining Characters . 306

A Parsing MathML 308
A.1 Use of MathML as Well-Formed XML . 308

A.2 Using the RelaxNG Schema for MathML3 . 308

A.2.1 Full MathML . 309

A.2.2 Elements Common to Presentation and Content MathML 309

A.2.3 The Grammar for Presentation MathML . 311

A.2.4 The Grammar for Strict Content MathML3 323

A.2.5 The Grammar for Content MathML . 325

A.2.6 MathML as a module in a RelaxNG Schema 332

A.3 Using the MathML DTD . 333

A.3.1 Document Validation Issues . 333

A.3.2 Attribute values in the MathML DTD . 333

A.3.3 DOCTYPE declaration for MathML . 334

A.4 Using the MathML XML Schema . 334

A.4.1 Associating the MathML schema with MathML fragments 334

A.5 Parsing MathML in XHTML . 334

A.6 Parsing MathML in HTML . 334

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

8 CONTENTS

B Media Types Registrations 335
B.1 Selection of Media Types for MathML Instances . 335

B.2 Media type for Generic MathML . 336

B.3 Media type for Presentation MathML . 337

B.4 Media type for Content MathML . 338

C Operator Dictionary (Non-Normative) 340
C.1 Indexing of the operator dictionary . 340

C.2 Format of operator dictionary entries . 340

C.3 Notes on lspace and rspace attributes . 341

C.4 Operator dictionary entries . 341

D Glossary (Non-Normative) 379

E Working Group Membership and Acknowledgments (Non-Normative) 383
E.1 The Math Working Group Membership . 383

E.2 Acknowledgments . 386

F Changes (Non-Normative) 387
F.1 Changes between MathML 3.0 First Edition and Second Edition 387

F.2 Changes between MathML 2.0 Second Edition and MathML 3.0 390

G Normative References 391

H References (Non-Normative) 393

I Index (Non-Normative) 395
I.1 MathML Elements . 395

I.2 MathML Attributes . 400

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-

dimensional symbolic notation. As J. R. Pierce writes in his book on communication theory, math-

ematics and its notation should not be viewed as one and the same thing [Pierce1961]. Mathematical

ideas can exist independently of the notation that represents them. However, the relation between mean-

ing and notation is subtle, and part of the power of mathematics to describe and analyze derives from

its ability to represent and manipulate ideas in symbolic form. The challenge before a Mathematical

Markup Language (MathML) in enabling mathematics on the World Wide Web is to capture both no-

tation and content (that is, its meaning) in such a way that documents can utilize the highly evolved

notation of written and printed mathematics as well as the new potential for interconnectivity in elec-

tronic media.

Mathematical notation evolves constantly as people continue to innovate in ways of approaching and

expressing ideas. Even the common notation of arithmetic has gone through an amazing variety of

styles, including many defunct ones advocated by leading mathematical figures of their day [Cajori1928].

Modern mathematical notation is the product of centuries of refinement, and the notational conventions

for high-quality typesetting are quite complicated and subtle. For example, variables and letters which

stand for numbers are usually typeset today in a special mathematical italic font subtly distinct from

the usual text italic; this seems to have been introduced in Europe in the late sixteenth century. Spacing

around symbols for operations such as +, -, × and / is slightly different from that of text, to reflect con-

ventions about operator precedence that have evolved over centuries. Entire books have been devoted to

the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules

for choosing parenthesis sizes, and on to specialized notational practices for subfields of mathematics.

The manuals describing the nuances of present-day computer typesetting and composition systems can

run to hundreds of pages.

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed

expressions much easier to read and understand. Though we usually take them for granted, we, as mod-

ern readers, rely on numerous conventions such as paragraphs, capital letters, font families and cases,

and even the device of decimal-like numbering of sections such as is used in this document. Such nota-

tional conventions are perhaps even more important for electronic media, where one must contend with

the difficulties of on-screen reading. Appropriate standards coupled with computers enable a broaden-

ing of access to mathematics beyond the world of print. The markup methods for mathematics in use

just before the Web rose to prominence importantly included TEX (also written TeX) [Knuth1986] and

approaches based on SGML ([AAP-math], [Poppelier1992] and [ISO-12083]).

It is remarkable how widespread the current conventions of mathematical notation have become. The

general two-dimensional layout, and most of the same symbols, are used in all modern mathematical

communications, whether the participants are, say, European, writing left-to-right, or Middle-Eastern,

9

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

10 Chapter 1. Introduction

writing right-to-left. Of course, conventions for the symbols used, particularly those naming functions

and variables, may tend to favor a local language and script. The largest variation from the most com-

mon is a form used in some Arabic-speaking communities which lays out the entire mathematical

notation from right-to-left, roughly in mirror image of the European tradition.

However, there is more to putting mathematics on the Web than merely finding ways of displaying

traditional mathematical notation in a Web browser. The Web represents a fundamental change in the

underlying metaphor for knowledge storage, a change in which interconnection plays a central role.

It has become important to find ways of communicating mathematics which facilitate automatic pro-

cessing, searching and indexing, and reuse in other mathematical applications and contexts. With this

advance in communication technology, there is an opportunity to expand our ability to represent, en-

code, and ultimately to communicate our mathematical insights and understanding with each other. We

believe that MathML as specified below is an important step in developing mathematics on the Web.

1.2 Origins and Goals

1.2.1 Design Goals of MathML

MathML has been designed from the beginning with the following ultimate goals in mind.

MathML should ideally:

• Encode mathematical material suitable for all educational and scientific communication.

• Encode both mathematical notation and mathematical meaning.

• Facilitate conversion to and from other mathematical formats, both presentational and se-

mantic. Output formats should include:

– graphical displays

– speech synthesizers

– input for computer algebra systems

– other mathematics typesetting languages, such as TEX

– plain text displays, e.g. VT100 emulators

– international print media, including braille

It is recognized that conversion to and from other notational systems or media may entail

loss of information in the process.

• Allow the passing of information intended for specific renderers and applications.

• Support efficient browsing of lengthy expressions.

• Provide for extensibility.

• Be well suited to templates and other common techniques for editing formulas.

• Be legible to humans, and simple for software to generate and process.

No matter how successfully MathML achieves its goals as a markup language, it is clear that MathML

is useful only if it is implemented well. The W3C Math Working Group has identified a short list of

additional implementation goals. These goals attempt to describe concisely the minimal functionality

MathML rendering and processing software should try to provide.

• MathML expressions in HTML (and XHTML) pages should render properly in popular Web

browsers, in accordance with reader and author viewing preferences, and at the highest qual-

ity possible given the capabilities of the platform.

• HTML (and XHTML) documents containing MathML expressions should print properly and

at high-quality printer resolutions.

• MathML expressions in Web pages should be able to react to user gestures, such those as

with a mouse, and to coordinate communication with other applications through the browser.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

1.3. Overview 11

• Mathematical expression editors and converters should be developed to facilitate the creation

of Web pages containing MathML expressions.

The extent to which these goals are ultimately met depends on the cooperation and support of browser

vendors and other developers. The W3C Math Working Group has continued to work with other work-

ing groups of the W3C, and outside the W3C, to ensure that the needs of the scientific community will

be met. MathML 2 and its implementations showed considerable progress in this area over the situation

that obtained at the time of the MathML 1.0 Recommendation (April 1998) [MathML1]. MathML3

and the developing Web are expected to allow much more.

1.3 Overview

MathML is a markup language for describing mathematics. It is usually expressed in XML syntax,

although HTML and other syntaxes are possible. A special aspect of MathML is that there are two

main strains of markup: Presentation markup, discussed in Chapter 3, is used to display mathematical

expressions; and Content markup, discussed in Chapter 4, is used to convey mathematical meaning.

Content markup is specified in particular detail. This specification makes use of an XML format called

Content Dictionaries This format has been developed by the OpenMath Society, [OpenMath2004] with

the dictionaries being used by this specification involving joint development by the OpenMath Society

and the W3C Math Working Group.

Fundamentals common to both strains of markup are covered in Chapter 2, while the means for com-

bining these strains, as well as external markup, into single MathML objects are discussed in Chapter 5.

How MathML interacts with applications is covered in Chapter 6. Finally, a discussion of special sym-

bols, and issues regarding characters, entities and fonts, is given in Chapter 7.

1.4 A First Example

The quadratic formula provides a simple but instructive illustration of MathML markup.

x =
−b±√

b2 −4ac
2a

MathML offers two flavors of markup of this formula. The first is the style which emphasizes the actual

presentation of a formula, the two-dimensional layout in which the symbols are arranged. An example

of this type is given just below. The second flavor emphasizes the mathematical content and an example

of it follows the first one.

<mrow>

<mi>x</mi>

<mo>=</mo>

<mfrac>

<mrow>

<mrow>

<mo>-</mo>

<mi>b</mi>

</mrow>

<mo>±</mo>

<msqrt>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

12 Chapter 1. Introduction

<mrow>

<msup>

<mi>b</mi>

<mn>2</mn>

</msup>

<mo>-</mo>

<mrow>

<mn>4</mn>

<mo>⁢</mo>

<mi>a</mi>

<mo>⁢</mo>

<mi>c</mi>

</mrow>

</mrow>

</msqrt>

</mrow>

<mrow>

<mn>2</mn>

<mo>⁢</mo>

<mi>a</mi>

</mrow>

</mfrac>

</mrow>

Consider the superscript 2 in this formula. It represents the squaring operation here, but the meaning

of a superscript in other situations depends on the context. A letter with a superscript can be used to

signify a particular component of a vector, or maybe the superscript just labels a different type of some

structure. Similarly two letters written one just after the other could signify two variables multiplied

together, as they do in the quadratic formula, or they could be two letters making up the name of a single

variable. What is called Content Markup in MathML allows closer specification of the mathematical

meaning of many common formulas. The quadratic formula given in this style of markup is as follows.

<apply>

<eq/>

<ci>x</ci>

<apply>

<divide/>

<apply>

<plus/>

<apply>

<minus/>

<ci>b</ci>

</apply>

<apply>

<root/>

<apply>

<minus/>

<apply>

<power/>

<ci>b</ci>

<cn>2</cn>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

1.4. A First Example 13

</apply>

<apply>

<times/>

<cn>4</cn>

<ci>a</ci>

<ci>c</ci>

</apply>

</apply>

</apply>

</apply>

<apply>

<times/>

<cn>2</cn>

<ci>a</ci>

</apply>

</apply>

</apply>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 2

MathML Fundamentals

2.1 MathML Syntax and Grammar

2.1.1 General Considerations

The basic ‘syntax’ of MathML is defined using XML syntax, but other syntaxes that can encode labeled

trees are possible. Notably the HTML parser may also be used with MathML. Upon this, we layer a

‘grammar’, being the rules for allowed elements, the order in which they can appear, and how they

may be contained within each other, as well as additional syntactic rules for the values of attributes.

These rules are defined by this specification, and formalized by a RelaxNG schema [RELAX-NG].

The RelaxNG Schema is normative, but a DTD (Document Type Definition) and an XML Schema

[XMLSchemas] are provided for continuity (they were normative for MathML2). See Appendix A.

MathML’s character set consists of legal characters as specified by Unicode [Unicode], further restricted

by the characters not allowed in XML. The use of Unicode characters for mathematics is discussed in

Chapter 7.

The following sections discuss the general aspects of the MathML grammar as well as describe the

syntaxes used for attribute values.

2.1.2 MathML and Namespaces

An XML namespace [Namespaces] is a collection of names identified by a URI. The URI for the

MathML namespace is:

http://www.w3.org/1998/Math/MathML

To declare a namespace when using the XML serialisation of MathML, one uses an xmlns attribute, or

an attribute with an xmlns prefix. When the xmlns attribute is used alone, it sets the default namespace

for the element on which it appears, and for any child elements. For example:

<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>...</mrow>

</math>

When the xmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly

associate other elements and attributes with a particular namespace. When embedding MathML within

XHTML, one might use:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">

...

<m:math><m:mrow>...</m:mrow></m:math>

...

</body>

14

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.1. MathML Syntax and Grammar 15

HTML does not support namespace extensibility in the same way, the HTML parser has in-built

knowledge of the HTML, SVG and MathML namespaces. xmlns attributes are just treated as nor-

mal attributes. Thus when using the HTML serialisation of MathML, prefixed element names must not

be used. xmlns="http://www.w3.org/1998/Math/MathML" may be used on the math element,

it will be ignored by the HTML parser, which always places math elements and its descendents in

the MathML namespace (other than special rules described in Appendix Afor invalid input, and for

annotation-xml. If a MathML expression is likely to be in contexts where it may be parsed by an

XML parser or an HTML parser, it SHOULD use the following form to ensure maximum compatibility:

<math xmlns="http://www.w3.org/1998/Math/MathML">

...

</math>

2.1.3 Children versus Arguments

Most MathML elements act as ‘containers’; such an element’s children are not distinguished from each

other except as individual members of the list of children. Commonly there is no limit imposed on the

number of children an element may have. This is the case for most presentation elements and some

content elements such as set. But many MathML elements require a specific number of children,

or attach a particular meaning to children in certain positions. Such elements are best considered to

represent constructors of mathematical objects, and hence thought of as functions of their children.

Therefore children of such a MathML element will often be referred to as its arguments instead of

merely as children. Examples of this can be found, say, in Section 3.1.3.

There are presentation elements that conceptually accept only a single argument, but which for con-

venience have been written to accept any number of children; then we infer an mrow containing those

children which acts as the argument to the element in question; see Section 3.1.3.1.

In the detailed discussions of element syntax given with each element throughout the MathML spec-

ification, the correspondence of children with arguments, the number of arguments required and their

order, as well as other constraints on the content, are specified. This information is also tabulated for

the presentation elements in Section 3.1.3.

2.1.4 MathML and Rendering

MathML presentation elements only recommend (i.e., do not require) specific ways of rendering; this

is in order to allow for medium-dependent rendering and for individual preferences of style.

Nevertheless, some parts of this specification describe these recommended visual rendering rules in

detail; in those descriptions it is often assumed that the model of rendering used supports the concepts

of a well-defined ’current rendering environment’ which, in particular, specifies a ’current font’, a

’current display’ (for pixel size) and a ’current baseline’. The ’current font’ provides certain metric

properties and an encoding of glyphs.

2.1.5 MathML Attribute Values

MathML elements take attributes with values that further specialize the meaning or effect of the ele-

ment. Attribute names are shown in a monospaced font throughout this document. The meanings of

attributes and their allowed values are described within the specification of each element. The syntax

notation explained in this section is used in specifying allowed values.

Except when explicitly forbidden by the specification for an attribute, MathML attribute values may

contain any legal characters specified by the XML recommendation. See Chapter 7 for further clarifi-

cation.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

16 Chapter 2. MathML Fundamentals

2.1.5.1 Syntax notation used in the MathML specification

To describe the MathML-specific syntax of attribute values, the following conventions and notations

are used for most attributes in the present document. We use below the notation beginning with U+ that

is recommended by Unicode for referring to Unicode characters [see [Unicode], page xxviii].

Notation What it matches

decimal-digit a decimal digit from the range U+0030 to U+0039

hexadecimal-digit a hexadecimal (base 16) digit from the ranges U+0030 to U+0039, U+0041 to

U+0046 and U+0061 to U+0066

unsigned-integer a string of decimal-digits, representing a non-negative integer

positive-integer a string of decimal-digits, but not consisting solely of "0"s (U+0030), representing

a positive integer

integer an optional "-" (U+002D), followed by a string of decimal digits, and representing

an integer

unsigned-number a string of decimal digits with up to one decimal point (U+002E), representing a

non-negative terminating decimal number (a type of rational number)

number an optional prefix of "-" (U+002D), followed by an unsigned number, representing

a terminating decimal number (a type of rational number)

character a single non-whitespace character

string an arbitrary, nonempty and finite, string of characters

length a length, as explained below, Section 2.1.5.2

unit a unit, typically used as part of a length, as explained below, Section 2.1.5.2

namedlength a named length, as explained below, Section 2.1.5.2

color a color, as explained below, Section 2.1.5.3

id an identifier, unique within the document; must satisfy the NAME syntax of the

XML recommendation [XML]

idref an identifier referring to another element within the document; must satisfy the

NAME syntax of the XML recommendation [XML]

URI a Uniform Resource Identifier [RFC3986]. Note that the attribute value is typed

in the schema as anyURI which allows any sequence of XML characters. Systems

needing to use this string as a URI must encode the bytes of the UTF-8 encoding

of any characters not allowed in URI using %HH encoding where HH are the byte

value in hexadecimal. This ensures that such an attribute value may be interpreted

as an IRI, or more generally a LEIRI, see [IRI].

italicized word values as explained in the text for each attribute; see Section 2.1.5.4

"literal" quoted symbol, literally present in the attribute value (e.g. "+" or ’+’)

The ‘types’ described above, except for string, may be combined into composite patterns using the

following operators. The whole attribute value must be delimited by single (’) or double (") quotation

marks in the marked up document. Note that double quotation marks are often used in this specification

to mark up literal expressions; an example is the "-" in line 5 of the table above.

In the table below a form f means an instance of a type described in the table above. The combining

operators are shown in order of precedence from highest to lowest:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.1. MathML Syntax and Grammar 17

Notation What it matches

(f) same as f

f? an optional instance of f

f * zero or more instances of f, with separating whitespace characters

f + one or more instances of f, with separating whitespace characters

f1 f2 ... fn one instance of each form fi, in sequence, with no separating whitespace

f1, f2, ..., fn one instance of each form fi, in sequence, with separating whitespace characters (but no

commas)

f1 | f2 | ... | fn any one of the specified forms fi

The notation we have chosen here is in the style of the syntactical notation of the RelaxNG used for

MathML’s basic schema, Appendix A.

Since some applications are inconsistent about normalization of whitespace, for maximum interoper-

ability it is advisable to use only a single whitespace character for separating parts of a value. Moreover,

leading and trailing whitespace in attribute values should be avoided.

For most numerical attributes, only those in a subset of the expressible values are sensible; values

outside this subset are not errors, unless otherwise specified, but rather are rounded up or down (at the

discretion of the renderer) to the closest value within the allowed subset. The set of allowed values may

depend on the renderer, and is not specified by MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign (’-’),

e.g., number or integer, it is not a syntax error when one is provided in cases where a negative value

is not sensible. Instead, the value should be handled by the processing application as described in the

preceding paragraph. An explicit plus sign (’+’) is not allowed as part of a numerical value except when

it is specifically listed in the syntax (as a quoted ’+’ or "+"), and its presence can change the meaning

of the attribute value (as documented with each attribute which permits it).

2.1.5.2 Length Valued Attributes

Most presentation elements have attributes that accept values representing lengths to be used for size,

spacing or similar properties. The syntax of a length is specified as

Type Syntax

length number | number unit | namedspace

There should be no space between the number and the unit of a length.

The possible units and namedspaces, along with their interpretations, are shown below. Note that al-

though the units and their meanings are taken from CSS, the syntax of lengths is not identical. A few

MathML elements have length attributes that accept additional keywords; these are termed pseudo-units

and specified in the description of those particular elements; see, for instance, Section 3.3.6.

A trailing "%" represents a percent of a reference value; unless otherwise stated, the reference value

is the default value. The default value, or how it is obtained, is listed in the table of attributes for each

element along with the reference value when it differs from the default. (See also Section 2.1.5.4.) A

number without a unit is intepreted as a multiple of the reference value. This form is primarily for

backward compatibility and should be avoided, prefering explicit units for clarity.

In some cases, the range of acceptable values for a particular attribute may be restricted; implementa-

tions are free to round up or down to the closest allowable value.

The possible units in MathML are:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

18 Chapter 2. MathML Fundamentals

Unit Description

em an em (font-relative unit traditionally used for horizontal lengths)

ex an ex (font-relative unit traditionally used for vertical lengths)

px pixels, or size of a pixel in the current display

in inches (1 inch = 2.54 centimeters)

cm centimeters

mm millimeters

pt points (1 point = 1/72 inch)

pc picas (1 pica = 12 points)

% percentage of the default value

Some additional aspects of units are discussed further below, in Section 2.1.5.2.

The following constants, namedspaces, may also be used where a length is needed; they are typically

used for spacing or padding between tokens. Recommended default values for these constants are

shown; the actual spacing used is implementation specific.

namedspace Recommended default

"veryverythinmathspace" 1/18em

"verythinmathspace" 2/18em

"thinmathspace" 3/18em

"mediummathspace" 4/18em

"thickmathspace" 5/18em

"verythickmathspace" 6/18em

"veryverythickmathspace" 7/18em

"negativeveryverythinmathspace" -1/18em

"negativeverythinmathspace" -2/18em

"negativethinmathspace" -3/18em

"negativemediummathspace" -4/18em

"negativethickmathspace" -5/18em

"negativeverythickmathspace" -6/18em

"negativeveryverythickmathspace" -7/18em

Additional notes about units

Lengths are only used in MathML for presentation, and presentation will ultimately involve rendering

in or on some medium. For visual media, the display context is assumed to have certain properties

available to the rendering agent. A px corresponds to a pixel on the display, to the extent that is mean-

ingful. The resolution of the display device will affect the correspondence of pixels to the units in, cm,

mm, pt and pc.

Moreover, the display context will also provide a default for the font size; the parameters of this

font determine the initial values used to interpret the units em and ex, and thus indirectly the sizes

of namedspaces. Since these units track the display context, and in particular, the user’s preferences for

display, the relative units em and ex are generally to be preferred over absolute units such as px or cm.

Two additional aspects of relative units must be clarified, however. First, some elements such as Sec-

tion 3.4 or mfrac, implicitly switch to smaller font sizes for some of their arguments. Similarly, mstyle

can be used to explicitly change the current font size. In such cases, the effective values of an em or ex

inside those contexts will be different than outside. The second point is that the effective value of an em

or ex used for an attribute value can be affected by changes to the current font size. Thus, attributes that

affect the current font size, such as mathsize and scriptlevel, must be processed before evaluating

other length valued attributes.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.1. MathML Syntax and Grammar 19

If, and how, lengths might affect non-visual media is implementation specific.

2.1.5.3 Color Valued Attributes

The color, or background color, of presentation elements may be specified as a color using the following

syntax:

Type Syntax

color #RGB | #RRGGBB | html-color-name

A color is specified either by ‘#’ followed by hexadecimal values for the red, green, and blue compo-

nents, with no intervening whitespace, or by an html-color-name. The color components can be either

1-digit or 2-digit, but must all have the same number of digits; the component ranges from 0 (compo-

nent not present) to FF (component fully present). Note that, for example, by the digit-doubling rule

specified under Colors in [CSS21] #123 is a short form for #112233.

Color values can also be specified as an html-color-name, one of the color-name keywords defined in

[HTML4] ("aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy",

"olive", "purple", "red", "silver", "teal", "white", and "yellow"). Note that the color name

keywords are not case-sensitive, unlike most keywords in MathML attribute values, for compatibility

with CSS and HTML.

When a color is applied to an element, it is the color in which the content of tokens is rendered. Ad-

ditionally, when inherited from a surrounding element or from the environment in which the complete

MathML expression is embedded, it controls the color of all other drawing due to MathML elements,

including the lines or radical signs that can be drawn in rendering mfrac, mtable, or msqrt.

When used to specify a background color, the keyword "transparent" is also allowed. The recom-

mended MathML visual rendering rules do not define the precise extent of the region whose background

is affected by using the background attribute on an element, except that, when the element’s content

does not have negative dimensions and its drawing region is not overlapped by other drawing due to

surrounding negative spacing, this region should lie behind all the drawing done to render the content

of the element, but should not lie behind any of the drawing done to render surrounding expressions.

The effect of overlap of drawing regions caused by negative spacing on the extent of the region affected

by the background attribute is not defined by these rules.

2.1.5.4 Default values of attributes

Default values for MathML attributes are, in general, given along with the detailed descriptions of

specific elements in the text. Default values shown in plain text in the tables of attributes for an element

are literal, but when italicized are descriptions of how default values can be computed.

Default values described as inherited are taken from the rendering environment, as described in Sec-

tion 3.3.4, or in some cases (which are described individually) taken from the values of other attributes

of surrounding elements, or from certain parts of those values. The value used will always be one

which could have been specified explicitly, had it been known; it will never depend on the content

or attributes of the same element, only on its environment. (What it means when used may, however,

depend on those attributes or the content.)

Default values described as automatic should be computed by a MathML renderer in a way which will

produce a high-quality rendering; how to do this is not usually specified by the MathML specification.

The value computed will always be one which could have been specified explicitly, had it been known,

but it will usually depend on the element content and possibly on the context in which the element is

rendered.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

20 Chapter 2. MathML Fundamentals

Other italicized descriptions of default values which appear in the tables of attributes are explained

individually for each attribute.

The single or double quotes which are required around attribute values in an XML start tag are not

shown in the tables of attribute value syntax for each element, but are around attribute values in exam-

ples in the text, so that the pieces of code shown are correct.

Note that, in general, there is no mechanism in MathML to simulate the effect of not specifying at-

tributes which are inherited or automatic. Giving the words ‘inherited’ or ‘automatic’ explicitly will

not work, and is not generally allowed. Furthermore, the mstyle element (Section 3.3.4) can even be

used to change the default values of presentation attributes for its children.

Note also that these defaults describe the behavior of MathML applications when an attribute is not

supplied; they do not indicate a value that will be filled in by an XML parser, as is sometimes mandated

by DTD-based specifications.

In general, there are a number of properties of MathML rendering that may be thought of as overall

properties of a document, or at least of sections of a large document. Examples might be mathsize

(the math font size: see Section 3.2.2), or the behavior in setting limits on operators such as integrals

or sums (e.g., movablelimits or displaystyle), or upon breaking formulas over lines (e.g.

linebreakstyle); for such attributes see several elements in Section 3.2. These may be thought to

be inherited from some such containing scope. Just above we have mentioned the setting of default

values of MathML attributes as inherited or automatic; there is a third source of global default values

for behavior in rendering MathML, a MathML operator dictionary. A default example is provided in

Appendix C. This is also discussed in Section 3.2.5.7 and examples are given in Section 3.2.5.2.

2.1.6 Attributes Shared by all MathML Elements

In addition to the attributes described specifically for each element, the attributes in the following table

are allowed on every MathML element. Also allowed are attributes from the xml namespace, such as

xml:lang, and attributes from namespaces other than MathML, which are ignored by default.

Name values default

id id none

Establishes a unique identifier associated with the element to support linking, cross-

references and parallel markup. See xref and Section 5.4.

xref idref none

References another element within the document. See id and Section 5.4.

class string none

Associates the element with a set of style classes for use with [XSLT] and [CSS21].

Typically this would be a space separated sequence of words, but this is not specified by

MathML. See Section 6.5 for discussion of the interaction of MathML and CSS.

style string none

Associates style information with the element for use with [XSLT] and [CSS21]. This

typically would be an inline CSS style, but this is not specified by MathML. See Sec-

tion 6.5 for discussion of the interaction of MathML and CSS.

href URI none

Can be used to establish the element as a hyperlink to the specfied URI.

Note that MathML 2 had no direct support for linking, and instead followed the W3C Recommendation

‘XML Linking Language’ [XLink] in defining links using the xlink:href attribute. This has changed,

and MathML 3 now uses an href attribute. However, particular compound document formats may

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.1. MathML Syntax and Grammar 21

specify the use of XML linking with MathML elements, so user agents that support XML linking

should continue to support the use of the xlink:href attribute with MathML 3 as well.

See also Section 3.2.2 for a list of MathML attributes which can be used on most presentation token

elements.

The attribute other, is deprecated (Section 2.3.3) in favor of the use of attributes from other names-

paces.

Name values default

other string none

DEPRECATED but in MathML 1.0.

2.1.7 Collapsing Whitespace in Input

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e.,

characters with hexadecimal Unicode codes U+0020, U+0009, U+000A, or U+000D, respectively; see

also the discussion of whitespace in Section 2.3 of [XML].

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not al-

lowed there. Whitespace occurring within the content of token elements , except for <cs>, is normal-

ized as follows. All whitespace at the beginning and end of the content is removed, and whitespace

internal to content of the element is collapsed canonically, i.e., each sequence of 1 or more whitespace

characters is replaced with one space character (U+0020, sometimes called a blank character).

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>

Theorem

1:

</mtext>

is equivalent to <mtext>Theorem 1:</mtext> or <mtext>Theorem 1:</mtext>.

Authors wishing to encode white space characters at the start or end of the content of a token, or in

sequences other than a single space, without having them ignored, must use (U+00A0) or other

non-marking characters that are not trimmed. For example, compare the above use of an mtext element

with

<mtext>

 Theorem 1:

</mtext>

When the first example is rendered, there is nothing before ‘Theorem’, one Unicode space character

between ‘Theorem’ and ‘1:’, and nothing after ‘1:’. In the second example, a single space character is to

be rendered before ‘Theorem’; two spaces, one a Unicode space character and one a Unicode no-break

space character, are to be rendered before ‘1:’; and there is nothing after the ‘1:’.

Note that the value of the xml:space attribute is not relevant in this situation since XML processors

pass whitespace in tokens to a MathML processor; it is the requirements of MathML processing which

specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn,

cs, csymbol and annotation, an mspace element should be used, as opposed to an mtext element

containing only whitespace entities.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

22 Chapter 2. MathML Fundamentals

2.2 The Top-Level <math> Element

MathML specifies a single top-level or root math element, which encapsulates each instance of MathML

markup within a document. All other MathML content must be contained in a math element; in other

words, every valid MathML expression is wrapped in outer <math> tags. The math element must al-

ways be the outermost element in a MathML expression; it is an error for one math element to contain

another. These considerations also apply when sub-expressions are passed between applications, such

as for cut-and-paste operations; See Section 6.3.

The math element can contain an arbitrary number of child elements. They render by default as if they

were contained in an mrow element.

2.2.1 Attributes

The math element accepts any of the attributes that can be set on Section 3.3.4, including the common

attributes specified in Section 2.1.6. In particular, it accepts the dir attribute for setting the overall

directionality; the math element is usually the most useful place to specify the directionality (See Sec-

tion 3.1.5 for further discussion). Note that the dir attribute defaults to "ltr" on the math element

(but inherits on all other elements which accept the dir attribute); this provides for backward compat-

ibility with MathML 2.0 which had no notion of directionality. Also, it accepts the mathbackground

attribute in the same sense as mstyle and other presentation elements to set the background color of

the bounding box, rather than specifying a default for the attribute (see Section 3.1.10)

In addition to those attributes, the math element accepts:

Name values default

display "block" | "inline" inline

specifies whether the enclosed MathML expression should be rendered as a separate

vertical block (in display style) or inline, aligned with adjacent text. When display=

"block", displaystyle is initialized to "true", whereas when display="inline",

displaystyle is initialized to "false"; in both cases scriptlevel is initialized to

0 (See Section 3.1.6). Moreover, when the math element is embedded in a larger doc-

ument, a block math element should be treated as a block element as appropriate for

the document type (typically as a new vertical block), whereas an inline math element

should be treated as inline (typically exactly as if it were a sequence of words in normal

text). In particular, this applies to spacing and linebreaking: for instance, there should

not be spaces or line breaks inserted between inline math and any immediately following

punctuation. When the display attribute is missing, a rendering agent is free to initialize

as appropriate to the context.

maxwidth length available width

specifies the maximum width to be used for linebreaking. The default is the maximum

width available in the surrounding environment. If that value cannot be determined, the

renderer should assume an infinite rendering width.

overflow "linebreak" | "scroll" | "elide" | "truncate" | "scale" linebreak

specifies the preferred handing in cases where an expression is too long to fit in the

allowed width. See the discussion below.

altimg URI none

provides a URI referring to an image to display as a fall-back for user agents that do not

support embedded MathML.

altimg-width length width of altimg

specifies the width to display altimg, scaling the image if necessary; See

altimg-height.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.2. The Top-Level <math> Element 23

Name values default

altimg-height length height of altimg

specifies the height to display altimg, scaling the image if necessary; if only one of the

attributes altimg-width and altimg-height are given, the scaling should preserve

the image’s aspect ratio; if neither attribute is given, the image should be shown at its

natural size.

altimg-valign length | "top" | "middle" | "bottom" 0ex

specifies the vertical alignment of the image with respect to adjacent inline material.

A positive value of altimg-valign shifts the bottom of the image above the current

baseline, while a negative value lowers it. The keyword "top" aligns the top of the image

with the top of adjacent inline material; "center" aligns the middle of the image to the

middle of adjacent material; "bottom" aligns the bottom of the image to the bottom of

adjacent material (not necessarily the baseline). This attribute only has effect when

display="inline". By default, the bottom of the image aligns to the baseline.

alttext string none

provides a textual alternative as a fall-back for user agents that do not support embedded

MathML or images.

cdgroup URI none

specifies a CD group file that acts as a catalogue of CD bases for locating OpenMath

content dictionaries of csymbol, annotation, and annotation-xml elements in this

math element; see Section 4.2.3. When no cdgroup attribute is explicitly specified, the

document format embedding this math element may provide a method for determining

CD bases. Otherwise the system must determine a CD base; in the absence of specific

information http://www.openmath.org/cd is assumed as the CD base for all

csymbol, annotation, and annotation-xml elements. This is the CD base for the

collection of standard CDs maintained by the OpenMath Society.

In cases where size negotiation is not possible or fails (for example in the case of an expression that is

too long to fit in the allowed width), the overflow attribute is provided to suggest a processing method

to the renderer. Allowed values are:

Value Meaning

"linebreak" The expression will be broken across several lines. See Sec-

tion 3.1.7 for further discussion.

"scroll" The window provides a viewport into the larger complete dis-

play of the mathematical expression. Horizontal or vertical

scroll bars are added to the window as necessary to allow the

viewport to be moved to a different position.

"elide" The display is abbreviated by removing enough of it so that

the remainder fits into the window. For example, a large poly-

nomial might have the first and last terms displayed with ‘+ ...

+’ between them. Advanced renderers may provide a facility

to zoom in on elided areas.

"truncate" The display is abbreviated by simply truncating it at the right

and bottom borders. It is recommended that some indication

of truncation is made to the viewer.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

24 Chapter 2. MathML Fundamentals

Value Meaning

"scale" The fonts used to display the mathematical expression are

chosen so that the full expression fits in the window. Note that

this only happens if the expression is too large. In the case of

a window larger than necessary, the expression is shown at its

normal size within the larger window.

2.2.2 Deprecated Attributes

The following attributes of math are deprecated:

Name values default

macros URI * none

intended to provide a way of pointing to external macro definition files. Macros are not

part of the MathML specification.

mode "display" | "inline" inline

specified whether the enclosed MathML expression should be rendered in a display style

or an inline style. This attribute is deprecated in favor of the display attribute.

2.3 Conformance

Information nowadays is commonly generated, processed and rendered by software tools. The expo-

nential growth of the Web is fueling the development of advanced systems for automatically searching,

categorizing, and interconnecting information. In addition, there are increasing numbers of Web ser-

vices, some of which offer technically based materials and activities. Thus, although MathML can be

written by hand and read by humans, whether machine-aided or just with much concentration, the

future of MathML is largely tied to the ability to process it with software tools.

There are many different kinds of MathML processors: editors for authoring MathML expressions,

translators for converting to and from other encodings, validators for checking MathML expressions,

computation engines that evaluate, manipulate, or compare MathML expressions, and rendering en-

gines that produce visual, aural, or tactile representations of mathematical notation. What it means to

support MathML varies widely between applications. For example, the issues that arise with a validat-

ing parser are very different from those for an equation editor.

This section gives guidelines that describe different types of MathML support and make clear the

extent of MathML support in a given application. Developers, users, and reviewers are encouraged to

use these guidelines in characterizing products. The intention behind these guidelines is to facilitate

reuse by and interoperability of MathML applications by accurately setting out their capabilities in

quantifiable terms.

The W3C Math Working Group maintains MathML Compliance Guidelines. Consult this document

for future updates on conformance activities and resources.

2.3.1 MathML Conformance

A valid MathML expression is an XML construct determined by the MathML RelaxNG Schema to-

gether with the additional requirements given in this specification.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.3. Conformance 25

We shall use the phrase ‘a MathML processor’ to mean any application that can accept or produce a

valid MathML expression. A MathML processor that both accepts and produces valid MathML expres-

sions may be able to ‘round-trip’ MathML. Perhaps the simplest example of an application that might

round-trip a MathML expression would be an editor that writes it to a new file without modifications.

Three forms of MathML conformance are specified:

1. A MathML-input-conformant processor must accept all valid MathML expressions; it should

appropriately translate all MathML expressions into application-specific form allowing na-

tive application operations to be performed.

2. A MathML-output-conformant processor must generate valid MathML, appropriately repre-

senting all application-specific data.

3. A MathML-round-trip-conformant processor must preserve MathML equivalence. Two MathML

expressions are ‘equivalent’ if and only if both expressions have the same interpretation (as

stated by the MathML Schema and specification) under any relevant circumstances, by any

MathML processor. Equivalence on an element-by-element basis is discussed elsewhere in

this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In

order to guide developers, the MathML specification includes advisory material; for example, there are

many recommended rendering rules throughout Chapter 3. However, in general, developers are given

wide latitude to interpret what kind of MathML implementation is meaningful for their own particular

application.

To clarify the difference between conformance and interpretation of what is meaningful, consider some

examples:

1. In order to be MathML-input-conformant, a validating parser needs only to accept expres-

sions, and return ‘true’ for expressions that are valid MathML. In particular, it need not

render or interpret the MathML expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all

presentation markup. Provided the interface accepts all valid MathML expressions including

those containing presentation markup, it would be technically correct to characterize the

application as MathML-input-conformant.

3. An equation editor might have an internal data representation that makes it easy to export

some equations as MathML but not others. If the editor exports the simple equations as valid

MathML, and merely displays an error message to the effect that conversion failed for the

others, it is still technically MathML-output-conformant.

2.3.1.1 MathML Test Suite and Validator

As the previous examples show, to be useful, the concept of MathML conformance frequently involves

a judgment about what parts of the language are meaningfully implemented, as opposed to parts that

are merely processed in a technically correct way with respect to the definitions of conformance. This

requires some mechanism for giving a quantitative statement about which parts of MathML are mean-

ingfully implemented by a given application. To this end, the W3C Math Working Group has provided

a test suite.

The test suite consists of a large number of MathML expressions categorized by markup category

and dominant MathML element being tested. The existence of this test suite makes it possible, for

example, to characterize quantitatively the hypothetical computer algebra interface mentioned above

by saying that it is a MathML-input-conformant processor which meaningfully implements MathML

content markup, including all of the expressions in the content markup section of the test suite.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

26 Chapter 2. MathML Fundamentals

Developers who choose not to implement parts of the MathML specification in a meaningful way are

encouraged to itemize the parts they leave out by referring to specific categories in the test suite.

For MathML-output-conformant processors, information about currently available tools to validate

MathML is maintained at the W3C MathML Validator. Developers of MathML-output-conformant

processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specifi-

cation are implemented by an application are encouraged to use the test suites as a part of their decision

processes.

2.3.1.2 Deprecated MathML 1.x and MathML 2.x Features

MathML 3.0 contains a number of features of earlier MathML which are now deprecated. The following

points define what it means for a feature to be deprecated, and clarify the relation between deprecated

features and current MathML conformance.

1. In order to be MathML-output-conformant, authoring tools may not generate MathML markup

containing deprecated features.

2. In order to be MathML-input-conformant, rendering and reading tools must support depre-

cated features if they are to be in conformance with MathML 1.x or MathML 2.x. They do

not have to support deprecated features to be considered in conformance with MathML 3.0.

However, all tools are encouraged to support the old forms as much as possible.

3. In order to be MathML-round-trip-conformant, a processor need only preserve MathML

equivalence on expressions containing no deprecated features.

2.3.1.3 MathML Extension Mechanisms and Conformance

MathML 3.0 defines three basic extension mechanisms: the mglyph element provides a way of dis-

playing glyphs for non-Unicode characters, and glyph variants for existing Unicode characters; the

maction element uses attributes from other namespaces to obtain implementation-specific parameters;

and content markup makes use of the definitionURL attribute, as well as Content Dictionaries and

the cd attribute, to point to external definitions of mathematical semantics.

These extension mechanisms are important because they provide a way of encoding concepts that are

beyond the scope of MathML 3.0 as presently explicitly specified, which allows MathML to be used for

exploring new ideas not yet susceptible to standardization. However, as new ideas take hold, they may

become part of future standards. For example, an emerging character that must be represented by an

mglyph element today may be assigned a Unicode code point in the future. At that time, representing

the character directly by its Unicode code point would be preferable. This transition into Unicode has

already taken place for hundreds of characters used for mathematics.

Because the possibility of future obsolescence is inherent in the use of extension mechanisms to facili-

tate the discussion of new ideas, MathML can reasonably make no conformance requirements concern-

ing the use of extension mechanisms, even when alternative standard markup is available. For example,

using an mglyph element to represent an ’x’ is permitted. However, authors and implementers are

strongly encouraged to use standard markup whenever possible. Similarly, maintainers of documents

employing MathML 3.0 extension mechanisms are encouraged to monitor relevant standards activi-

ty (e.g., Unicode, OpenMath, etc.) and to update documents as more standardized markup becomes

available.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

2.3. Conformance 27

2.3.2 Handling of Errors

If a MathML-input-conformant application receives input containing one or more elements with an

illegal number or type of attributes or child schemata, it should nonetheless attempt to render all the

input in an intelligible way, i.e., to render normally those parts of the input that were valid, and to render

error messages (rendered as if enclosed in an merror element) in place of invalid expressions.

MathML-output-conformant applications such as editors and translators may choose to generate

merror expressions to signal errors in their input. This is usually preferable to generating valid, but

possibly erroneous, MathML.

2.3.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are intended to allow for good presen-

tation and content markup. However it is never possible to cover all users’ needs for markup. Ideally,

the MathML attributes should be an open-ended list so that users can add specific attributes for specific

renderers. However, this cannot be done within the confines of a single XML DTD or in a Schema.

Although it can be done using extensions of the standard DTD, say, some authors will wish to use

non-standard attributes to take advantage of renderer-specific capabilities while remaining strictly in

conformance with the standard DTD.

To allow this, the MathML 1.0 specification [MathML1] allowed the attribute other on all elements,

for use as a hook to pass on renderer-specific information. In particular, it was intended as a hook for

passing information to audio renderers, computer algebra systems, and for pattern matching in future

macro/extension mechanisms. The motivation for this approach to the problem was historical, looking

to PostScript, for example, where comments are widely used to pass information that is not part of

PostScript.

In the next period of evolution of MathML the development of a general XML namespace mechanism

seemed to make the use of the other attribute obsolete. In MathML 2.0, the other attribute is depre-

cated in favor of the use of namespace prefixes to identify non-MathML attributes. The other attribute

remains deprecated in MathML 3.0.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-

specific implementation for the maction element (Section 3.7.1), that information should be passed in

using the other attribute:

<maction actiontype="highlight" other="color=’#ff0000’"> expression </maction>

From MathML 2.0 onwards, a color attribute from another namespace would be used:

<body xmlns:my="http://www.example.com/MathML/extensions">

...

<maction actiontype="highlight" my:color="#ff0000"> expression </maction>

...

</body>

Note that the intent of allowing non-standard attributes is not to encourage software developers to use

this as a loophole for circumventing the core conventions for MathML markup. Authors and applica-

tions should use non-standard attributes judiciously.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout

structure of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation — that is,

to the basic kinds of symbols and expression-building structures out of which any particular piece of

traditional mathematical notation is built. Because of the importance of traditional visual notation, the

descriptions of the notational constructs the elements represent are usually given here in visual terms.

However, the elements are medium-independent in the sense that they have been designed to contain

enough information for good spoken renderings as well. Some attributes of these elements may make

sense only for visual media, but most attributes can be treated in an analogous way in audio as well (for

example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order

to allow for medium-dependent rendering and for individual preferences of style. This specification

describes suggested visual rendering rules in some detail, but a particular MathML renderer is free to

use its own rules as long as its renderings are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in

much the same way as titles, sections, and paragraphs capture the higher-level syntactic structure of a

textual document. Because of this, a single row of identifiers and operators will often be represented

by multiple nested mrow elements rather than a single mrow. For example, ‘x + a / b’ typically is

represented as:

<mrow>

<mi> x </mi>

<mo> + </mo>

<mrow>

<mi> a </mi>

<mo> / </mo>

<mi> b </mi>

</mrow>

</mrow>

Similarly, superscripts are attached to the full expression constituting their base rather than to the just

preceding character. This structure permits better-quality rendering of mathematics, especially when

details of the rendering environment, such as display widths, are not known ahead of time to the docu-

ment author. It also greatly eases automatic interpretation of the represented mathematical structures.

28

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.1. Introduction 29

Certain characters are used to name identifiers or operators that in traditional notation render the

same as other symbols or usually rendered invisibly. For example, the entities ⅆ,

ⅇ, and ⅈ denote notational symbols semantically distinct from visual-

ly identical letters used as simple variables. Likewise, the entities ⁢,

⁡, ⁣ and the character U+2064 (INVISIBLE PLUS) usually ren-

der invisibly but represent significant information. These entities have distinct spoken renderings, may

influence visual linebreaking and spacing, and may effect the evaluation or meaning of particular ex-

pressions. Accordingly, authors should use these entities wherever they are applicable. For instance, the

expression represented visually as ‘ f (x)’ would usually be spoken in English as ‘ f of x’ rather than just

‘ f x’. MathML conveys this meaning by using the ⁡ operator after the ‘ f ’, which, in

this case, can be aurally rendered as ‘of’.

The complete list of MathML entities is described in [Entities].

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read Section 2.1 on MathML

syntax and grammar, which contains important information on MathML notations and conventions. In

particular, in this chapter it is assumed that the reader has an understanding of basic XML terminology

described in Section 2.1.3, and the attribute value notations and conventions described in Section 2.1.5.

The remainder of this section introduces MathML-specific terminology and conventions used in this

chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual symbols,

names, numbers, labels, etc. Layout schemata build expressions out of parts and can have only elements

as content (except for whitespace, which they ignore). These are subdivided into General Layout, Script

and Limit, Tabular Math and Elementary Math schemata. There are also a few empty elements used

only in conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token ele-

ments. The primary MathML token element types are identifiers (e.g. variables or function names),

numbers, and operators (including fences, such as parentheses, and separators, such as commas). There

are also token elements used to represent text or whitespace that has more aesthetic than mathematical

significance and other elements representing ‘string literals’ for compatibility with computer algebra

systems. Note that although a token element represents a single meaningful ‘symbol’ (name, number,

label, mathematical symbol, etc.), such symbols may be comprised of more than one character. For ex-

ample sin and 24 are represented by the single tokens <mi>sin</mi> and <mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions,

and ultimately out of single symbols, with the parts grouped and positioned using one of a small set of

notational structures, which can be thought of as ‘expression constructors’. In MathML, expressions are

constructed in the same way, with the layout schemata playing the role of the expression constructors.

The layout schemata specify the way in which sub-expressions are built into larger expressions. The

terminology derives from the fact that each layout schema corresponds to a different way of ‘laying

out’ its sub-expressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between

elements, is as follows: The presentation elements are the MathML elements defined in this chapter.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

30 Chapter 3. Presentation Markup

These elements are listed in Section 3.1.9. The content elements are the MathML elements defined in

Chapter 4.

A MathML expression is a single instance of any of the presentation elements with the exception of

the empty elements none or mprescripts, or is a single instance of any of the content elements which

are allowed as content of presentation elements (described in Section 5.3.2). A sub-expression of an

expression E is any MathML expression that is part of the content of E, whether directly or indirectly,

i.e. whether it is a ‘child’ of E or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of

a layout schema is also called an argument of that element. As a consequence of the above definitions,

the content of a layout schema consists exactly of a sequence of zero or more elements that are its

arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In

the detailed descriptions of element syntax given below, the number of required arguments is implicitly

indicated by giving names for the arguments at various positions. A few elements have additional

requirements on the number or type of arguments, which are described with the individual element. For

example, some elements accept sequences of zero or more arguments — that is, they are allowed to

occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements in which

they appear. See Section 3.2.7 for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred <mrow>s

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, mpadded,

mphantom, menclose, mtd, mscarry, and math) conceptually accept a single argument, but actually

accept any number of children. If the number of children is 0 or is more than 1, they treat their contents

as a single inferred mrow formed from all their children, and treat this mrow as the argument.

For example,

<mtd>

</mtd>

is treated as if it were

<mtd>

<mrow>

</mrow>

</mtd>

and

<msqrt>

<mo> - </mo>

<mn> 1 </mn>

</msqrt>

is treated as if it were

<msqrt>

<mrow>

<mo> - </mo>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.1. Introduction 31

<mn> 1 </mn>

</mrow>

</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) many mrow elements that

would otherwise be necessary.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements and the roles of indi-

vidual arguments when these are distinguished. An argument count of 1* indicates an inferred mrow

as described above. Although the math element is not a presentation element, it is listed below for

completeness.

Element Required argument count Argument roles (when these differ by position)

mrow 0 or more

mfrac 2 numerator denominator

msqrt 1*

mroot 2 base index

mstyle 1*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

menclose 1*

msub 2 base subscript

msup 2 base superscript

msubsup 3 base subscript superscript

munder 2 base underscript

mover 2 base overscript

munderover 3 base underscript overscript

mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/>

(presubscript presuperscript)*]

mtable 0 or more rows 0 or more mtr or mlabeledtr elements

mlabeledtr 1 or more a label and 0 or more mtd elements

mtr 0 or more 0 or more mtd elements

mtd 1*

mstack 0 or more

mlongdiv 3 or more divisor result dividend (msrow | msgroup | mscarries

| msline)*

msgroup 0 or more

msrow 0 or more

mscarries 0 or more

mscarry 1*

maction 1 or more depend on actiontype attribute

math 1*

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special be-

haviors are discussed in the detailed element descriptions below. However, for convenience, some of

the most important classes of special behavior are listed here.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

32 Chapter 3. Presentation Markup

Certain elements are considered space-like; these are defined in Section 3.2.7. This definition affects

some of the suggested rendering rules for mo elements (Section 3.2.5).

Certain elements, e.g. msup, are able to embellish operators that are their first argument. These elements

are listed in Section 3.2.5, which precisely defines an ‘embellished operator’ and explains how this

affects the suggested rendering rules for stretchy operators.

3.1.5 Directionality

In the notations familiar to most readers, both the overall layout and the textual symbols are arranged

from left to right (LTR). Yet, as alluded to in the introduction, mathematics written in Hebrew or in

locales such as Morocco or Persia, the overall layout is used unchanged, but the embedded symbols

(often Hebrew or Arabic) are written right to left (RTL). Moreover, in most of the Arabic speaking

world, the notation is arranged entirely RTL; thus a superscript is still raised, but it follows the base on

the left rather than the right.

MathML 3.0 therefore recognizes two distinct directionalities: the directionality of the text and symbols

within token elements and the overall directionality represented by Layout Schemata. These two facets

are discussed below.

3.1.5.1 Overall Directionality of Mathematics Formulas

The overall directionality for a formula, basically the direction of the Layout Schemata, is specified

by the dir attribute on the containing math element (see Section 2.2). The default is ltr. When dir=

"rtl" is used, the layout is simply the mirror image of the conventional European layout. That is, shifts

up or down are unchanged, but the progression in laying out is from right to left.

For example, in a RTL layout, sub- and superscripts appear to the left of the base; the surd for a root

appears at the right, with the bar continuing over the base to the left. The layout details for elements

whose behaviour depends on directionality are given in the discussion of the element. In those discus-

sions, the terms leading and trailing are used to specify a side of an object when which side to use

depends on the directionality; ie. leading means left in LTR but right in RTL. The terms left and right

may otherwise be safely assumed to mean left and right.

The overall directionality is usually set on the math, but may also be switched for individual subformula

by using the dir attribute on mrow or mstyle elements. When not specified, all elements inherit the

directionality of their container.

3.1.5.2 Bidirectional Layout in Token Elements

The text directionality comes into play for the MathML token elements that can contain text (

mtext, mo, mi, mn and ms) and is determined by the Unicode properties of that text. A token element

containing exclusively LTR or RTL characters is displayed straightforwardly in the given direction.

When a mixture of directions is involved used, such as RTL Arabic and LTR numbers, the Unicode

bidirectional algorithm [Bidi] is applied. This algorithm specifies how runs of characters with the same

direction are processed and how the runs are (re)ordered. The base, or initial, direction is given by the

overall directionality described above (Section 3.1.5.1) and affects how weakly directional characters

are treated and how runs are nested. (The dir attribute is thus allowed on token elements to specify the

initial directionality that may be needed in rare cases.) Any mglyph or malignmark elements appearing

within a token element are effectively neutral and have no effect on ordering.

The important thing to notice is that the bidirectional algorithm is applied independently to the contents

of each token element; each token element is an independent run of characters.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.1. Introduction 33

Other features of Unicode and scripts that should be respected are ‘mirroring’ and ‘glyph shaping’.

Some Unicode characters are marked as being mirrored when presented in a RTL context; that is, the

character is drawn as if it were mirrored or replaced by a corresponding character. Thus an opening

parenthesis, ‘(’, in RTL will display as ‘)’. Conversely, the solidus (/ U+002F) is not marked as mir-

rored. Thus, an Arabic author that desires the slash to be reversed in an inline division should explicitly

use reverse solidus (\ U+005C) or an alternative such as the mirroring DIVISION SLASH (U+2215).

Additionally, calligraphic scripts such as Arabic blend, or connect sequences of characters together,

changing their appearance. As this can have an significant impact on readability, as well as aesthetics, it

is important to apply such shaping if possible. Glyph shaping, like directionality, applies to each token

element’s contents individually.

Please note that for the transfinite cardinals represented by Hebrew characters, the code points U+2135-

U+2138 (ALEF SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used.

These are strong left-to-right.

3.1.6 Displaystyle and Scriptlevel

So-called ‘displayed’ formulas, those appearing on a line by themselves, typically make more generous

use of vertical space than inline formulas, which should blend into the adjacent text without intruding

into neighboring lines. For example, in a displayed summation, the limits are placed above and below

the summation symbol, while when it appears inline the limits would appear in the sub and superscript

position. For similar reasons, sub- and superscripts, nested fractions and other constructs typically

display in a smaller size than the main part of the formula. MathML implicitly associates with every

presentation node a displaystyle and scriptlevel reflecting whether a more expansive vertical

layout applies and the level of scripting in the current context.

These values are initialized by the math element according to the display attribute. They are automat-

ically adjusted by the various script and limit schemata elements, and the elements mfrac and mroot,

which typically set displaystyle false and increment scriptlevel for some or all of their argu-

ments. (See the description for each element for the specific rules used.) They also may be set explicit-

ly via the displaystyle and scriptlevel attributes on the mstyle element or the displaystyle

attribute of mtable. In all other cases, they are inherited from the node’s parent.

The displaystyle affects the amount of vertical space used to lay out a formula: when true, the

more spacious layout of displayed equations is used, whereas when false a more compact layout of

inline formula is used. This primarily affects the interpretation of the largeop and movablelimits

attributes of the mo element. However, more sophisticated renderers are free to use this attribute to

render more or less compactly.

The main effect of scriptlevel is to control the font size. Typically, the higher the scriptlevel, the

smaller the font size. (Non-visual renderers can respond to the font size in an analogous way for their

medium.) Whenever the scriptlevel is changed, whether automatically or explicitly, the current font

size is multiplied by the value of scriptsizemultiplier to the power of the change in

scriptlevel. However, changes to the font size due to scriptlevel changes should never reduce

the size below scriptminsize to prevent scripts becoming unreadably small. The default

scriptsizemultiplier is approximately the square root of 1/2 whereas scriptminsize defaults

to 8 points; these values may be changed on mstyle; see Section 3.3.4. Note that the scriptlevel

attribute of mstyle allows arbitrary values of scriptlevel to be obtained, including negative values

which result in increased font sizes.

The changes to the font size due to scriptlevel should be viewed as being imposed from ‘outside’

the node. This means that the effect of scriptlevel is applied before an explicit mathsize (see

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

34 Chapter 3. Presentation Markup

Section 3.2.2) on a token child of mfrac. Thus, the mathsize effectively overrides the effect of

scriptlevel. However, that change to scriptlevel changes the current font size, which affects the

meaning of an "em" length (see Section 2.1.5.2) and so the scriptlevel still may have an effect in

such cases. Note also that since mathsize is not constrained by scriptminsize, such direct changes

to font size can result in scripts smaller than scriptminsize.

Note that direct changes to current font size, whether by CSS or by the mathsize attribute (See Sec-

tion 3.2.2), have no effect on the value of scriptlevel.

TEX’s \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle correspond to displaystyle and

scriptlevel as "true" and "0", "false" and "0", "false" and "1", and "false" and "2", re-

spectively. Thus, math’s display="block" corresponds to \displaystyle, while display="inline"

corresponds to \textstyle.

3.1.7 Linebreaking of Expressions

3.1.7.1 Control of Linebreaks

MathML provides support for both automatic and manual (forced) linebreaking of expressions to break

excessively long expressions into several lines. All such linebreaks take place within mrow (including

inferred mrow; see Section 3.1.3.1) or mfenced. The breaks typically take place at mo elements and

also, for backwards compatibility, at mspace. Renderers may also choose to place automatic linebreaks

at other points such as between adjacent mi elements or even within a token element such as a very

long mn element. MathML does not provide a means to specify such linebreaks, but if a render chooses

to linebreak at such a point, it should indent the following line according to the indentation attributes

that are in effect at that point.

Automatic linebreaking occurs when the containing math element has overflow="linebreak" and

the display engine determines that there is not enough space available to display the entire formula.

The available width must therefore be known to the renderer. Like font properties, one is assumed to be

inherited from the environment in which the MathML element lives. If no width can be determined, an

infinite width should be assumed. Inside of a mtable, each column has some width. This width may be

specified as an attribute or determined by the contents. This width should be used as the line wrapping

width for linebreaking, and each entry in an mtable is linewrapped as needed.

Forced linebreaks are specified by using linebreak="newline" on a mo or mspace element. Both

automatic and manual linebreaking can occur within the same formula.

Automatic linebreaking of subexpressions of mfrac, msqrt, mroot and menclose and the various

script elements is not required. Renderers are free to ignore forced breaks within those elements if they

choose.

Attributes on mo and possibly on mspace elements control linebreaking and indentation of the following

line. The aspects of linebreaking that can be controlled are:

• Where — attributes determine the desirability of a linebreak at a specific operator or space,

in particular whether a break is required or inhibited. These can only be set on mo and

mspace elements. (See Section 3.2.5.2.)

• Operator Display/Position — when a linebreak occurs, determines whether the operator will

appear at the end of the line, at the beginning of the next line, or in both positions; and how

much vertical space should be added after the linebreak. These attributes can be set on mo

elements or inherited from mstyle or math elements. (See Section 3.2.5.2.)

• Indentation — determines the indentation of the line following a linebreak, including in-

denting so that the next line aligns with some point in a previous line. These attributes can

be set on mo elements or inherited from mstyle or math elements. (See Section 3.2.5.2.)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.1. Introduction 35

When a math element appears in an inline context, it may obey whatever paragraph flow rules are

employed by the document’s text rendering engine. Such rules are necessarily outside of the scope of

this specification. Alternatively, it may use the value of the math element’s overflow attribute. (See

Section 2.2.1.)

3.1.7.2 Automatic Linebreaking Algorithm (Informative)

One method of linebreaking that works reasonably well is sometimes referred to as a "best-fit" algo-

rithm. It works by computing a "penalty" for each potential break point on a line. The break point with

the smallest penalty is chosen and the algorithm then works on the next line. Three useful factors in a

penalty calculation are:

1. How much of the line width (after subtracting of the indent) is unused? The more unused,

the higher the penalty.

2. How deeply nested is the breakpoint in the expression tree? The expression tree’s depth is

roughly similar to the nesting depth of mrows. The more deeply nested the break point, the

higher the penalty.

3. Does a linebreak here make layout of the next line difficult? If the next line is not the last line

and if the indentingstyle uses information about the linebreak point to determine how much

to indent, then the amount of room left for linebreaking on the next line must be considered;

i.e., linebreaks that leave very little room to draw the next line result in a higher penalty.

4. Whether "linebreak" has been specified: "nobreak" effectively sets the penalty to infini-

ty, "badbreak" increases the penalty "goodbreak" decreases the penalty, and "newline"

effectively sets the penalty to 0.

This algorithm takes time proportional to the number of token elements times the number of lines.

3.1.7.3 Linebreaking Algorithm for Inline Expressions (Informative)

A common method for breaking inline expressions that are too long for the space remaining on the

current line is to pick an appropriate break point for the expression and place the expression up to that

point on the current line and place the remainder of the expression on the following line. This can be

done by:

1. Querying the text processing engine for the minimum and maximum amount of space avail-

able on the current line.

2. Using a variation of the automatic linebreaking algorithm given above), and/or using hints

provided by linebreak attributes on mo or mspace elements, to choose a line break. The goal

is that the first part of the formula fits "comfortably" on the current line while breaking at a

point that results in keeping related parts of an expression on the same line.

3. The remainder of the formula begins on the next line, positioned both vertically and hori-

zontally according to the paragraph flow; MathML’s indentation attributes are ignored in this

algorithm.

4. If the remainder does not fit on a line, steps 1 - 3 are repeated for the second and subsequent

lines. Unlike the for the first line, some part of the expression must be placed these lines so

that the algorithm terminates.

3.1.8 Warning about fine-tuning of presentation

Some use-cases require precise control of the math layout and presentation. Several MathML elements

and attributes expressly support such fine-tuning of the rendering. However, MathML rendering agents

exhibit wide variability in their presentation of the the same MathML expression due to difference

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

36 Chapter 3. Presentation Markup

in platforms, font availability, and requirements particular to the agent itself (see Section 3.1). The

overuse of explicit rendering control may yield a ‘perfect’ layout on one platform, but give much worse

presentation on others. The following sections clarify the kinds of problems that can occur.

3.1.8.1 Warning: non-portability of ‘tweaking’

For particular expressions, authors may be tempted to use the mpadded, mspace, mphantom, and mtext

elements to improve (‘tweak’) the spacing generated by a specific renderer.

Without explicit spacing rules, various MathML renders may use different spacing algorithms. Conse-

quently, different MathML renderers may position symbols in different locations relative to each other.

Say that renderer B, for example, provides improved spacing for a particular expression over renderer

A. Authors are strongly warned that ‘tweaking’ the layout for renderer A may produce very poor results

in renderer B, very likely worse than without any explicit adjustment at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in succes-

sive versions, so that the effect of tweaking in a given MathML document may grow worse with time.

Also, when style sheet mechanisms are extended to MathML, even one version of a renderer may use

different spacing rules for users with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak

the rendering of specific expressions, unless the MathML is generated solely to be viewed using one

specific version of one MathML renderer, using one specific style sheet (if style sheets are available in

that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom,

or the alignment elements (Section 3.5.5) may give more portable results than the direct insertion of

extra space using mspace or mtext. Advice given to the implementers of MathML renderers might be

still more productive, in the long run.

3.1.8.2 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namely mspace, mpadded, and mo, could in theory

be used to simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of

more than one MathML sub-expression.

This practice is strongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about ‘tweaking’

applies), especially if attempts are made to render glyphs outside the bounding box of the

MathML expression;

• it is likely to appear much worse than a more standard construct supported by good renderers;

• such expressions are almost certain to be uninterpretable by audio renderers, computer alge-

bra systems, text searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply

as an aid to viewing expression structure, is discouraged. That is, the constructs that are discouraged

are those that would be interpreted differently by a human viewer of rendered MathML if all explicit

spacing was removed.

Consider using the mglyph element for cases such as this. If such spacing constructs are used in spite

of this warning, they should be enclosed in a semantics element that also provides an additional

MathML expression that can be interpreted in a standard way. See Section 5.1 for further discussion.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.1. Introduction 37

The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by

an expression, with the exception of attributes on mi (such as mathvariant) used to distinguish one

variable from another.

3.1.9 Summary of Presentation Elements

3.1.9.1 Token Elements

mi identifier

mn number

mo operator, fence, or separator

mtext text

mspace space

ms string literal

Additionally, the mglyph element may be used within Token elements to represent non-standard sym-

bols as images.

3.1.9.2 General Layout Schemata

mrow group any number of sub-expressions horizontally

mfrac form a fraction from two sub-expressions

msqrt form a square root (radical without an index)

mroot form a radical with specified index

mstyle style change

merror enclose a syntax error message from a preprocessor

mpadded adjust space around content

mphantom make content invisible but preserve its size

mfenced surround content with a pair of fences

menclose enclose content with a stretching symbol such as a long division sign.

3.1.9.3 Script and Limit Schemata

msub attach a subscript to a base

msup attach a superscript to a base

msubsup attach a subscript-superscript pair to a base

munder attach an underscript to a base

mover attach an overscript to a base

munderover attach an underscript-overscript pair to a base

mmultiscripts attach prescripts and tensor indices to a base

3.1.9.4 Tables and Matrices

mtable table or matrix

mlabeledtr row in a table or matrix with a label or equation number

mtr row in a table or matrix

mtd one entry in a table or matrix

maligngroup and malignmark alignment markers

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

38 Chapter 3. Presentation Markup

3.1.9.5 Elementary Math Layout

mstack columns of aligned characters

mlongdiv similar to msgroup, with the addition of a divisor and result

msgroup a group of rows in an mstack that are shifted by similar amounts

msrow a row in an mstack

mscarries row in an mstack that whose contents represent carries or borrows

mscarry one entry in an mscarries

msline horizontal line inside of mstack

3.1.9.6 Enlivening Expressions

maction bind actions to a sub-expression

3.1.10 Mathematics style attributes common to presentation elements

In addition to the attributes listed in Section 2.1.6, all MathML presentation elements accept the fol-

lowing two attributes:

Name values default

mathcolor color inherited

Specifies the foreground color to use when drawing the components of this element,

such as the content for token elements or any lines, surds, or other decorations. It al-

so establishes the default mathcolor used for child elements when used on a layout

element.

mathbackground color | "transparent" transparent

Specifies the background color to be used to fill in the bounding box of the element

and its children. The default, "transparent", lets the background color, if any, used in the

current rendering context to show through.

These style attributes are primarily intended for visual media. They are not expected to affect the

intended semantics of displayed expressions, but are for use in highlighting or drawing attention to the

affected subexpressions. For example, a red "x" is not assumed to be semantically different than a black

"x", in contrast to variables with different mathvariant (See Section 3.2.2).

Since MathML expressions are often embedded in a textual data format such as HTML, the MathML

renderer should inherit the foreground color used in the context in which the MathML appears. Note,

however, that MathML doesn’t specify the mechanism by which style information is inherited from the

rendering environment. See Section 3.2.2 for more details.

Note that the suggested MathML visual rendering rules do not define the precise extent of the region

whose background is affected by the mathbackground attribute, except that, when the content does not

have negative dimensions and its drawing region is not overlapped by other drawing due to surrounding

negative spacing, this region should lie behind all the drawing done to render the content, but should

not lie behind any of the drawing done to render surrounding expressions. The effect of overlap of

drawing regions caused by negative spacing on the extent of the region affected by the

mathbackground attribute is not defined by these rules.

3.2 Token Elements
Token elements in presentation markup are broadly intended to represent the smallest units of math-

ematical notation which carry meaning. Tokens are roughly analogous to words in text. However, be-

cause of the precise, symbolic nature of mathematical notation, the various categories and properties of

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 39

token elements figure prominently in MathML markup. By contrast, in textual data, individual words

rarely need to be marked up or styled specially.

Frequently, tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. func-

tion names, involve multi-character tokens. Further, because traditional mathematical notation makes

wide use of symbols distinguished by their typographical properties (e.g. a Fraktur ’g’ for a Lie algebra,

or a bold ’x’ for a vector), care must be taken to insure that styling mechanisms respect typographi-

cal properties which carry meaning. Consequently, characters, tokens, and typographical properties of

symbols are closely related to one another in MathML.

Token elements represent identifiers (mi), numbers (mn), operators (mo), text (mtext), strings (ms) and

spacing (mspace). The mglyph element may be used within token elements to represent non-standard

symbols by images. Preceding detailed discussion of the individual elements, the next two subsections

discuss the allowable content of token elements and the attributes common to them.

3.2.1 Token Element Content Characters, <mglyph/>

Character data in MathML markup is only allowed to occur as part of the content of token elements.

Whitespace between elements is ignored. With the exception of the empty mspace element, token

elements can contain any sequence of zero or more Unicode characters, or mglyph or malignmark

elements. The mglyph element is used to represent non-standard characters or symbols by images; the

malignmark element establishes an alignment point for use within table constructs, and is otherwise

invisible (See Section 3.5.5).

Characters can be either represented directly as Unicode character data, or indirectly via numeric or

character entity references. See Chapter 7 for a discussion of the advantages and disadvantages of

numeric character references versus entity references, and [Entities] for a full list of the entity names

available. Also, see Section 7.7 for a discussion of the appropriate character content to choose for

certain applications.

Token elements (other than mspace) should be rendered as their content, if any, (i.e. in the visual case,

as a closely-spaced horizontal row of standard glyphs for the characters or images for the mglyphs in

their content). An mspace element is rendered as a blank space of a width determined by its attributes.

Rendering algorithms should also take into account the mathematics style attributes as described below,

and modify surrounding spacing by rules or attributes specific to each type of token element. The

directional characteristics of the content must also be respected (see Section 3.1.5.2).

3.2.1.1 Alphanumeric symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in

formulas. Different font variants of a letter are treated as separate symbols. For example, a Fraktur ’g’

might denote a Lie algebra, while a Roman ’g’ denotes the corresponding Lie group. These letter-like

symbols are traditionally typeset differently than the same characters appearing in text, using different

spacing and ligature conventions. These characters must also be treated specially by style mechanisms,

since arbitrary style transformations can change meaning in an expression.

For these reasons, Unicode contains more than nine hundred Math Alphanumeric Symbol characters

corresponding to letter-like symbols. These characters are in the Secondary Multilingual Plane (SMP).

See [Entities] for more information. As valid Unicode data, these characters are permitted in MathML

and, as tools and fonts for them become widely available, we anticipate they will be the predominant

way of denoting letter-like symbols.

MathML also provides an alternative encoding for these characters using only Basic Multilingual Plane

(BMP) characters together with markup. MathML defines a correspondence between token elements

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

40 Chapter 3. Presentation Markup

with certain combinations of BMP character data and the mathvariant attribute and tokens containing

SMP Math Alphanumeric Symbol characters. Processing applications that accept SMP characters are

required to treat the corresponding BMP and attribute combinations identically. This is particularly

important for applications that support searching and/or equality testing.

The mathvariant attribute is described in more detail in Section 3.2.2, and a complete technical

description of the corresponding characters is given in Section 7.5.

3.2.1.2 Using images to represent symbols <mglyph/>

Description

The mglyph element provides a mechanism for displaying images to represent non-standard symbols.

It may be used within the content of the token elements mi, mn, mo, mtext or ms where existing Unicode

characters are not adequate.

Unicode defines a large number of characters used in mathematics and, in most cases, glyphs represent-

ing these characters are widely available in a variety of fonts. Although these characters should meet

almost all users needs, MathML recognizes that mathematics is not static and that new characters and

symbols are added when convenient. Characters that become well accepted will likely be eventually

incorporated by the Unicode Consortium or other standards bodies, but that is often a lengthy process.

Note that the glyph’s src attribute uniquely identifies the mglyph; two mglyphs with the same val-

ues for src should be considered identical by applications that must determine whether two charac-

ters/glyphs are identical.

Attributes

The mglyph element accepts the attributes listed in Section 3.1.10, but note that mathcolor has no

effect. The background color, mathbackground, should show through if the specified image has trans-

parency.

mglyph also accepts the additional attributes listed here.

Name values default

src URI required

Specifies the location of the image resource; it may be a URI relative to the base-URI

of the source of the MathML, if any.

width length from image

Specifies the desired width of the glyph; see height.

height length from image

Specifies the desired height of the glyph. If only one of width and height are given,

the image should be scaled to preserve the aspect ratio; if neither are given, the image

should be displayed at its natural size.

valign length 0ex

Specifies the baseline alignment point of the image with respect to the current baseline.

A positive value shifts the bottom of the image above the current baseline while a nega-

tive value lowers it. A value of 0 (the default) means that the baseline of the image is at

the bottom of the image.

alt string required

Provides an alternate name for the glyph. If the specified image can’t be found or dis-

played, the renderer may use this name in a warning message or some unknown glyph

notation. The name might also be used by an audio renderer or symbol processing sys-

tem and should be chosen to be descriptive.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 41

Note that the src and alt attributes are required for correct usage in MathML 3, however this is not

enforced by the schema due to the deprecated usage described below.

Example

The following example illustrates how a researcher might use the mglyph construct with a set of images

to work with braid group notation.

<mrow>

<mi><mglyph src="my-braid-23" alt="2 3 braid"/></mi>

<mo>+</mo>

<mi><mglyph src="my-braid-132" alt="1 3 2 braid"/></mi>

<mo>=</mo>

<mi><mglyph src="my-braid-13" alt="1 3 braid"/></mi>

</mrow>

This might render as:

Deprecated Attributes

Originally, mglyph was designed to provide access to non-standard fonts. Since this functionality was

seldom implemented, nor were downloadable web fonts widely available, this use of mglyph has been

deprecated. For reference, the following attributes were previously defined:

Name values

fontfamily string

the name of a font that may be available to a MathML renderer, or a CSS font specifi-

cation; See Section 6.5 and CSS [CSS21] for more information.

index integer

Specified a position of the desired glyph within the font named by the fontfamily

attribute (see Section 3.2.2.1).

In MathML 1 and 2, both were required attributes; they are now optional and should be ignored unless

the src attribute is missing.

Additionally, in MathML 2, mglyph accepted the attributes described in Section 3.2.2 (mathvariant

and mathsize, along with the attributes deprecated there); to make clear that mglyph is not a token

element, and since these attributes have no effect in any case, these attributes have been deprecated.

3.2.2 Mathematics style attributes common to token elements

In addition to the attributes defined for all presentation elements (Section 3.1.10), MathML includes

two mathematics style attributes as well as a directionality attribute valid on all presentation token

elements, as well as the math and mstyle elements; dir is also valid on mrow elements. The attributes

are:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

42 Chapter 3. Presentation Markup

Name values default

mathvariant "normal" | "bold" | "italic" | "bold-italic" | "double-struck"

| "bold-fraktur" | "script" | "bold-script" | "fraktur" | "sans-

serif" | "bold-sans-serif" | "sans-serif-italic" | "sans-serif-

bold-italic" | "monospace" | "initial" | "tailed" | "looped" |

"stretched"

normal (except on <mi>)

Specifies the logical class of the token. Note that this class is more than styling, it typi-

cally conveys semantic intent; see the discussion below.

mathsize "small" | "normal" | "big" | length inherited

Specifies the size to display the token content. The values "small" and "big" choose

a size smaller or larger than the current font size, but leave the exact proportions un-

specified; "normal" is allowed for completeness, but since it is equivalent to "100%"

or "1em", it has no effect.

dir "ltr" | "rtl" inherited

specifies the initial directionality for text within the token: ltr (Left To Right) or rtl

(Right To Left). This attribute should only be needed in rare cases involving weak or

neutral characters; see Section 3.1.5.1 for further discussion. It has no effect on mspace.

The mathvariant attribute defines logical classes of token elements. Each class provides a collection

of typographically-related symbolic tokens. Each token has a specific meaning within a given math-

ematical expression and, therefore, needs to be visually distinguished and protected from inadvertent

document-wide style changes which might change its meaning. Each token is identified by the combi-

nation of the mathvariant attribute value and the character data in the token element.

When MathML rendering takes place in an environment where CSS is available, the mathematics style

attributes can be viewed as predefined selectors for CSS style rules. See Section 6.5 for discussion of

the interaction of MathML and CSS. Also, see [MathMLforCSS] for discussion of rendering MathML

by CSS and a sample CSS style sheet. When CSS is not available, it is up to the internal style mech-

anism of the rendering application to visually distinguish the different logical classes. Most MathML

renderers will probably want to rely on some degree to additional, internal style processing algorithms.

In particular, the mathvariant attribute does not follow the CSS inheritance model; the default value

is "normal" (non-slanted) for all tokens except for mi with single-character content. See Section 3.2.3

for details.

Renderers have complete freedom in mapping mathematics style attributes to specific rendering proper-

ties. However, in practice, the mathematics style attribute names and values suggest obvious typograph-

ical properties, and renderers should attempt to respect these natural interpretations as far as possible.

For example, it is reasonable to render a token with the mathvariant attribute set to "sans-serif" in

Helvetica or Arial. However, rendering the token in a Times Roman font could be seriously misleading

and should be avoided.

In principle, any mathvariant value may be used with any character data to define a specific symbolic

token. In practice, only certain combinations of character data and mathvariant values will be visually

distinguished by a given renderer. For example, there is no clear-cut rendering for a "fraktur alpha" or a

"bold italic Kanji" character, and the mathvariant values "initial", "tailed", "looped", and "stretched"

are appropriate only for Arabic characters.

Certain combinations of character data and mathvariant values are equivalent to assigned Unicode

code points that encode mathematical alphanumeric symbols. These Unicode code points are the ones

in the Arabic Mathematical Alphabetic Symbols block U+1EE00 to U+1EEFF, Mathematical Alphanu-

meric Symbols block U+1D400 to U+1D7FF, listed in the Unicode standard, and the ones in the Let-

terlike Symbols range U+2100 to U+214F that represent "holes" in the alphabets in the SMP, listed in

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 43

Section 7.5. These characters are described in detail in section 2.2 of UTR #25. The description of each

such character in the Unicode standard provides an unstyled character to which it would be equiva-

lent except for a font change that corresponds to a mathvariant value. A token element that uses the

unstyled character in combination with the corresponding mathvariant value is equivalent to a token

element that uses the mathematical alphanumeric symbol character without the mathvariant attribute.

Note that the appearance of a mathematical alphanumeric symbol character should not be altered by

surrounding mathvariant or other style declarations.

Renderers should support those combinations of character data and mathvariant values that corre-

spond to Unicode characters, and that they can visually distinguish using available font characters.

Renderers may ignore or support those combinations of character data and mathvariant values that

do not correspond to an assigned Unicode code point, and authors should recognize that support for

mathematical symbols that do not correspond to assigned Unicode code points may vary widely from

one renderer to another.

Since MathML expressions are often embedded in a textual data format such as XHTML, the surround-

ing text and the MathML must share rendering attributes such as font size, so that the renderings will

be compatible in style. For this reason, most attribute values affecting text rendering are inherited from

the rendering environment, as shown in the ‘default’ column in the table above. (In cases where the

surrounding text and the MathML are being rendered by separate software, e.g. a browser and a plug-

in, it is also important for the rendering environment to provide the MathML renderer with additional

information, such as the baseline position of surrounding text, which is not specified by any MathML

attributes.) Note, however, that MathML doesn’t specify the mechanism by which style information is

inherited from the rendering environment.

If the requested mathsize of the current font is not available, the renderer should approximate it in the

manner likely to lead to the most intelligible, highest quality rendering. Note that many MathML ele-

ments automatically change the font size in some of their children; see the discussion in Section 3.1.6.

3.2.2.1 Deprecated style attributes on token elements

The MathML 1.01 style attributes listed below are deprecated in MathML 2 and 3. These attributes were

aligned to CSS but, in rendering environments that support CSS, it is preferable to use CSS directly to

control the rendering properties corresponding to these attributes, rather than the attributes themselves.

However as explained above, direct manipulation of these rendering properties by whatever means

should usually be avoided. As a general rule, whenever there is a conflict between these deprecated

attributes and the corresponding attributes (Section 3.2.2), the former attributes should be ignored.

The deprecated attributes are:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

44 Chapter 3. Presentation Markup

Name values default

fontfamily string inherited

Should be the name of a font that may be available to a MathML renderer, or a CSS

font specification; See Section 6.5 and CSS [CSS21] for more information. Deprecated

in favor of mathvariant.

fontweight "normal" | "bold" inherited

Specified the font weight for the token. Deprecated in favor of mathvariant.

fontstyle "normal" | "italic" normal (except on <mi>)

Specified the font style to use for the token. Deprecated in favor of mathvariant.

fontsize length inherited

Specified the size for the token. Deprecated in favor of mathsize.

color color inherited

Specified the color for the token. Deprecated in favor of mathcolor.

background color | "transparent" transparent

Specified the background color to be used to fill in the bounding box of the element and

its children. Deprecated in favor of mathbackground.

3.2.2.2 Embedding HTML in MathML

MathML can be combined with other formats as described in Section 6.4. The recommendation is to

embed other formats in MathML by extending the MathML schema to allow additional elements to

be children of the mtext element or other leaf elements as appropriate to the role they serve in the

expression (see Section 3.2.6.4). The directionality, font size, and other font attributes should inherit

from those that would be used for characters of the containing leaf element (see Section 3.2.2).

Here is an example of embedding SVG inside of mtext in an HTML context:

<mtable>

<mtr>

<mtd>

<mtext><input type="text" placeholder="what shape is this?"/></mtext>

</mtd>

</mtr>

<mtr>

<mtd>

<mtext>

<svg xmlns="http://www.w3.org/2000/svg"

width="4cm" height="4cm" viewBox="0 0 400 400">

<rect x="1" y="1" width="398" height="398"

style="fill:none; stroke:blue"/>

<path d="M 100 100 L 300 100 L 200 300 z"

style="fill:red; stroke:blue; stroke-width:3"/>

</svg>

</mtext>

</mtd>

</mtr>

</mtable>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 45

3.2.3 Identifier <mi>

3.2.3.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier.

Identifiers can include variables, function names, and symbolic constants. A typical graphical renderer

would render an mi element as its content (See Section 3.2.1), with no extra spacing around it (except

spacing associated with neighboring elements).

Not all ‘mathematical identifiers’ are represented by mi elements — for example, subscripted or primed

variables should be represented using msub or msup respectively. Conversely, arbitrary text playing the

role of a ‘term’ (such as an ellipsis in a summed series) can be represented using an mi element, as

shown in an example in Section 3.2.6.4.

It should be stressed that mi is a presentation element, and as such, it only indicates that its content

should be rendered as an identifier. In the majority of cases, the contents of an mi will actually represent

a mathematical identifier such as a variable or function name. However, as the preceding paragraph

indicates, the correspondence between notations that should render as identifiers and notations that are

actually intended to represent mathematical identifiers is not perfect. For an element whose semantics

is guaranteed to be that of an identifier, see the description of ci in Chapter 4.

3.2.3.2 Attributes

mi elements accept the attributes listed in Section 3.2.2, but in one case with a different default value:

Name values default

mathvariant "normal" | "bold" | "italic" | "bold-

italic" | "double-struck" | "bold-fraktur" |

"script" | "bold-script" | "fraktur" | "sans-

serif" | "bold-sans-serif" | "sans-serif-italic"

| "sans-serif-bold-italic" | "monospace" |

"initial" | "tailed" | "looped" | "stretched"

(depends on content; described below)

Specifies the logical class of the token. The default is "normal" (non-slanted) unless

the content is a single character, in which case it would be "italic".

Note that the deprecated fontstyle attribute defaults in the same way as mathvariant, depending

on the content.

Note that for purposes of determining equivalences of Math Alphanumeric Symbol characters (See Sec-

tion 7.5 and Section 3.2.1.1) the value of the mathvariant attribute should be resolved first, including

the special defaulting behavior described above.

3.2.3.3 Examples

<mi> x </mi>

<mi> D </mi>

<mi> sin </mi>

<mi mathvariant=’script’> L </mi>

<mi></mi>

An mi element with no content is allowed; <mi></mi> might, for example, be used by an ‘expression

editor’ to represent a location in a MathML expression which requires a ‘term’ (according to conven-

tional syntax for mathematics) but does not yet contain one.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

46 Chapter 3. Presentation Markup

Identifiers include function names such as ‘sin’. Expressions such as ‘sin x’ should be written using the

character U+2061 (which also has the entity names ⁡ and ⁡) as shown below; see

also the discussion of invisible operators in Section 3.2.5.

<mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be represented by an mi element, as in:

<mrow>

<mn> 1 </mn>

<mo> + </mo>

<mi> … </mi>

<mo> + </mo>

<mi> n </mi>

</mrow>

When an mi is used in such exceptional situations, explicitly setting the mathvariant attribute may

give better results than the default behavior of some renderers.

The names of symbolic constants should be represented as mi elements:

<mi> π </mi>

<mi> ⅈ </mi>

<mi> ⅇ </mi>

3.2.4 Number <mn>

3.2.4.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal.

Generally speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, repre-

senting an unsigned integer or real number. A typical graphical renderer would render an mn element

as its content (See Section 3.2.1), with no extra spacing around them (except spacing from neighboring

elements such as mo). mn elements are typically rendered in an unslanted font.

The mathematical concept of a ‘number’ can be quite subtle and involved, depending on the context. As

a consequence, not all mathematical numbers should be represented using mn; examples of mathemat-

ical numbers that should be represented differently are shown below, and include complex numbers,

ratios of numbers shown as fractions, and names of numeric constants.

Conversely, since mn is a presentation element, there are a few situations where it may be desirable to

include arbitrary text in the content of an mn that should merely render as a numeric literal, even though

that content may not be unambiguously interpretable as a number according to any particular standard

encoding of numbers as character sequences. As a general rule, however, the mn element should be

reserved for situations where its content is actually intended to represent a numeric quantity in some

fashion. For an element whose semantics are guaranteed to be that of a particular kind of mathematical

number, see the description of cn in Chapter 4.

3.2.4.2 Attributes

mn elements accept the attributes listed in Section 3.2.2.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 47

3.2.4.3 Examples

<mn> 2 </mn>

<mn> 0.123 </mn>

<mn> 1,000,000 </mn>

<mn> 2.1e10 </mn>

<mn> 0xFFEF </mn>

<mn> MCMLXIX </mn>

<mn> twenty one </mn>

3.2.4.4 Numbers that should not be written using <mn> alone

Many mathematical numbers should be represented using presentation elements other than mn alone;

this includes complex numbers, ratios of numbers shown as fractions, and names of numeric constants.

Examples of MathML representations of such numbers include:

<mrow>

<mn> 2 </mn>

<mo> + </mo>

<mrow>

<mn> 3 </mn>

<mo> ⁢ </mo>

<mi> ⅈ </mi>

</mrow>

</mrow>

<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>

<mi> π </mi>

<mi> ⅇ </mi>

3.2.5 Operator, Fence, Separator or Accent <mo>

3.2.5.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general,

the notational conventions for mathematical operators are quite complicated, and therefore MathML

provides a relatively sophisticated mechanism for specifying the rendering behavior of an mo element.

As a consequence, in MathML the list of things that should ‘render as an operator’ includes a number

of notations that are not mathematical operators in the ordinary sense. Besides ordinary operators with

infix, prefix, or postfix forms, these include fence characters such as braces, parentheses, and ‘absolute

value’ bars; separators such as comma and semicolon; and mathematical accents such as a bar or tilde

over a symbol. We will use the term "operator" in this chapter to refer to operators in this broad sense.

Typical graphical renderers show all mo elements as the content (See Section 3.2.1), with additional

spacing around the element determined by its attributes and further described below. Renderers without

access to complete fonts for the MathML character set may choose to render an mo element as not pre-

cisely the characters in its content in some cases. For example, <mo> ≤ </mo> might be rendered

as <= to a terminal. However, as a general rule, renderers should attempt to render the content of an

mo element as literally as possible. That is, <mo> ≤ </mo> and <mo> <= </mo> should render

differently. The first one should render as a single character representing a less-than-or-equal-to sign,

and the second one as the two-character sequence <=.

All operators, in the general sense used here, are subject to essentially the same rendering attributes and

rules. Subtle distinctions in the rendering of these classes of symbols, when they exist, are supported

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

48 Chapter 3. Presentation Markup

using the Boolean attributes fence, separator and accent, which can be used to distinguish these

cases.

A key feature of the mo element is that its default attribute values are set on a case-by-case basis from

an ‘operator dictionary’ as explained below. In particular, default values for fence, separator and

accent can usually be found in the operator dictionary and therefore need not be specified on each mo

element.

Note that some mathematical operators are represented not by mo elements alone, but by mo elements

‘embellished’ with (for example) surrounding superscripts; this is further described below. Conversely,

as presentation elements, mo elements can contain arbitrary text, even when that text has no standard

interpretation as an operator; for an example, see the discussion ‘Mixing text and mathematics’ in

Section 3.2.6. See also Chapter 4 for definitions of MathML content elements that are guaranteed to

have the semantics of specific mathematical operators.

Note also that linebreaking, as discussed in Section 3.1.7, usually takes place at operators (either before

or after, depending on local conventions). Thus, mo accepts attributes to encode the desirability of

breaking at a particular operator, as well as attributes describing the treatment of the operator and

indentation in case the a linebreak is made at that operator.

3.2.5.2 Attributes

mo elements accept the attributes listed in Section 3.2.2 and the additional attributes listed here. Since

the display of operators is so critical in mathematics, the mo element accepts a large number of at-

tributes; these are described in the next three subsections.

Most attributes get their default values from an enclosing mstyle element, math element, from the

containing document, or from the Section 3.2.5.7. When a value that is listed as ‘inherited’ is not

explicitly given on an mo, mstyle element, math element, or found in the operator dictionary for a

given mo element, the default value shown in parentheses is used.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 49

Dictionary-based attributes

Name values default

form "prefix" | "infix" | "postfix" set by position of operator in an mrow

Specifies the role of the operator in the enclosing expression. This role and the operator

content affect the lookup of the operator in the operator dictionary which affects the

spacing and other default properties; see Section 3.2.5.7.

fence "true" | "false" set by dictionary (false)

Specifies whether the operator represents a ‘fence’, such as a parenthesis. This attribute

generally has no direct effect on the visual rendering, but may be useful in specific cases,

such as non-visual renderers.

separator "true" | "false" set by dictionary (false)

Specifies whether the operator represents a ‘separator’, or punctuation. This attribute

generally has no direct effect on the visual rendering, but may be useful in specific

cases, such as non-visual renderers.

lspace length set by dictionary (thickmathspace)

Specifies the leading space appearing before the operator; see Section 3.2.5.7. (Note

that before is on the right in a RTL context; see Section 3.1.5).

rspace length set by dictionary (thickmathspace)

Specifies the trailing space appearing after the operator; see Section 3.2.5.7. (Note that

after is on the left in a RTL context; see Section 3.1.5).

stretchy "true" | "false" set by dictionary (false)

Specifies whether the operator should stretch to the size of adjacent material; see Sec-

tion 3.2.5.8.

symmetric "true" | "false" set by dictionary (false)

Specifies whether the operator should be kept symmetric around the math axis when

stretchy. Note this property only applies to vertically stretched symbols. See Sec-

tion 3.2.5.8.

maxsize length | "infinity" set by dictionary (infinity)

Specifies the maximum size of the operator when stretchy; see Section 3.2.5.8. Unitless

or percentage values indicate a multiple of the reference size, being the size of the

unstretched glyph.

minsize length set by dictionary (100%)

Specifies the minimum size of the operator when stretchy; see Section 3.2.5.8. Unitless

or percentage values indicate a multiple of the reference size, being the size of the

unstretched glyph.

largeop "true" | "false" set by dictionary (false)

Specifies whether the operator is considered a ‘large’ operator, that is, whether it should

be drawn larger than normal when displaystyle="true" (similar to using TEX’s

\displaystyle). Examples of large operators include ∫ and ∏. See Sec-

tion 3.1.6 for more discussion.

movablelimits "true" | "false" set by dictionary (false)

Specifies whether under- and overscripts attached to this operator ‘move’ to the more

compact sub- and superscript positions when displaystyle is false. Examples of op-

erators that typically have movablelimits="true" are ∑, ∏, and lim. See

Section 3.1.6 for more discussion.

accent "true" | "false" set by dictionary (false)

Specifies whether this operator should be treated as an accent (diacritical mark) when

used as an underscript or overscript; see munder, mover and munderover.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

50 Chapter 3. Presentation Markup

Linebreaking attributes

The following attributes affect when a linebreak does or does not occur, and the appearance of the

linebreak when it does occur.

Name values default

linebreak "auto" | "newline" | "nobreak" | "goodbreak" |

"badbreak"

auto

Specifies the desirability of a linebreak occurring at this operator: the default "auto"

indicates the renderer should use its default linebreaking algorithm to determine

whether to break; "newline" is used to force a linebreak; For automatic linebreak-

ing, "nobreak" forbids a break; "goodbreak" suggests a good position; "badbreak"

suggests a poor position.

lineleading length inherited (100%)

Specifies the amount of vertical space to use after a linebreak. For tall lines, it is of-

ten clearer to use more leading at linebreaks. Rendering agents are free to choose an

appropriate default.

linebreakstyle "before" | "after" | "duplicate" | "infixlinebreak-

style"

set by dictionary (before)

Specifies whether a linebreak occurs ‘before’ or ‘after’ the operator when a linebreaks

occur on this operator; or whether the operator is duplicated. "before" causes the oper-

ator to appears at the beginning of the new line (but possibly indented); "after" causes

it to appear at the end of the line before the break. "duplicate" places the operator at

both positions. "infixlinebreakstyle" uses the value that has been specified for in-

fix operators; This value (one of "before", "after" or "duplicate") can be specified

by the application or bound by mstyle ("before" corresponds to the most common

style of linebreaking).

linebreakmultchar string inherited (⁢)

Specifies the character used to make an ⁢ operator visible at a linebreak.

For example, linebreakmultchar="·" would make the multiplication visible

as a center dot.

linebreak values on adjacent mo and mspaceelements do not interact; linebreak="nobreak" on

a mo does not, in itself, inhibit a break on a preceding or following (possibly nested) mo or mspace

element and does not interact with the linebreakstyle attribute value of the preceding or following

mo element. It does prevent breaks from occurring on either side of the mo element in all other situations.

Indentation attributes

The following attributes affect indentation of the lines making up a formula. Primarily these attributes

control the positioning of new lines following a linebreak, whether automatic or manual. However,

indentalignfirst and indentshiftfirst also control the positioning of single line formula with-

out any linebreaks. When these attributes appear on mo or mspace they apply if a linebreak occurs at

that element. When they appear on mstyle or math elements, they determine defaults for the style

to be used for any linebreaks occurring within. Note that except for cases where heavily marked-up

manual linebreaking is desired, many of these attributes are most useful when bound on an mstyle or

math element.

Note that since the rendering context, such as the available width and current font, is not always avail-

able to the author of the MathML, a render may ignore the values of these attributes if they result in a

line in which the remaining width is too small to usefully display the expression or if they result in a

line in which the remaining width exceeds the available linewrapping width.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 51

Name values default

indentalign "left" | "center" | "right" | "auto" | "id" inherited (auto)

Specifies the positioning of lines when linebreaking takes place within an mrow; see

below for discussion of the attribute values.

indentshift length inherited (0)

Specifies an additional indentation offset relative to the position determined by

indentalign. When the value is a percentage value or number without unit, the value is

relative to the horizontal space that a MathML renderer has available, this is the current

target width as used for linebreaking as specified in Section 3.1.7

indenttarget idref inherited (none)

Specifies the id of another element whose horizontal position determines the position

of indented lines when indentalign="id". Note that the identified element may be

outside of the current math element, allowing for inter-expression alignment, or may

be within invisible content such as mphantom; it must appear before being referenced,

however. This may lead to an id being unavailable to a given renderer or in a position

that does not allow for alignment. In such cases, the indentalign should revert to

"auto".

indentalignfirst "left" | "center" | "right" | "auto" | "id" | "indentalign" inherited (indentalign)

Specifies the indentation style to use for the first line of a formula; the value

"indentalign" (the default) means to indent the same way as used for the general

line.

indentshiftfirst length | "indentshift" inherited (indentshift)

Specifies the offset to use for the first line of a formula; the value "indentshift" (the

default) means to use the same offset as used for the general line. Percentage values and

numbers without unit are interpreted as described for indentshift

indentalignlast "left" | "center" | "right" | "auto" | "id" | "indentalign" inherited (indentalign)

Specifies the indentation style to use for the last line when a linebreak occurs within a

given mrow; the value "indentalign" (the default) means to indent the same way as

used for the general line. When there are exactly two lines, the value of this attribute

should be used for the second line in preference to indentalign.

indentshiftlast length | "indentshift" inherited (indentshift)

Specifies the offset to use for the last line when a linebreak occurs within a given mrow;

the value "indentshift" (the default) means to indent the same way as used for the

general line. When there are exactly two lines, the value of this attribute should be

used for the second line in preference to indentshift. Percentage values and numbers

without unit are interpreted as described for indentshift

The legal values of indentalign are:

Value Meaning

left Align the left side of the next line to the left side of the line wrapping width

center Align the center of the next line to the center of the line wrapping width

right Align the right side of the next line to the right side of the line wrapping width

auto (default) indent using the renderer’s default indenting style; this may be a fixed amount or one

that varies with the depth of the element in the mrow nesting or some other similar method.

id Align the left side of the next line to the left side of the element referenced by the idref (given

by indenttarget); if no such element exists, use "auto" as the indentalign value

3.2.5.3 Examples with ordinary operators

<mo> + </mo>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

52 Chapter 3. Presentation Markup

<mo> < </mo>

<mo> ≤ </mo>

<mo> <= </mo>

<mo> ++ </mo>

<mo> ∑ </mo>

<mo> .NOT. </mo>

<mo> and </mo>

<mo> ⁢ </mo>

<mo mathvariant=’bold’> + </mo>

3.2.5.4 Examples with fences and separators

Note that the mo elements in these examples don’t need explicit fence or separator attributes, since

these can be found using the operator dictionary as described below. Some of these examples could

also be encoded using the mfenced element described in Section 3.3.8.

(a+b)

<mrow>

<mo> (</mo>

<mrow>

<mi> a </mi>

<mo> + </mo>

<mi> b </mi>

</mrow>

<mo>) </mo>

</mrow>

[0,1)

<mrow>

<mo> [</mo>

<mrow>

<mn> 0 </mn>

<mo> , </mo>

<mn> 1 </mn>

</mrow>

<mo>) </mo>

</mrow>

f (x,y)

<mrow>

<mi> f </mi>

<mo> ⁡ </mo>

<mrow>

<mo> (</mo>

<mrow>

<mi> x </mi>

<mo> , </mo>

<mi> y </mi>

</mrow>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 53

<mo>) </mo>

</mrow>

</mrow>

3.2.5.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using

specific entity references within mo elements, rather than simply by nothing. The characters used for

these ‘invisible operators’ are:

Character Entity name Short name Examples of use

U+2061 ⁡ ⁡ f (x) sin x
U+2062 ⁢ ⁢ xy
U+2063 ⁣ ⁣ m12

U+2064 2 3
4

The MathML representations of the examples in the above table are:

<mrow>

<mi> f </mi>

<mo> ⁡ </mo>

<mrow>

<mo> (</mo>

<mi> x </mi>

<mo>) </mo>

</mrow>

</mrow>

<mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mi> x </mi>

</mrow>

<mrow>

<mi> x </mi>

<mo> ⁢ </mo>

<mi> y </mi>

</mrow>

<msub>

<mi> m </mi>

<mrow>

<mn> 1 </mn>

<mo> ⁣ </mo>

<mn> 2 </mn>

</mrow>

</msub>

<mrow>

<mn> 2 </mn>

<mo> ⁤ </mo>

<mfrac>

<mn> 3 </mn>

<mn> 4 </mn>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

54 Chapter 3. Presentation Markup

</mfrac>

</mrow>

The reasons for using specific mo elements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly spacing

and linebreaking rules) that are not the same as either the lack of any operator, or spacing

represented by mspace or mtext elements;

• these operators should often have specific audio renderings different than that of the lack of

any operator;

• automatic semantic interpretation of MathML presentation elements is made easier by the

explicit specification of such operators.

For example, an audio renderer might render f (x) (represented as in the above examples) by speaking

‘f of x’, but use the word ‘times’ in its rendering of xy. Although its rendering must still be different

depending on the structure of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its

task is made much easier by the use of a different mo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includes ⅆ (U+2146) for use in an mo element representing the differ-

ential operator symbol usually denoted by ‘d’. The reasons for explicitly using this special character

are similar to those for using the special characters for invisible operators described in the preceding

section.

3.2.5.7 Detailed rendering rules for <mo> elements

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token

elements, so the rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements.

Furthermore, no attempt is made to specify the rendering completely; rather, enough information is

given to make the intended effect of the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-

established, predictable, traditional notational usage. Typically, this usage amounts to certain default

attribute values for mo elements with specific contents and a specific form attribute. Since these defaults

vary from symbol to symbol, MathML anticipates that renderers will have an ‘operator dictionary’ of

default attributes for mo elements (see Appendix C) indexed by each mo element’s content and form

attribute. If an mo element is not listed in the dictionary, the default values shown in parentheses in

the table of attributes for mo should be used, since these values are typically acceptable for a generic

operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix,

or postfix), with possibly different rendering properties for each form. For example, ‘+’ can be either a

prefix or an infix operator. Typically, a visual renderer would add space around both sides of an infix

operator, while only in front of a prefix operator. The form attribute allows specification of which form

to use, in case more than one form is possible according to the operator dictionary and the default value

described below is not suitable.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 55

Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic

rules for inferring the value of the form attribute from the context. If it is not specified, and there is

more than one possible form in the dictionary for an mo element with given content, the renderer should

choose which form to use as follows (but see the exception for embellished operators, described later):

• If the operator is the first argument in an mrow with more than one argument (ignoring all

space-like arguments (see Section 3.2.7) in the determination of both the length and the first

argument), the prefix form is used;

• if it is the last argument in an mrow with more than one argument (ignoring all space-like

arguments), the postfix form is used;

• if it is the only element in an implicit or explicit mrow and if it is in a script position of one

of the elements listed in Section 3.4, the postfix form is used;

• in all other cases, including when the operator is not part of an mrow, the infix form is used.

Note that the mrow discussed above may be inferred ; See Section 3.1.3.1.

Opening fences should have form="prefix", and closing fences should have form="postfix"; sep-

arators are usually ‘infix’, but not always, depending on their surroundings. As with ordinary operators,

these values do not usually need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one

of the forms that is available there, in the order of preference: infix, postfix, prefix; if no forms are

available for the given mo element content, the renderer should use the defaults given in parentheses in

the table of attributes for mo.

Exception for embellished operators

There is one exception to the above rules for choosing an mo element’s default form attribute. An mo el-

ement that is ‘embellished’ by one or more nested subscripts, superscripts, surrounding text or whites-

pace, or style changes behaves differently. It is the embellished operator as a whole (this is defined

precisely, below) whose position in an mrow is examined by the above rules and whose surrounding

spacing is affected by its form, not the mo element at its core; however, the attributes influencing this

surrounding spacing are taken from the mo element at the core (or from that element’s dictionary entry).

For example, the ‘+4’ in a+4b should be considered an infix operator as a whole, due to its position in the

middle of an mrow, but its rendering attributes should be taken from the mo element representing the ‘+’,

or when those are not specified explicitly, from the operator dictionary entry for <mo form="infix">

+ </mo>. The precise definition of an ‘embellished operator’ is:

• an mo element;

• or one of the elements msub, msup, msubsup, munder, mover, munderover,

mmultiscripts, mfrac, or semantics (Section 5.1), whose first argument exists and is an

embellished operator;

• or one of the elements mstyle, mphantom, or mpadded, such that an mrow containing the

same arguments would be an embellished operator;

• or an maction element whose selected sub-expression exists and is an embellished operator;

• or an mrow whose arguments consist (in any order) of one embellished operator and zero or

more space-like elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing

elements not in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in

all ordinary cases it will not be necessary for the author to specify a form attribute.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

56 Chapter 3. Presentation Markup

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should

not be important for most users of MathML.

An mfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>

<mo> ⅆ </mo>

<mrow>

<mo> ⅆ </mo>

<mi> x </mi>

</mrow>

</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is

important that it includes embellished fences as well as ordinary operators; thus it applies to any mo

element.

Note that an mrow containing a single argument is an embellished operator if and only if its argument

is an embellished operator. This is because an mrow with a single argument must be equivalent in all

respects to that argument alone (as discussed in Section 3.3.1). This means that an mo element that is

the sole argument of an mrow will determine its default form attribute based on that mrow’s position

in a surrounding, perhaps inferred, mrow (if there is one), rather than based on its own position in the

mrow in which it is the sole argument.

Note that the above definition defines every mo element to be ‘embellished’ — that is, ‘embellished

operator’ can be considered (and implemented in renderers) as a special class of MathML expressions,

of which mo is a specific case.

Spacing around an operator

The amount of horizontal space added around an operator (or embellished operator), when it occurs

in an mrow, can be directly specified by the lspace and rspace attributes. Note that lspace and

rspace should be interpreted as leading and trailing space, in the case of RTL direction. By convention,

operators that tend to bind tightly to their arguments have smaller values for spacing than operators that

tend to bind less tightly. This convention should be followed in the operator dictionary included with a

MathML renderer.

Some renderers may choose to use no space around most operators appearing within subscripts or

superscripts, as is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here,

in analogous ways for their rendering medium. For example, more space might translate into a longer

pause in an audio rendering.

3.2.5.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches

the size of other elements: stretchy, symmetric, maxsize, and minsize. If an operator has the

attribute stretchy="true", then it (that is, each character in its content) obeys the stretching rules

listed below, given the constraints imposed by the fonts and font rendering system. In practice, typical

renderers will only be able to stretch a small set of characters, and quite possibly will only be able to

generate a discrete set of character sizes.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 57

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a

specific character or operator; rather, when stretchy="true" it should be stretched in each direction

for which stretching is possible and reasonable for that character. It is up to the renderer to know in

which directions it is reasonable to stretch a character, if it can stretch the character. Most characters

can be stretched in at most one direction by typical renderers, but some renderers may be able to stretch

certain characters, such as diagonal arrows, in both directions independently.

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two at-

tributes are given as multipliers of the operator’s normal size in the direction or directions of stretching,

or as absolute sizes using units. For example, if a character has maxsize="300%", then it can grow to

be no more than three times its normal (unstretched) size.

The symmetric attribute governs whether the height and depth above and below the axis of the char-

acter are forced to be equal (by forcing both height and depth to become the maximum of the two).

An example of a situation where one might set symmetric="false" arises with parentheses around

a matrix not aligned on the axis, which frequently occurs when multiplying non-square matrices. In

this case, one wants the parentheses to stretch to cover the matrix, whereas stretching the parentheses

symmetrically would cause them to protrude beyond one edge of the matrix. The symmetric attribute

only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core

is stretched to a size based on the context of the embellished operator as a whole, i.e. to the same

size as if the embellishments were not present. For example, the parentheses in the following example

(which would typically be set to be stretchy by the operator dictionary) will be stretched to the same

size as each other, and the same size they would have if they were not underlined and overlined, and

furthermore will cover the same vertical interval:

<mrow>

<munder>

<mo> (</mo>

<mo> _ </mo>

</munder>

<mfrac>

<mi> a </mi>

<mi> b </mi>

</mfrac>

<mover>

<mo>) </mo>

<mo> ‾ </mo>

</mover>

</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished

operator as a whole, not just to the mo element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its

default value is stretchy="true".

<mrow>

<mo maxsize="100%"> (</mo>

<mfrac>

<mi> a </mi> <mi> b </mi>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

58 Chapter 3. Presentation Markup

</mfrac>

<mo maxsize="100%">) </mo>

</mrow>

The above should render as (a
b) as opposed to the default rendering

(a
b

)
.

Note that each parenthesis is sized independently; if only one of them had maxsize="100%", they

would render with different sizes.

Vertical Stretching Rules

The general rules governing stretchy operators are:

• If a stretchy operator is a direct sub-expression of an mrow element, or is the sole direct sub-

expression of an mtd element in some row of a table, then it should stretch to cover the height

and depth (above and below the axis) of the non-stretchy direct sub-expressions in the mrow

element or table row, unless stretching is constrained by minsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy

operator at its core.

• The preceding rules also apply in situations where the mrow element is inferred.

• The rules for symmetric stretching only apply if symmetric="true" and if the stretching

occurs in an mrow or in an mtr whose rowalign value is either "baseline" or "axis".

The following algorithm specifies the height and depth of vertically stretched characters:

1. Let maxheight and maxdepth be the maximum height and depth of the non-stretchy sib-

lings within the same mrow or mtr. Let axis be the height of the math axis above the base-

line.Note that even if a minsize or maxsize value is set on a stretchy operator, it is not used

in the initial calculation of the maximum height and depth of an mrow.

2. If symmetric="true", then the computed height and depth of the stretchy operator are:

height=max(maxheight-axis, maxdepth+axis) + axis

depth =max(maxheight-axis, maxdepth+axis) - axis
Otherwise the height and depth are:

height= maxheight

depth = maxdepth

3. If the total size = height+depth is less than minsize or greater than maxsize, increase or

decrease both height and depth proportionately so that the effective size meets the constraint.

By default, most vertical arrows, along with most opening and closing fences are defined in the operator

dictionary to stretch by default.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume

each cell of the table row containing the stretchy operator covers exactly one row. (Equivalently, the

value of the rowspan attribute is assumed to be 1 for all the table cells in the table row, including the

cell containing the operator.) When this is not the case, the operator should only be stretched vertically

to cover those table cells that are entirely within the set of table rows that the operator’s cell covers.

Table cells that extend into rows not covered by the stretchy operator’s table cell should be ignored. See

Section 3.5.4.2 for details about the rowspan attribute.

Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct sub-expression of an

munder, mover, or munderover element, or if it is the sole direct sub-expression of an mtd

element in some column of a table (see mtable), then it, or the mo element at its core, should

stretch to cover the width of the other direct sub-expressions in the given element (or in the

same table column), given the constraints mentioned above.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 59

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy

operator at its core.

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume

each cell of the table column containing the stretchy operator covers exactly one column. (Equivalently,

the value of the columnspan attribute is assumed to be 1 for all the table cells in the table row, includ-

ing the cell containing the operator.) When this is not the case, the operator should only be stretched

horizontally to cover those table cells that are entirely within the set of table columns that the operator’s

cell covers. Table cells that extend into columns not covered by the stretchy operator’s table cell should

be ignored. See Section 3.5.4.2 for details about the rowspan attribute.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commu-

tative diagrams laid out using mtable. The rules for the horizontal stretchiness include scripts to make

examples such as the following work:

<mrow>

<mi> x </mi>

<munder>

<mo> → </mo>

<mtext> maps to </mtext>

</munder>

<mi> y </mi>

</mrow>

This displays as x −−−−→
maps to

y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above,

or if there are no other expressions whose size it should stretch to match), then it has the standard

(unstretched) size determined by the font and current mathsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as

described above) are also stretchy, all elements that can stretch should grow to the maximum of the

normal unstretched sizes of all elements in the containing object, if they can grow that large. If the

value of minsize or maxsize prevents that, then the specified (min or max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators

should stretch to the maximum of all of their normal unstretched sizes, provided no other attributes are

set that override this behavior. Of course, limitations in fonts or font rendering may result in the final,

stretched sizes being only approximately the same.

3.2.5.9 Examples of Linebreaking

The following example demonstrates forced linebreaks and forced alignment:

<mrow>

<mrow> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow>

<mo id=’eq1-equals’>=</mo>

<mrow>

<msup>

<mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow>

<mn>4</mn>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

60 Chapter 3. Presentation Markup

</msup>

<mo linebreak=’newline’ linebreakstyle=’before’

indentalign=’id’ indenttarget=’eq1-equals’>=</mo>

<mrow>

<msup> <mi>x</mi> <mn>4</mn> </msup>

<mo id=’eq1-plus’>+</mo>

<mrow> <mn>4</mn> <mo>⁢</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow>

<mo>+</mo>

<mrow> <mn>6</mn> <mo>⁢</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow>

<mo linebreak=’newline’ linebreakstyle=’before’

indentalignlast=’id’ indenttarget=’eq1-plus’>+</mo>

<mrow> <mn>4</mn> <mo>⁢</mo> <mi>x</mi> </mrow>

<mo>+</mo>

<mn>1</mn>

</mrow>

</mrow>

</mrow>

This displays as

Note that because indentalignlast defaults to "indentalign", in the above example

indentalign could have been used in place of indentalignlast. Also, the specifying

linebreakstyle=’before’ is not needed because that is the default value.

3.2.6 Text <mtext>

3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, the

mtext element is intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked up using

mi or mo; this is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are

intended to alter the positioning of surrounding elements. In non-graphical media, such characters are

intended to have an analogous effect, such as introducing positive or negative time delays or affecting

rhythm in an audio renderer. This is not related to any whitespace in the source MathML consisting

of blanks, newlines, tabs, or carriage returns; whitespace present directly in the source is trimmed

and collapsed, as described in Section 2.1.7. Whitespace that is intended to be rendered as part of an

element’s content must be represented by entity references or mspace elements (unless it consists only

of single blanks between non-whitespace characters).

3.2.6.2 Attributes

mtext elements accept the attributes listed in Section 3.2.2.

See also the warnings about the legal grouping of ‘space-like elements’ in Section 3.2.7, and about the

use of such elements for ‘tweaking’ in Section 3.1.8.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 61

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>

<mtext>   </mtext>

<mtext>      </mtext>

<mtext> /* a comment */ </mtext>

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented using mo or mi

elements. For example, the expression ’there exists δ > 0 such that f (x) <1’ is equivalent to ∃δ > 0 �
f (x)< 1 and could be represented as:

<mrow>

<mo> there exists </mo>

<mrow>

<mrow>

<mi> δ </mi>

<mo> > </mo>

<mn> 0 </mn>

</mrow>

<mo> such that </mo>

<mrow>

<mrow>

<mi> f </mi>

<mo> ⁡ </mo>

<mrow>

<mo> (</mo>

<mi> x </mi>

<mo>) </mo>

</mrow>

</mrow>

<mo> < </mo>

<mn> 1 </mn>

</mrow>

</mrow>

</mrow>

An example involving an mi element is: x+x2+···+xn. In this example, ellipsis should be represented

using an mi element, since it takes the place of a term in the sum; (see Section 3.2.3).

On the other hand, expository text within MathML is best represented with an mtext element. An

example of this is:

Theorem 1: if x > 1, then x2 > x.

However, when MathML is embedded in HTML, or another document markup language, the example

is probably best rendered with only the two inequalities represented as MathML at all, letting the text

be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in

an mo element is unlikely to be found in a renderer’s operator dictionary, so it will be rendered with

the format and spacing appropriate for an ‘unrecognized operator’, which may or may not be better

than the format and spacing for ‘text’ obtained by using an mtext element. An ellipsis entity in an mi

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

62 Chapter 3. Presentation Markup

element is apt to be spaced more appropriately for taking the place of a term within a series than if it

appeared in an mtext element.

3.2.7 Space <mspace/>

3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can

also be used to make linebreaking suggestions to a visual renderer. Note that the default values for

attributes have been chosen so that they typically will have no effect on rendering. Thus, the mspace

element is generally used with one or more attribute values explicitly specified.

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about

the use of such elements for ‘tweaking’ in Section 3.1.8. See also the other elements that can render as

whitespace, namely mtext, mphantom, and maligngroup.

3.2.7.2 Attributes

In addition to the attributes listed below, mspace elements accept the attributes described in Sec-

tion 3.2.2, but note that mathvariant and mathcolor have no effect and that mathsize only affects

the interpretation of units in sizing attributes (see Section 2.1.5.2). mspace also accepts the indentation

attributes described in Section 3.2.5.2.

Name values default

width length 0em

Specifies the desired width of the space.

height length 0ex

Specifies the desired height (above the baseline) of the space.

depth length 0ex

Specifies the desired depth (below the baseline) of the space.

linebreak "auto" | "newline" | "nobreak" | "goodbreak" | "badbreak" auto

Specifies the desirability of a linebreak at this space. This attribute should be ignored if

any dimensional attribute is set.

Linebreaking was originally specified on mspace in MathML2, but controlling linebreaking on mo is

to be preferred starting with MathML 3. MathML 3 adds new linebreaking attributes only to mo, not

mspace. However, because a linebreak can be specified on mspace, control over the indentation that

follows that break can be specified using the attributes listed in Section 3.2.5.2.

The value "indentingnewline" was defined in MathML2 for mspace; it is now deprecated. Its mean-

ing is the same as newline, which is compatible with its earlier use when no other linebreaking at-

tributes are specified. Note that linebreak values on adjacent mo and mspace elements do not interact;

a "nobreak" on an mspace will not, in itself, inhibit a break on an adjacent mo element.

3.2.7.3 Examples

<mspace height="3ex" depth="2ex"/>

<mrow>

<mi>a</mi>

<mo id="firstop">+</mo>

<mi>b</mi>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.2. Token Elements 63

<mspace linebreak="newline" indentalign="id" indenttarget="firstop"/>

<mo>+</mo>

<mi>c</mi>

</mrow>

In the last example, mspace will cause the line to end after the "b" and the following line to be indented

so that the "+" that follows will align with the "+" with id="firstop".

3.2.7.4 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render

as whitespace, and do not affect the mathematical meaning of the expressions in which they appear.

As a consequence, these elements often function in somewhat exceptional ways in other MathML

expressions. For example, space-like elements are handled specially in the suggested rendering rules

for mo given in Section 3.2.5. The following MathML elements are defined to be ‘space-like’:

• an mtext, mspace, maligngroup, or malignmark element;

• an mstyle, mphantom, or mpadded element, all of whose direct sub-expressions are space-

like;

• an maction element whose selected sub-expression exists and is space-like;

• an mrow all of whose direct sub-expressions are space-like.

Note that an mphantom is not automatically defined to be space-like, unless its content is space-like.

This is because operator spacing is affected by whether adjacent elements are space-like. Since the

mphantom element is primarily intended as an aid in aligning expressions, operators adjacent to an

mphantom should behave as if they were adjacent to the contents of the mphantom, rather than to an

equivalently sized area of whitespace.

3.2.7.5 Legal grouping of space-like elements

Authors who insert space-like elements or mphantom elements into an existing MathML expression

should note that such elements are counted as arguments, in elements that require a specific number of

arguments, or that interpret different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neigh-

boring argument of that element by introducing an mrow for that purpose. For example, to allow for

vertical alignment on the right edge of the base of a superscript, the expression

<msup>

<mi> x </mi>

<malignmark edge="right"/>

<mn> 2 </mn>

</msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

<msup>

<mrow>

<mi> x </mi>

<malignmark edge="right"/>

</mrow>

<mn> 2 </mn>

</msup>

See also the warning about ‘tweaking’ in Section 3.1.8.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

64 Chapter 3. Presentation Markup

3.2.8 String Literal <ms>

3.2.8.1 Description

The ms element is used to represent ‘string literals’ in expressions meant to be interpreted by computer

algebra systems or other systems containing ‘programming languages’. By default, string literals are

displayed surrounded by double quotes, with no extra spacing added around the string. As explained in

Section 3.2.6, ordinary text embedded in a mathematical expression should be marked up with mtext,

or in some cases mo or mi, but never with ms.

Note that the string literals encoded by ms are made up of characters, mglyphs and malignmarks

rather than ‘ASCII strings’. For example, <ms>&</ms> represents a string literal containing a

single character, &, and <ms>&amp;</ms> represents a string literal containing 5 characters, the

first one of which is &.

The content of ms elements should be rendered with visible ‘escaping’ of certain characters in the

content, including at least the left and right quoting characters, and preferably whitespace other than

individual space characters. The intent is for the viewer to see that the expression is a string literal, and

to see exactly which characters form its content. For example, <ms>double quote is "</ms> might

be rendered as "double quote is \"".

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of

Section 2.1.7, so whitespace intended to remain in the content should be encoded as described in that

section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Section 3.2.2, and additionally:

Name values default

lquote string "

Specifies the opening quote to enclose the content. (not necessarily ‘left quote’ in RTL

context).

rquote string "

Specifies the closing quote to enclose the content. (not necessarily ‘right quote’ in RTL

context).

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements

deals with various ‘scripting’ notations, such as subscript and superscript. Another family is concerned

with matrices and tables. The remainder of the elements, discussed in this section, describe other basic

notations such as fractions and radicals, or deal with general functions such as setting style properties

and error handling.

3.3.1 Horizontally Group Sub-Expressions <mrow>

3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one

or more mo elements acting as ‘operators’ on one or more other expressions that are their ‘operands’.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 65

Several elements automatically treat their arguments as if they were contained in an mrow element.

See the discussion of inferred mrows in Section 3.1.3. See also mfenced (Section 3.3.8), which can

effectively form an mrow containing its arguments separated by commas.

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the

order in which the arguments occur within a context with LTR directionality, or right to left within a

context with RTL directionality. The dir attribute can be used to specify the directionality for a specific

mrow, otherwise it inherits the directionality from the context. For aural agents, the arguments would

be rendered audibly as a sequence of renderings of the arguments. The description in Section 3.2.5 of

suggested rendering rules for mo elements assumes that all horizontal spacing between operators and

their operands is added by the rendering of mo elements (or, more generally, embellished operators),

not by the rendering of the mrows they are contained in.

MathML provides support for both automatic and manual linebreaking of expressions (that is, to break

excessively long expressions into several lines). All such linebreaks take place within mrows, whether

they are explicitly marked up in the document, or inferred (See Section 3.1.3.1), although the control

of linebreaking is effected through attributes on other elements (See Section 3.1.7).

3.3.1.2 Attributes

mrow elements accept the attribute listed below in addition to those listed in Section 3.1.10.

Name values default

dir "ltr" | "rtl" inherited

specifies the overall directionality ltr (Left To Right) or rtl (Right To Left) to use to

layout the children of the row. See Section 3.1.5.1 for further discussion.

3.3.1.3 Proper grouping of sub-expressions using <mrow>

Sub-expressions should be grouped by the document author in the same way as they are grouped in

the mathematical interpretation of the expression; that is, according to the underlying ‘syntax tree’ of

the expression. Specifically, operators and their mathematical arguments should occur in a single mrow;

more than one operator should occur directly in one mrow only when they can be considered (in a

syntactic sense) to act together on the interleaved arguments, e.g. for a single parenthesized term and

its parentheses, for chains of relational operators, or for sequences of terms separated by + and -. A

precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for

more intelligent linebreaking and indentation; and it simplifies possible semantic interpretation of pre-

sentation elements by computer algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make in-

terpretation other than pure visual rendering difficult or impossible, any grouping of expressions using

mrow is allowed in MathML syntax; that is, renderers should not assume the rules for proper grouping

will be followed.

<mrow> of one argument

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent

in all ways to the single argument occurring alone, provided there are no attributes on the mrow element.

If there are attributes on the mrow element, no requirement of equivalence is imposed. This equivalence

condition is intended to simplify the implementation of MathML-generating software such as template-

based authoring tools. It directly affects the definitions of embellished operator and space-like element

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

66 Chapter 3. Presentation Markup

and the rules for determining the default value of the form attribute of an mo element; see Section 3.2.5

and Section 3.2.7. See also the discussion of equivalence of MathML expressions in Section 2.3.

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions using mrow is especially desirable when

generating MathML automatically by conversion from other formats for displayed mathematics, such

as TEX, which don’t always specify how sub-expressions nest. When a precise rule for grouping is

desired, the following rule should be used:

Two adjacent operators, possibly embellished, possibly separated by operands (i.e. anything other than

operators), should occur in the same mrow only when the leading operator has an infix or prefix form

(perhaps inferred), the following operator has an infix or postfix form, and the operators have the same

priority in the operator dictionary (Appendix C). In all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) that includes just one of two successive

operators with the forms mentioned above (which mean that either operator could in principle act on

the intervening operand or operands), it is necessary to decide which operator acts on those operands

directly (or would do so, if they were present). Ideally, this should be determined from the original

expression; for example, in conversion from an operator-precedence-based format, it would be the

operator with the higher precedence.

Note that the above rule has no effect on whether any MathML expression is valid, only on the rec-

ommended way of generating MathML from other formats for displayed mathematics or directly from

written notation.

(Some of the terminology used in stating the above rule in defined in Section 3.2.5.)

3.3.1.4 Examples

As an example, 2x+y-z should be written as:

<mrow>

<mrow>

<mn> 2 </mn>

<mo> ⁢ </mo>

<mi> x </mi>

</mrow>

<mo> + </mo>

<mi> y </mi>

<mo> - </mo>

<mi> z </mi>

</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nesting mrows:

<mrow>

<mo> (</mo>

<mrow>

<mi> x </mi>

<mo> , </mo>

<mi> y </mi>

</mrow>

<mo>) </mo>

</mrow>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 67

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought

of as fence and separator ‘operators’, do not act together on their arguments.

3.3.2 Fractions <mfrac>

3.3.2.1 Description

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as

binomial coefficients and Legendre symbols. The syntax for mfrac is

<mfrac> numerator denominator </mfrac>

The mfrac element sets displaystyle to "false", or if it was already false increments

scriptlevel by 1, within numerator and denominator. (See Section 3.1.6.)

3.3.2.2 Attributes

mfrac elements accept the attributes listed below in addition to those listed in Section 3.1.10. The

fraction line, if any, should be drawn using the color specified by mathcolor.

Name values default

linethickness length | "thin" | "medium" | "thick" medium

Specifies the thickness of the horizontal ‘fraction bar’, or ‘rule’ The default value is

"medium", "thin" is thinner, but visible, "thick" is thicker; the exact thickness of

these is left up to the rendering agent.

numalign "left" | "center" | "right" center

Specifies the alignment of the numerator over the fraction.

denomalign "left" | "center" | "right" center

Specifies the alignment of the denominator under the fraction.

bevelled "true" | "false" false

Specifies whether the fraction should be displayed in a beveled style (the numerator

slightly raised, the denominator slightly lowered and both separated by a slash), rather

than "build up" vertically. See below for an example.

Thicker lines (e.g. linethickness="thick") might be used with nested fractions; a value of "0" renders

without the bar such as for binomial coefficients. These cases are shown below:(
a
b

) a
b
c
d

An example illustrating the bevelled form is shown below:

1

x3 + x
3

= 1
/

x3 + x
3

In a RTL directionality context, the numerator leads (on the right), the denominator follows (on the

left) and the diagonal line slants upwards going from right to left (See Section 3.1.5.1 for clarification).

Although this format is an established convention, it is not universally followed; for situations where a

forward slash is desired in a RTL context, alternative markup, such as an mo within an mrow should be

used.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

68 Chapter 3. Presentation Markup

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>

<mo> (</mo>

<mfrac linethickness="0">

<mi> a </mi>

<mi> b </mi>

</mfrac>

<mo>) </mo>

</mrow>

<mfrac linethickness="200%">

<mfrac>

<mi> a </mi>

<mi> b </mi>

</mfrac>

<mfrac>

<mi> c </mi>

<mi> d </mi>

</mfrac>

</mfrac>

<mfrac>

<mn> 1 </mn>

<mrow>

<msup>

<mi> x </mi>

<mn> 3 </mn>

</msup>

<mo> + </mo>

<mfrac>

<mi> x </mi>

<mn> 3 </mn>

</mfrac>

</mrow>

</mfrac>

<mo> = </mo>

<mfrac bevelled="true">

<mn> 1 </mn>

<mrow>

<msup>

<mi> x </mi>

<mn> 3 </mn>

</msup>

<mo> + </mo>

<mfrac>

<mi> x </mi>

<mn> 3 </mn>

</mfrac>

</mrow>

</mfrac>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 69

A more generic example is:

<mfrac>

<mrow>

<mn> 1 </mn>

<mo> + </mo>

<msqrt>

<mn> 5 </mn>

</msqrt>

</mrow>

<mn> 2 </mn>

</mfrac>

3.3.3 Radicals <msqrt>, <mroot>

3.3.3.1 Description

These elements construct radicals. The msqrt element is used for square roots, while the mroot element

is used to draw radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>

<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts a single argument, possi-

bly being an inferred mrow of multiple children; see Section 3.1.3. The mroot element increments

scriptlevel by 2, and sets displaystyle to "false", within index, but leaves both attributes un-

changed within base. The msqrt element leaves both attributes unchanged within its argument. (See

Section 3.1.6.)

Note that in a RTL directionality, the surd begins on the right, rather than the left, along with the index

in the case of mroot.

3.3.3.2 Attributes

msqrt and mroot elements accept the attributes listed in Section 3.1.10. The surd and overbar should

be drawn using the color specified by mathcolor.

3.3.4 Style Change <mstyle>

3.3.4.1 Description

The mstyle element is used to make style changes that affect the rendering of its contents. Firstly, as a

presentation element, it accepts the attributes described in Section 3.1.10. Additionally, it can be given

any attribute accepted by any other presentation element, except for the attributes described below.

Finally, the mstyle element can be given certain special attributes listed in the next subsection.

The mstyle element accepts a single argument, possibly being an inferred mrow of multiple children;

see Section 3.1.3.

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the

elements it contains. Style changes work in one of several ways, depending on the way in which default

values are specified for an attribute. The cases are:

• Some attributes, such as displaystyle or scriptlevel (explained below), are inherited

from the surrounding context when they are not explicitly set. Specifying such an attribute on

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

70 Chapter 3. Presentation Markup

an mstyle element sets the value that will be inherited by its child elements. Unless a child

element overrides this inherited value, it will pass it on to its children, and they will pass

it to their children, and so on. But if a child element does override it, either by an explicit

attribute setting or automatically (as is common for scriptlevel), the new (overriding)

value will be passed on to that element’s children, and then to their children, etc, unless it is

again overridden.

• Other attributes, such as linethickness on mfrac, have default values that are not nor-

mally inherited. That is, if the linethickness attribute is not set on the mfrac element, it

will normally use the default value of "1", even if it was contained in a larger mfrac ele-

ment that set this attribute to a different value. For attributes like this, specifying a value with

an mstyle element has the effect of changing the default value for all elements within its

scope. The net effect is that setting the attribute value with mstyle propagates the change to

all the elements it contains directly or indirectly, except for the individual elements on which

the value is overridden. Unlike in the case of inherited attributes, elements that explicitly

override this attribute have no effect on this attribute’s value in their children.

• Another group of attributes, such as stretchy and form, are computed from operator dictio-

nary information, position in the enclosing mrow, and other similar data. For these attributes,

a value specified by an enclosing mstyle overrides the value that would normally be com-

puted.

Note that attribute values inherited from an mstyle in any manner affect a descendant element in the

mstyle’s content only if that attribute is not given a value by the descendant element. On any element

for which the attribute is set explicitly, the value specified overrides the inherited value. The only

exception to this rule is when the attribute value is documented as specifying an incremental change to

the value inherited from that element’s context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained

above, only matters when the attribute is set on some element within the mstyle’s contents that has

descendants also setting it. Thus it never matters for attributes, such as mathsize, which can only be

set on token elements (or on mstyle itself).

MathML specifies that when the attributes height, depth or width are specified on an mstyle ele-

ment, they apply only to mspace elements, and not to the corresponding attributes of mglyph, mpadded,

or mtable. Similarly, when rowalign, columnalign, or groupalign are specified on an mstyle el-

ement, they apply only to the mtable element, and not the mtr, mlabeledtr, mtd, and maligngroup

elements. When the lspace attribute is set with mstyle, it applies only to the mo element and not to

mpadded. To be consistent, the voffset attribute of the mpadded element can not be set on mstyle.

When the deprecated fontfamily attribute is specified on an mstyle element, it does not apply to the

mglyph element. The deprecated index attribute cannot be set on mstyle. When the align attribute

is set with mstyle, it applies only to the munder, mover, and munderover elements, and not to the

mtable and mstack elements. The required attributes src and alt on mglyph, and actiontype on

maction, cannot be set on mstyle.

As a presentation element, mstyle directly accepts the mathcolor and mathbackground attributes.

Thus, the mathbackground specifies the color to fill the bounding box of the mstyle element itself;

it does not specify the default background color. This is an incompatible change from MathML 2, but

we feel it is more useful and intuitive. Since the default for mathcolor is inherited, this is no change

in its behaviour.

3.3.4.2 Attributes

As stated above, mstyle accepts all attributes of all MathML presentation elements which do not have

required values. That is, all attributes which have an explicit default value or a default value which is

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 71

inherited or computed are accepted by the mstyle element.

mstyle elements accept the attributes listed in Section 3.1.10.

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every

MathML element as part of its rendering environment:

Name values default

scriptlevel ("+" | "-")? unsigned-integer inherited

Changes the scriptlevel in effect for the children. When the value is given without

a sign, it sets scriptlevel to the specified value; when a sign is given, it increments

("+") or decrements ("-") the current value. (Note that large decrements can result in neg-

ative values of scriptlevel, but these values are considered legal.) See Section 3.1.6.

displaystyle "true" | "false" inherited

Changes the displaystyle in effect for the children. See Section 3.1.6.

scriptsizemultiplier number 0.71

Specifies the multiplier to be used to adjust font size due to changes in scriptlevel.

See Section 3.1.6.

scriptminsize length 8pt

Specifies the minimum font size allowed due to changes in scriptlevel. Note that

this does not limit the font size due to changes to mathsize. See Section 3.1.6.

infixlinebreakstyle "before" | "after" | "duplicate" before

Specifies the default linebreakstyle to use for infix operators; see Section 3.2.5.2

decimalpoint character .

specifies the character used to determine the alignment point within mstack and mtable

columns when the "decimalpoint" value is used to specify the alignment. The default,

".", is the decimal separator used to separate the integral and decimal fractional parts of

floating point numbers in many countries. (See Section 3.6 and Section 3.5.5).

If scriptlevel is changed incrementally by an mstyle element that also sets certain other attributes,

the overall effect of the changes may depend on the order in which they are processed. In such cases,

the attributes in the following list should be processed in the following order, regardless of the order in

which they occur in the XML-format attribute list of the mstyle start tag: scriptsizemultiplier,

scriptminsize, scriptlevel, mathsize.

Deprecated Attributes

MathML2 allowed the binding of namedspaces to new values. It appears that this capability was nev-

er implemented, and is now deprecated; namedspaces are now considered constants. For backwards

compatibility, the following attributes are accepted on the mstyle element, but are expected to have no

effect.

Name values default

veryverythinmathspace length 0.0555556em

verythinmathspace length 0.111111em

thinmathspace length 0.166667em

mediummathspace length 0.222222em

thickmathspace length 0.277778em

verythickmathspace length 0.333333em

veryverythickmathspace length 0.388889em

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

72 Chapter 3. Presentation Markup

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>

<mo maxsize="100%"> (</mo>

<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>

<mo maxsize="100%">) </mo>

</mrow>

can be rewritten using mstyle as:

<mstyle maxsize="100%">

<mrow>

<mo> (</mo>

<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>

<mo>) </mo>

</mrow>

</mstyle>

3.3.5 Error Message <merror>

3.3.5.1 Description

The merror element displays its contents as an ‘error message’. This might be done, for example, by

displaying the contents in red, flashing the contents, or changing the background color. The contents

can be any expression or expression sequence.

merror accepts a single argument possibly being an inferred mrow of multiple children; see Sec-

tion 3.1.3.

The intent of this element is to provide a standard way for programs that generate MathML from other

input to report syntax errors in their input. Since it is anticipated that preprocessors that parse input

syntaxes designed for easy hand entry will be developed to generate MathML, it is important that they

have the ability to indicate that a syntax error occurred at a certain point. See Section 2.3.2.

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous

part of its input with an merror element containing a description of the error, while processing the

surrounding expressions normally as far as possible. By this means, the error message will be rendered

where the erroneous input would have appeared, had it been correct; this makes it easier for an author

to determine from the rendered output what portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any program,

the format should be designed to make as clear as possible (to a human viewer of the rendered error

message) what was wrong with the input and how it can be fixed. If the erroneous input contains

correctly formatted subsections, it may be useful for these to be preprocessed normally and included

in the error message (within the contents of the merror element), taking advantage of the ability of

merror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

merror elements accept the attributes listed in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 73

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>

<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>

<mn> 2 </mn>

</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element

mfrac), it might generate the error message

<merror>

<mtext> Unrecognized element: mfraction;

arguments were: </mtext>

<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>

<mtext> and </mtext>

<mn> 2 </mn>

</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is

valid MathML.

3.3.6 Adjust Space Around Content <mpadded>

3.3.6.1 Description

An mpadded element renders the same as its child content, but with the size of the child’s bounding

box and the relative positioning point of its content modified according to mpadded’s attributes. It

does not rescale (stretch or shrink) its content. The name of the element reflects the typical use of

mpadded to add padding, or extra space, around its content. However, mpadded can be used to make

more general adjustments of size and positioning, and some combinations, e.g. negative padding, can

cause the content of mpadded to overlap the rendering of neighboring content. See Section 3.1.8 for

warnings about several potential pitfalls of this effect.

The mpadded element accepts a single argument which may be an inferred mrow of multiple children;

see Section 3.1.3.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing

horizontal space (width and lspace).

3.3.6.2 Attributes

mpadded elements accept the attributes listed below in addition to those specified in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

74 Chapter 3. Presentation Markup

Name values default

height ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit

| namedspace)?

same as content

Sets or increments the height of the mpadded element. See below for discussion.

depth ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit

| namedspace)?

same as content

Sets or increments the depth of the mpadded element. See below for discussion.

width ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit

| namedspace)?

same as content

Sets or increments the width of the mpadded element. See below for discussion.

lspace ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit

| namedspace)?

0em

Sets the horizontal position of the child content. See below for discussion.

voffset ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit

| namedspace)?

0em

Sets the vertical position of the child content. See below for discussion.

The pseudo-unit syntax symbol is described below. Also, height, depth and width attributes are

referred to as size attributes, while lspace and voffset attributes are position attributes.

These attributes specify the size of the bounding box of the mpadded element relative to the size of

the bounding box of its child content, and specify the position of the child content of the

mpadded element relative to the natural positioning of the mpadded element. The typographical layout

parameters determined by these attributes are described in the next subsection. Depending on the form

of the attribute value, a dimension may be set to a new value, or specified relative to the child content’s

corresponding dimension. Values may be given as multiples or percentages of any of the dimensions of

the normal rendering of the child content using so-called pseudo-units, or they can be set directly using

standard units Section 2.1.5.2.

If the value of a size attribute begins with a + or - sign, it specifies an increment or decrement to the

corresponding dimension by the following length value. Otherwise the corresponding dimension is set

directly to the following length value. Note that since a leading minus sign indicates a decrement, the

size attributes (height, depth, width) cannot be set directly to negative values. In addition, specifying

a decrement that would produce a net negative value for these attributes has the same effect as setting

the attribute to zero. In other words, the effective bounding box of an mpadded element always has

non-negative dimensions. However, negative values are allowed for the relative positioning attributes

lspace and voffset.

Length values (excluding any sign) can be specified in several formats. Each format begins with an

unsigned-number , which may be followed by a % sign (effectively scaling the number) and an optional

pseudo-unit, by a pseudo-unit alone, or by a unit (excepting %). The possible pseudo-units are the

keywords height, depth, and width. They represent the length of the same-named dimension of the

mpadded element’s child content.

For any of these length formats, the resulting length is the product of the number (possibly including

the %) and the following pseudo-unit, unit , namedspace or the default value for the attribute if no such

unit or space is given.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows:

depth="100%height" and depth="1.0height" both set the depth of the mpadded element to the

height of its content. depth="105%" sets the depth to 1.05 times the content’s depth, and either

depth="+100%" or depth="200%" sets the depth to twice the content’s depth.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 75

The rules given above imply that all of the following attribute settings have the same effect, which is to

leave the content’s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>

<mpadded width="+0%"> ... </mpadded>

<mpadded width="-0em"> ... </mpadded>

<mpadded width="-0height"> ... </mpadded>

<mpadded width="100%"> ... </mpadded>

<mpadded width="100%width"> ... </mpadded>

<mpadded width="1width"> ... </mpadded>

<mpadded width="1.0width"> ... </mpadded>

<mpadded> ... </mpadded>

Note that the examples in the Version 2 of the MathML specification showed spaces within the attribute

values, suggesting that this was the intended format. Formally, spaces are not allowed within these

values, but implementers may wish to ignore such spaces to maximize backward compatibility.

3.3.6.3 Meanings of size and position attributes

See Appendix D for definitions of some of the typesetting terms used here.

The content of an mpadded element defines a fragment of mathematical notation, such as a character,

fraction, or expression, that can be regarded as a single typographical element with a natural positioning

point relative to its natural bounding box.

The size of the bounding box of an mpadded element is defined as the size of the bounding box of

its content, except as modified by the mpadded element’s height, depth, and width attributes. The

natural positioning point of the child content of the mpadded element is located to coincide with the

natural positioning point of the mpadded element, except as modified by the lspace and voffset

attributes. Thus, the size attributes of mpadded can be used to expand or shrink the apparent bounding

box of its content, and the position attributes of mpadded can be used to move the content relative to

the bounding box (and hence also neighboring elements). Note that MathML doesn’t define the precise

relationship between "ink", bounding boxes and positioning points, which are implementation specific.

Thus, absolute values for mpadded attributes may not be portable between implementations.

The height attribute specifies the vertical extent of the bounding box of the mpadded element above

its baseline. Increasing the height increases the space between the baseline of the mpadded element

and the content above it, and introduces padding above the rendering of the child content. Decreasing

the height reduces the space between the baseline of the mpadded element and the content above it,

and removes space above the rendering of the child content. Decreasing the height may cause content

above the mpadded element to overlap the rendering of the child content, and should generally be

avoided.

The depth attribute specifies the vertical extent of the bounding box of the mpadded element below its

baseline. Increasing the depth increases the space between the baseline of the mpadded element and

the content below it, and introduces padding below the rendering of the child content. Decreasing the

depth reduces the space between the baseline of the mpadded element and the content below it, and

removes space below the rendering of the child content. Decreasing the depth may cause content below

the mpadded element to overlap the rendering of the child content, and should generally be avoided.

The width attribute specifies the horizontal distance between the positioning point of the mpadded

element and the positioning point of the following content. Increasing the width increases the space

between the positioning point of the mpadded element and the content that follows it, and introduces

padding after the rendering of the child content. Decreasing the width reduces the space between the

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

76 Chapter 3. Presentation Markup

positioning point of the mpadded element and the content that follows it, and removes space after the

rendering of the child content. Setting the width to zero causes following content to be positioned at

the positioning point of the mpadded element. Decreasing the width should generally be avoided, as it

may cause overprinting of the following content.

The lspace attribute ("leading" space; see Section 3.1.5.1) specifies the horizontal location of the

positioning point of the child content with respect to the positioning point of the mpadded element.

By default they coincide, and therefore absolute values for lspace have the same effect as relative

values. Positive values for the lspace attribute increase the space between the preceding content and

the child content, and introduce padding before the rendering of the child content. Negative values for

the lspace attributes reduce the space between the preceding content and the child content, and may

cause overprinting of the preceding content, and should generally be avoided. Note that the lspace

attribute does not affect the width of the mpadded element, and so the lspace attribute will also affect

the space between the child content and following content, and may cause overprinting of the following

content, unless the width is adjusted accordingly.

The voffset attribute specifies the vertical location of the positioning point of the child content with

respect to the positioning point of the mpadded element. Positive values for the voffset attribute

raise the rendering of the child content above the baseline. Negative values for the voffset attribute

lower the rendering of the child content below the baseline. In either case, the voffset attribute may

cause overprinting of neighboring content, which should generally be avoided. Note that t he

voffset attribute does not affect the height or depth of the mpadded element, and so the voffset

attribute will also affect the space between the child content and neighboring content, and may cause

overprinting of the neighboring content, unless the height or depth is adjusted accordingly.

MathML renderers should ensure that, except for the effects of the attributes, the relative spacing be-

tween the contents of the mpadded element and surrounding MathML elements would not be modified

by replacing an mpadded element with an mrow element with the same content, even if linebreaking

occurs within the mpadded element. MathML does not define how non-default attribute values of an

mpadded element interact with the linebreaking algorithm.

The effects of the size and position attributes are illustrated below. The following diagram illustrates

the use of lspace and voffset to shift the position of child content without modifying the mpadded

bounding box.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 77

The corresponding MathML is:

<mrow>

<mi>x</mi>

<mpadded lspace="0.2em" voffset="0.3ex">

<mi>y</mi>

</mpadded>

<mi>z</mi>

</mrow>

The next diagram illustrates the use of width, height and depth to modifying the mpadded bounding

box without changing the relative position of the child content.

The corresponding MathML is:

<mrow>

<mi>x</mi>

<mpadded width="+90%width" height="+0.3ex" depth="+0.3ex">

<mi>y</mi>

</mpadded>

<mi>z</mi>

</mrow>

The final diagram illustrates the generic use of mpadded to modify both the bounding box and relative

position of child content.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

78 Chapter 3. Presentation Markup

The corresponding MathML is:

<mrow>

<mi>x</mi>

<mpadded lspace="0.3em" width="+0.6em">

<mi>y</mi>

</mpadded>

<mi>z</mi>

</mrow>

3.3.7 Making Sub-Expressions Invisible <mphantom>

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including base-

line position, that its contents would have if they were rendered normally. mphantom can be used to

align parts of an expression by invisibly duplicating sub-expressions.

The mphantom element accepts a single argument possibly being an inferred mrow of multiple children;

see Section 3.1.3.

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML

expression, as in <mphantom><mpadded attribute-settings> ... </mpadded></mphantom>,

to change its size and make it invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom ele-

ment and the surrounding MathML elements is the same as it would be if the mphantom element were

replaced by an mrow element with the same content. This holds even if linebreaking occurs within the

mphantom element.

For the above reason, mphantom is not considered space-like (Section 3.2.7) unless its content is space-

like, since the suggested rendering rules for operators are affected by whether nearby elements are

space-like. Even so, the warning about the legal grouping of space-like elements may apply to uses of

mphantom.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 79

3.3.7.2 Attributes

mphantom elements accept the attributes listed in Section 3.1.10 (the mathcolor has no effect).

3.3.7.3 Examples

There is one situation where the preceding rules for rendering an mphantom may not give the desired

effect. When an mphantom is wrapped around a subsequence of the arguments of an mrow, the default

determination of the form attribute for an mo element within the subsequence can change. (See the

default value of the form attribute described in Section 3.2.5.) It may be necessary to add an explicit

form attribute to such an mo in these cases. This is illustrated in the following example.

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and

denominator of a fraction:

<mfrac>

<mrow>

<mi> x </mi>

<mo> + </mo>

<mi> y </mi>

<mo> + </mo>

<mi> z </mi>

</mrow>

<mrow>

<mi> x </mi>

<mphantom>

<mo form="infix"> + </mo>

<mi> y </mi>

</mphantom>

<mo> + </mo>

<mi> z </mi>

</mrow>

</mfrac>

This would render as something like

x+ y+ x
x + z

rather than as

x+ y+ z
x+ z

The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form

attribute to what it would have been in the absence of the surrounding mphantom. This is necessary

since otherwise, the + sign would be interpreted as a prefix operator, which might have slightly different

spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each

of the arguments <mo>+</mo> and <mi>y</mi> in its own mphantom element, i.e.

<mfrac>

<mrow>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

80 Chapter 3. Presentation Markup

<mi> x </mi>

<mo> + </mo>

<mi> y </mi>

<mo> + </mo>

<mi> z </mi>

</mrow>

<mrow>

<mi> x </mi>

<mphantom>

<mo> + </mo>

</mphantom>

<mphantom>

<mi> y </mi>

</mphantom>

<mo> + </mo>

<mi> z </mi>

</mrow>

</mfrac>

3.3.8 Expression Inside Pair of Fences <mfenced>

3.3.8.1 Description

The mfenced element provides a convenient form in which to express common constructs involving

fences (i.e. braces, brackets, and parentheses), possibly including separators (such as comma) between

the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as ‘(x)’ and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as ‘(x, y)’ and is equivalent to

<mrow>

<mo> (</mo>

<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>

<mo>) </mo>

</mrow>

Individual fences or separators are represented using mo elements, as described in Section 3.2.5. Thus,

any mfenced element is completely equivalent to an expanded form described below; either form can

be used in MathML, at the convenience of an author or of a MathML-generating program. A MathML

renderer is required to render either of these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between

fences in an mrow; if there is more than one argument, it will insert separators between adjacent ar-

guments, using an additional nested mrow around the arguments and separators for proper grouping

(Section 3.3.1). The general expanded form is shown below. The fences and separators will be paren-

theses and comma by default, but can be changed using attributes, as shown in the following table.

3.3.8.2 Attributes

mfenced elements accept the attributes listed below in addition to those specified in Section 3.1.10.

The delimiters and separators should be drawn using the color specified by mathcolor.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 81

Name values default

open string (

Specifies the opening delimiter. Since it is used as the content of an mo element, any

whitespace will be trimmed and collapsed as described in Section 2.1.7.

close string)

Specifies the closing delimiter. Since it is used as the content of an mo element, any

whitespace will be trimmed and collapsed as described in Section 2.1.7.

separators string ,

Specifies a sequence of zero or more separator characters, optionally separated by

whitespace. Each pair of arguments is displayed separated by the corresponding sepa-

rator (none appears after the last argument). If there are too many separators, the excess

are ignored; if there are too few, the last separator is repeated. Any whitespace within

separators is ignored.

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"

close="closing-fence"

separators="sep#1 sep#2 ... sep#(n-1)" >

arg#1

...

arg#n

</mfenced>

In an RTL directionality context, since the initial text direction is RTL, characters in the open and

close attributes that have a mirroring counterpart will be rendered in that mirrored form. In particular,

the default values will render correctly as a parenthesized sequence in both LTR and RTL contexts.

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>

<mo fence="true"> opening-fence </mo>

<mrow>

arg#1

<mo separator="true"> sep#1 </mo>

...

<mo separator="true"> sep#(n-1) </mo>

arg#n

</mrow>

<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping,

as described in Section 3.3.1.

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is

equivalent to arg#1 (as described in Section 3.3.1), this case is also equivalent to:

<mrow>

<mo fence="true"> opening-fence </mo>

arg#1

<mo fence="true"> closing-fence </mo>

</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given,

but there are too few, the last one is repeated as necessary. Thus, the default value of separators=","

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

82 Chapter 3. Presentation Markup

is equivalent to separators="„", separators="„,", etc. If there are no separator characters provided

but some are needed, for example if separators=" " or "" and there is more than one argument, then no

separator elements are inserted at all — that is, the elements <mo separator="true"> sep#i </mo>

are left out entirely. Note that this is different from inserting separators consisting of mo elements with

empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"

close="closing-fence"

separators="anything" >

</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>

<mo fence="true"> opening-fence </mo>

<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all ‘fenced expressions’ can be encoded by an mfenced element. Such exceptional ex-

pressions include those with an ‘embellished’ separator or fence or one enclosed in an mstyle element,

a missing or extra separator or fence, or a separator with multiple content characters. In these cases, it

is necessary to encode the expression using an appropriately modified version of an expanded form. As

discussed above, it is always permissible to use the expanded form directly, even when it is not neces-

sary. In particular, authors cannot be guaranteed that MathML preprocessors won’t replace occurrences

of mfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements that identi-

fy them as fences or separators. Since the most common choices of fences and separators already occur

in the operator dictionary with those attributes, authors would not normally need to specify those at-

tributes explicitly when using the expanded form directly. Also, the rules for the default form attribute

(Section 3.2.5) cause the opening and closing fences to be effectively given the values form="prefix"

and form="postfix" respectively, and the separators to be given the value form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, ‘+’, as an abbreviation

for an expression using ‘+’ as an ordinary operator, e.g.

<mrow>

<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

This is because the + signs would be treated as separators, not infix operators. That is, it would ren-

der as if they were marked up as <mo separator="true">+</mo>, which might therefore render

inappropriately.

3.3.8.3 Examples

(a+b)

<mfenced>

<mrow>

<mi> a </mi>

<mo> + </mo>

<mi> b </mi>

</mrow>

</mfenced>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.3. General Layout Schemata 83

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would

render incorrectly as ‘(a, +, b)’.

[0,1)

<mfenced open="[">

<mn> 0 </mn>

<mn> 1 </mn>

</mfenced>

f (x,y)

<mrow>

<mi> f </mi>

<mo> ⁡ </mo>

<mfenced>

<mi> x </mi>

<mi> y </mi>

</mfenced>

</mrow>

3.3.9 Enclose Expression Inside Notation <menclose>

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its notation

attribute. menclose accepts a single argument possibly being an inferred mrow of multiple children;

see Section 3.1.3.

3.3.9.2 Attributes

menclose elements accept the attributes listed below in addition to those specified in Section 3.1.10.

The notations should be drawn using the color specified by mathcolor.

The values allowed for notation are open-ended. Conforming renderers may ignore any value they do

not handle, although renderers are encouraged to render as many of the values listed below as possible.

Name values default

notation ("longdiv" | "actuarial" | "phasorangle" | "radical" | "box" |

"roundedbox" | "circle" | "left" | "right" | "top" | "bottom" |

"updiagonalstrike" | "downdiagonalstrike" | "verticalstrike" |

"horizontalstrike" | "northeastarrow" | "madruwb" | text) +

longdiv

Specifies a space separated list of notations to be used to enclose the children. See below

for a description of each type of notation.

Any number of values can be given for notation separated by whitespace; all of those given and

understood by a MathML renderer should be rendered. Each should be rendered as if the others were

not present; they should not nest one inside of the other. For example, notation="circle box"

should result in circle and a box around the contents of menclose; the circle and box may overlap.

This is shown in the first example below. Of the predefined notations, only the following are affected

by the directionality (see Section 3.1.5.1):

• "radical"

• "phasorangle"

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

84 Chapter 3. Presentation Markup

When notation has the value "longdiv", the contents are drawn enclosed by a long division symbol.

MathML 3 adds the mlongdiv element (Section 3.6.2). This element supports notations for long divi-

sion used in several countries and can be used to create a complete example of long division as shown

in Section 3.6.8.3. When notation is specified as "actuarial", the contents are drawn enclosed

by an actuarial symbol. A similar result can be achieved with the value "top right". The case of

notation="radical" is equivalent to the msqrt schema.

The values "box", "roundedbox", and "circle" should enclose the contents as indicated by the val-

ues. The amount of distance between the box, roundedbox, or circle, and the contents are not specified

by MathML, and is left to the renderer. In practice, paddings on each side of 0.4em in the horizontal

direction and .5ex in the vertical direction seem to work well.

The values "left", "right", "top" and "bottom" should result in lines drawn on those sides of the

contents. The values "northeastarrow", "updiagonalstrike", "downdiagonalstrike",

"verticalstrike" and "horizontalstrike" should result in the indicated strikeout lines being

superimposed over the content of the menclose, e.g. a strikeout that extends from the lower left corner

to the upper right corner of the menclose element for "updiagonalstrike", etc.

The value "northeastarrow" is a recommended value to implement because it can be used to im-

plement TeX’s \cancelto command. If a renderer implements other arrows for menclose, it is rec-

ommended that the arrow names are chosen from the following full set of names for consistancy and

standardization among renderers:

• "uparrow"

• "rightarrow"

• "downarrow"

• "leftarrow"

• "northwestarrow"

• "southwestarrow"

• "southeastarrow"

• "northeastarrow"

• "updownarrow"

• "leftrightarrow"

• "northwestsoutheastarrow"

• "northeastsouthwestarrow"

The value "madruwb" should generate an enclosure representing an Arabic factorial (‘madruwb’ is the

transliteration of the Arabic [ARABIC LETTER MEEM][ARABIC LETTER DAD][ARABIC LET-

TER REH][ARABIC LETTER WAW][ARABIC LETTER BEH] for factorial). This is shown in the

third example below.

The baseline of an menclose element is the baseline of its child (which might be an implied mrow).

3.3.9.3 Examples

An example of using multiple attributes is

<menclose notation=’circle box’>

<mi> x </mi><mo> + </mo><mi> y </mi>

</menclose>

which renders with the box and circle overlapping roughly as

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.4. Script and Limit Schemata 85

.

An example of using menclose for actuarial notation is

<msub>

<mi>a</mi>

<mrow>

<menclose notation=’actuarial’>

<mi>n</mi>

</menclose>

<mo>⁣</mo>

<mi>i</mi>

</mrow>

</msub>

which renders roughly as

a n i

An example of "phasorangle", which is used in circuit analysis, is:

<mi>C</mi>

<mrow>

<menclose notation=’phasorangle’>

<mrow>

<mo>−</mo>

<mfrac>

<mi>π</mi>

<mn>2</mn>

</mfrac>

</mrow>

</menclose>

</mrow>

which renders roughly as

An example of "madruwb" is:

<menclose notation="madruwb">

<mn>12</mn>

</menclose>

which renders roughly as

.

3.4 Script and Limit Schemata
The elements described in this section position one or more scripts around a base. Attaching various

kinds of scripts and embellishments to symbols is a very common notational device in mathematics.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

86 Chapter 3. Presentation Markup

For purely visual layout, a single general-purpose element could suffice for positioning scripts and

embellishments in any of the traditional script locations around a given base. However, in order to

capture the abstract structure of common notation better, MathML provides several more specialized

scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place

scripts above and below the base. These elements can be used to place limits on large operators, or for

placing accents and lines above or below the base. The rules for rendering accents differ from those for

overscripts and underscripts, and this difference can be controlled with the accent and accentunder

attributes, as described in the appropriate sections below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of

the environment inherited by the rendering process of every MathML expression, and are described in

Section 3.1.6. These attributes cannot be given explicitly on a scripting element, but can be specified

on the start tag of a surrounding mstyle element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from

ordinary subscripts and superscripts in that they must align in vertical columns. Tensor indices can also

occur in prescript positions. Note that ordinary scripts follow the base (on the right in LTR context, but

on the left in RTL context); prescripts precede the base (on the left (right) in LTR (RTL) context).

Because presentation elements should be used to describe the abstract notational structure of expres-

sions, it is important that the base expression in all ‘scripting’ elements (i.e. the first argument expres-

sion) should be the entire expression that is being scripted, not just the trailing character. For example,

(x+y)2 should be written as:

<msup>

<mrow>

<mo> (</mo>

<mrow>

<mi> x </mi>

<mo> + </mo>

<mi> y </mi>

</mrow>

<mo>) </mo>

</mrow>

<mn> 2 </mn>

</msup>

3.4.1 Subscript <msub>

3.4.1.1 Description

The msub element attaches a subscript to a base using the syntax

<msub> base subscript </msub>

It increments scriptlevel by 1, and sets displaystyle to "false", within subscript, but leaves

both attributes unchanged within base. (See Section 3.1.6.)

3.4.1.2 Attributes

msub elements accept the attributes listed below in addition to those specified in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.4. Script and Limit Schemata 87

Name values default

subscriptshift length automatic

Specifies the minimum amount to shift the baseline of subscript down; the default is for

the rendering agent to use its own positioning rules.

3.4.2 Superscript <msup>

3.4.2.1 Description

The msup element attaches a superscript to a base using the syntax

<msup> base superscript </msup>

It increments scriptlevel by 1, and sets displaystyle to "false", within superscript, but leaves

both attributes unchanged within base. (See Section 3.1.6.)

3.4.2.2 Attributes

msup elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

superscriptshift length automatic

Specifies the minimum amount to shift the baseline of superscript up; the default is for

the rendering agent to use its own positioning rules.

3.4.3 Subscript-superscript Pair <msubsup>

3.4.3.1 Description

The msubsup element is used to attach both a subscript and superscript to a base expression.

<msubsup> base subscript superscript </msubsup>

It increments scriptlevel by 1, and sets displaystyle to "false", within subscript and super-

script, but leaves both attributes unchanged within base. (See Section 3.1.6.)

Note that both scripts are positioned tight against the base as shown here x2
1 versus the staggered po-

sitioning of nested scripts as shown here x1
2; the latter can be achieved by nesting an msub inside an

msup.

3.4.3.2 Attributes

msubsup elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

subscriptshift length automatic

Specifies the minimum amount to shift the baseline of subscript down; the default is for

the rendering agent to use its own positioning rules.

superscriptshift length automatic

Specifies the minimum amount to shift the baseline of superscript up; the default is for

the rendering agent to use its own positioning rules.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

88 Chapter 3. Presentation Markup

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above.

However, another important use is placing limits on certain large operators whose limits are tradition-

ally displayed in the script positions even when rendered in display style. The most common of these

is the integral. For example,

∫ 1

0
ex dx

would be represented as

<mrow>

<msubsup>

<mo> ∫ </mo>

<mn> 0 </mn>

<mn> 1 </mn>

</msubsup>

<mrow>

<msup>

<mi> ⅇ </mi>

<mi> x </mi>

</msup>

<mo> ⁢ </mo>

<mrow>

<mo> ⅆ </mo>

<mi> x </mi>

</mrow>

</mrow>

</mrow>

3.4.4 Underscript <munder>

3.4.4.1 Description

The munder element attaches an accent or limit placed under a base using the syntax

<munder> base underscript </munder>

It always sets displaystyle to "false" within the underscript, but increments scriptlevel by 1

only when accentunder is "false". Within base, it always leaves both attributes unchanged. (See

Section 3.1.6.)

If base is an operator with movablelimits="true" (or an embellished operator whose mo element

core has movablelimits="true"), and displaystyle="false", then underscript is drawn in a

subscript position. In this case, the accentunder attribute is ignored. This is often used for limits on

symbols such as ∑.

3.4.4.2 Attributes

munder elements accept the attributes listed below in addition to those specified in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.4. Script and Limit Schemata 89

Name values default

accentunder "true" | "false" automatic

Specifies whether underscript is drawn as an ‘accent’ or as a limit. An accent is drawn

the same size as the base (without incrementing scriptlevel) and is drawn closer to

the base.

align "left" | "right" | "center" center

Specifies whether the script is aligned left, center, or right under/over the base. As spec-

fied in Section 3.2.5.8, the core of underscripts that are embellished operators should

stretch to cover the base, but the alignment is based on the entire underscript.

The default value of accentunder is false, unless underscript is an mo element or an embellished

operator (see Section 3.2.5). If underscript is an mo element, the value of its accent attribute is used

as the default value of accentunder. If underscript is an embellished operator, the accent attribute

of the mo element at its core is used as the default value. As with all attributes, an explicitly given value

overrides the default.

Here is an example (accent versus underscript): x+ y+ z︸ ︷︷ ︸ versus x+ y+ z︸ ︷︷ ︸. The MathML representation

for this example is shown below.

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>

<munder accentunder="true">

<mrow>

<mi> x </mi>

<mo> + </mo>

<mi> y </mi>

<mo> + </mo>

<mi> z </mi>

</mrow>

<mo> ⏟ </mo>

</munder>

<mtext> versus </mtext>

<munder accentunder="false">

<mrow>

<mi> x </mi>

<mo> + </mo>

<mi> y </mi>

<mo> + </mo>

<mi> z </mi>

</mrow>

<mo> ⏟ </mo>

</munder>

</mrow>

3.4.5 Overscript <mover>

3.4.5.1 Description

The mover element attaches an accent or limit placed over a base using the syntax

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

90 Chapter 3. Presentation Markup

<mover> base overscript </mover>

It always sets displaystyle to "false" within overscript, but increments scriptlevel by 1 only

when accent is "false". Within base, it always leaves both attributes unchanged. (See Section 3.1.6.)

If base is an operator with movablelimits="true" (or an embellished operator whose mo element

core has movablelimits="true"), and displaystyle="false", then overscript is drawn in a su-

perscript position. In this case, the accent attribute is ignored. This is often used for limits on symbols

such as ∑.

3.4.5.2 Attributes

mover elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

accent "true" | "false" automatic

Specifies whether overscript is drawn as an ‘accent’ or as a limit. An accent is drawn

the same size as the base (without incrementing scriptlevel) and is drawn closer to

the base.

align "left" | "right" | "center" center

Specifies whether the script is aligned left, center, or right under/over the base. As spec-

fied in Section 3.2.5.8, the core of overscripts that are embellished operators should

stretch to cover the base, but the alignment is based on the entire overscript.

The difference between an accent versus limit is shown here: x̂ versus x̂. These differences also apply to

‘mathematical accents’ such as bars or braces over expressions:
︷ ︸︸ ︷
x+ y+ z versus

︷ ︸︸ ︷
x+ y+ z. The MathML

representation for each of these examples is shown below.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see

Section 3.2.5). If overscript is an mo element, the value of its accent attribute is used as the default

value of accent for mover. If overscript is an embellished operator, the accent attribute of the mo

element at its core is used as the default value.

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>

<mover accent="true">

<mi> x </mi>

<mo> ^ </mo>

</mover>

<mtext> versus </mtext>

<mover accent="false">

<mi> x </mi>

<mo> ^ </mo>

</mover>

</mrow>

<mrow>

<mover accent="true">

<mrow>

<mi> x </mi>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.4. Script and Limit Schemata 91

<mo> + </mo>

<mi> y </mi>

<mo> + </mo>

<mi> z </mi>

</mrow>

<mo> ⏞ </mo>

</mover>

<mtext> versus </mtext>

<mover accent="false">

<mrow>

<mi> x </mi>

<mo> + </mo>

<mi> y </mi>

<mo> + </mo>

<mi> z </mi>

</mrow>

<mo> ⏞ </mo>

</mover>

</mrow>

3.4.6 Underscript-overscript Pair <munderover>

3.4.6.1 Description

The munderover element attaches accents or limits placed both over and under a base using the syntax

<munderover> base underscript overscript </munderover>

It always sets displaystyle to "false" within underscript and overscript, but increments

scriptlevel by 1 only when accentunder or accent, respectively, are "false". Within base, it

always leaves both attributes unchanged. (see Section 3.1.6).

If base is an operator with movablelimits="true" (or an embellished operator whose mo element

core has movablelimits="true"), and displaystyle="false", then underscript and overscript

are drawn in a subscript and superscript position, respectively. In this case, the accentunder and

accent attributes are ignored. This is often used for limits on symbols such as ∑.

3.4.6.2 Attributes

munderover elements accept the attributes listed below in addition to those specified in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

92 Chapter 3. Presentation Markup

Name values default

accent "true" | "false" automatic

Specifies whether overscript is drawn as an ‘accent’ or as a limit. An accent is drawn

the same size as the base (without incrementing scriptlevel) and is drawn closer to

the base.

accentunder "true" | "false" automatic

Specifies whether underscript is drawn as an ‘accent’ or as a limit. An accent is drawn

the same size as the base (without incrementing scriptlevel) and is drawn closer to

the base.

align "left" | "right" | "center" center

Specifies whether the scripts are aligned left, center, or right under/over the base. As

specfied in Section 3.2.5.8, the core of underscripts and overscripts that are embellished

operators should stretch to cover the base, but the alignment is based on the entire un-

derscript or overscript.

The munderover element is used instead of separate munder and mover elements so that the under-

script and overscript are vertically spaced equally in relation to the base and so that they follow the

slant of the base as in the second expression shown below:
∫∞

0 versus
∫ ∞

0 . The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal

font size, but is noticeable on a higher resolution device such as a printer and when using large font

sizes. In addition to the visual differences, attaching both the underscript and overscript to the same

base more accurately reflects the semantics of the expression.

The defaults for accent and accentunder are computed in the same way as for munder and mover,

respectively.

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using separate

munder and mover elements, and the second one using an munderover element, is:

<mrow>

<mover>

<munder>

<mo> ∫ </mo>

<mn> 0 </mn>

</munder>

<mi> ∞ </mi>

</mover>

<mtext> versus </mtext>

<munderover>

<mo> ∫ </mo>

<mn> 0 </mn>

<mi> ∞ </mi>

</munderover>

</mrow>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.4. Script and Limit Schemata 93

3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/>

3.4.7.1 Description

Presubscripts and tensor notations are represented by a single element, mmultiscripts, using the

syntax:

<mmultiscripts>

base

(subscript superscript)*

[<mprescripts/> (presubscript presuperscript)*]

</mmultiscripts>

This element allows the representation of any number of vertically-aligned pairs of subscripts and

superscripts, attached to one base expression. It supports both postscripts and prescripts. Missing scripts

can be represented by the empty element none.

The prescripts are optional, and when present are given after the postscripts, because prescripts are

relatively rare compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned sub-

scripts and superscripts (in that order) that represent all of the postscripts. This list is optionally followed

by an empty element mprescripts and a list of zero or more pairs of vertically-aligned presubscripts

and presuperscripts that represent all of the prescripts. The pair lists for postscripts and prescripts are

displayed in the same order as the directional context (ie. left-to-right order in LTR context). If no sub-

script or superscript should be rendered in a given position, then the empty element none should be

used in that position.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and

the presuperscripts, are all direct sub-expressions of the mmultiscripts element, i.e. they are all at the

same level of the expression tree. Whether a script argument is a subscript or a superscript, or whether

it is a presubscript or a presuperscript is determined by whether it occurs in an even-numbered or

odd-numbered argument position, respectively, ignoring the empty element mprescripts itself when

determining the position. The first argument, the base, is considered to be in position 1. The total

number of arguments must be odd, if mprescripts is not given, or even, if it is.

The empty element mprescripts is only allowed as direct sub-expression of mmultiscripts.

3.4.7.2 Attributes

Same as the attributes of msubsup. See Section 3.4.3.2.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to "false",

within each of its arguments except base, but leaves both attributes unchanged within base. (See Sec-

tion 3.1.6.)

3.4.7.3 Examples

Two examples of the use of mmultiscripts are:

0F1(;a;z).

<mrow>

<mmultiscripts>

<mi> F </mi>

<mn> 1 </mn>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

94 Chapter 3. Presentation Markup

<none/>

<mprescripts/>

<mn> 0 </mn>

<none/>

</mmultiscripts>

<mo> ⁡ </mo>

<mrow>

<mo> (</mo>

<mrow>

<mo> ; </mo>

<mi> a </mi>

<mo> ; </mo>

<mi> z </mi>

</mrow>

<mo>) </mo>

</mrow>

</mrow>

Ri
j
kl (where k and l are different indices)

<mmultiscripts>

<mi> R </mi>

<mi> i </mi>

<none/>

<none/>

<mi> j </mi>

<mi> k </mi>

<none/>

<mi> l </mi>

<none/>

</mmultiscripts>

An additional example of mmultiscripts shows how the binomial coefficient

can be displayed in Arabic style

<mstyle dir="rtl">

<mmultiscripts><mo>ل</mo>

<mn>12</mn><none/>

<mprescripts/>

<none/><mn>5</mn>

</mmultiscripts>

</mstyle>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 95

3.5 Tabular Math

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr,

mlabeledtr and mtd elements. These elements are similar to the table, tr and td elements of HTML,

except that they provide specialized attributes for the fine layout control necessary for commutative

diagrams, block matrices and so on.

While the two-dimensional layouts used for elementary math such as addition and multiplication are

somewhat similar to tables, they differ in important ways. For layout and for accessibility reasons, the

mstack and mlongdiv elements discussed in Section 3.6 should be used for elementary math notations.

In addition to the table elements mentioned above, the mlabeledtr element is used for labeling rows

of a table. This is useful for numbered equations. The first child of mlabeledtr is the label. A label

is somewhat special in that it is not considered an expression in the matrix and is not counted when

determining the number of columns in that row.

3.5.1 Table or Matrix <mtable>

3.5.1.1 Description

A matrix or table is specified using the mtable element. Inside of the mtable element, only mtr or

mlabeledtr elements may appear. (In MathML 1.x, the mtable was allowed to ‘infer’ mtr elements

around its arguments, and the mtr element could infer mtd elements. This behaviour is deprecated.)

Table rows that have fewer columns than other rows of the same table (whether the other rows precede

or follow them) are effectively padded on the right (or left in RTL context) with empty mtd elements

so that the number of columns in each row equals the maximum number of columns in any row of

the table. Note that the use of mtd elements with non-default values of the rowspan or columnspan

attributes may affect the number of mtd elements that should be given in subsequent mtr elements to

cover a given number of columns. Note also that the label in an mlabeledtr element is not considered

a column in the table.

MathML does not specify a table layout algorithm. In particular, it is the responsibility of a MathML

renderer to resolve conflicts between the width attribute and other constraints on the width of a table,

such as explicit values for columnwidth attributes, and minimum sizes for table cell contents. For a

discussion of table layout algorithms, see Cascading Style Sheets, level 2.

3.5.1.2 Attributes

mtable elements accept the attributes listed below in addition to those specified in Section 3.1.10. Any

rules drawn as part of the mtable should be drawn using the color specified by mathcolor.

Name values default

align ("top" | "bottom" | "center" | "baseline" | "axis"), rownumber? axis

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

96 Chapter 3. Presentation Markup

Name values default

specifies the vertical alignment of the table with respect to its environment. "axis"

means to align the vertical center of the table on the environment’s axis. (The axis of an

equation is an alignment line used by typesetters. It is the line on which a minus sign

typically lies.) "center" and "baseline" both mean to align the center of the table

on the environment’s baseline. "top" or "bottom" aligns the top or bottom of the table

on the environment’s baseline. If the align attribute value ends with a rownumber, the

specified row (counting from 1 for the top row), rather than the table as a whole, is

aligned in the way described above with the exceptions noted below. If rownumber is

negative, it counts rows from the bottom. When the value of rownumber is out of range

or not an integer, it is ignored. If a row number is specified and the alignment value is

"baseline" or "axis", the row’s baseline or axis is used for alignment. Note this is

only well defined when the rowalign value is "baseline" or "axis"; MathML does

not specify how "baseline" or "axis" alignment should occur for other values of

rowalign.

rowalign ("top" | "bottom" | "center" | "baseline" | "axis") + baseline

specifies the vertical alignment of the cells with respect to other cells within the same

row: "top" aligns the tops of each entry across the row; "bottom" aligns the bottoms

of the cells, "center" centers the cells; "baseline" aligns the baselines of the cells;

"axis" aligns the axis of each cells. (See the note below about multiple values).

columnalign ("left" | "center" | "right") + center

specifies the horizontal alignment of the cells with respect to other cells within the same

column: "left" aligns the left side of the cells; "center" centers each cells; "right"

aligns the right side of the cells. (See the note below about multiple values).

groupalign group-alignment-list-list left

[this attribute is described with the alignment elements, maligngroup and

malignmark, in Section 3.5.5.]

alignmentscope ("true" | "false") + true

[this attribute is described with the alignment elements, maligngroup and

malignmark, in Section 3.5.5.]

columnwidth ("auto" | length | "fit") + auto

specifies how wide a column should be: "auto" means that the column should be as

wide as needed; an explicit length means that the column is exactly that wide and the

contents of that column are made to fit by linewrapping or clipping at the discretion of

the renderer; "fit" means that the page width remaining after subtracting the "auto"

or fixed width columns is divided equally among the "fit" columns. If insufficient

room remains to hold the contents of the "fit" columns, renderers may linewrap or

clip the contents of the "fit" columns. Note that when the columnwidth is specified

as a percentage, the value is relative to the width of the table, not as a percentage of

the default (which is "auto"). That is, a renderer should try to adjust the width of the

column so that it covers the specified percentage of the entire table width. (See the note

below about multiple values).

width "auto" | length auto

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 97

Name values default

specifies the desired width of the entire table and is intended for visual user agents.

When the value is a percentage value or number without unit, the value is relative to

the horizontal space that a MathML renderer has available , this is the current target

width as used for linebreaking as specified in Section 3.1.7; this allows the author to

specify, for example, a table being full width of the display. When the value is "auto",

the MathML renderer should calculate the table width from its contents using whatever

layout algorithm it chooses.

rowspacing (length) + 1.0ex

specifies how much space to add between rows. (See the note below about multiple

values).

columnspacing (length) + 0.8em

specifies how much space to add between columns. (See the note below about multiple

values).

rowlines ("none" | "solid" | "dashed") + none

specifies whether and what kind of lines should be added between each row: "none"

means no lines; "solid" means solid lines; "dashed" means dashed lines (how the

dashes are spaced is implementation dependent). (See the note below about multiple

values).

columnlines ("none" | "solid" | "dashed") + none

specifies whether and what kind of lines should be added between each column: "none"

means no lines; "solid" means solid lines; "dashed" means dashed lines (how the

dashes are spaced is implementation dependent). (See the note below about multiple

values).

frame "none" | "solid" | "dashed" none

specifies whether and what kind of lines should be drawn around the table. "none"

means no lines; "solid" means solid lines; "dashed" means dashed lines (how the

dashes are spaced is implementation dependent).

framespacing length , length 0.4em 0.5ex

specifies the additional spacing added between the table and frame, if frame is not

"none". The first value specifies the spacing on the right and left; the second value

specifies the spacing above and below.

equalrows "true" | "false" false

specifies whether to force all rows to have the same total height.

equalcolumns "true" | "false" false

specifies whether to force all columns to have the same total width.

displaystyle "true" | "false" false

specifies the value of displaystyle within each cell, (scriptlevel is not changed);

see Section 3.1.6.

side "left" | "right" | "leftoverlap" | "rightoverlap" right

specifies on what side of the table labels from enclosed mlabeledtr (if any) should be

placed. The variants "leftoverlap" and "rightoverlap" are useful when the table

fits with the allowed width when the labels are omitted, but not when they are included:

in such cases, the labels will overlap the row placed above it if the rowalign for that

row is "top", otherwise it is placed below it.

minlabelspacing length 0.8em

specifies the minimum space allowed between a label and the adjacent cell in the row.

In the above specifications for attributes affecting rows (respectively, columns, or the gaps between rows

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

98 Chapter 3. Presentation Markup

or columns), the notation (...)+ means that multiple values can be given for the attribute as a space

separated list (see Section 2.1.5). In this context, a single value specifies the value to be used for all

rows (resp., columns or gaps). A list of values are taken to apply to corresponding rows (resp., columns

or gaps) in order, that is starting from the top row for rows or first column (left or right, depending on

directionality) for columns. If there are more rows (resp., columns or gaps) than supplied values, the

last value is repeated as needed. If there are too many values supplied, the excess are ignored.

Note that none of the areas occupied by lines frame, rowlines and columnlines, nor the spacing

framespacing, rowspacing or columnspacing, nor the label in mlabeledtr are counted as rows

or columns.

The displaystyle attribute is allowed on the mtable element to set the inherited value of the at-

tribute. If the attribute is not present, the mtable element sets displaystyle to "false" within the

table elements. (See Section 3.1.6.)

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>

<mo> (</mo>

<mtable>

<mtr>

<mtd> <mn>1</mn> </mtd>

<mtd> <mn>0</mn> </mtd>

<mtd> <mn>0</mn> </mtd>

</mtr>

<mtr>

<mtd> <mn>0</mn> </mtd>

<mtd> <mn>1</mn> </mtd>

<mtd> <mn>0</mn> </mtd>

</mtr>

<mtr>

<mtd> <mn>0</mn> </mtd>

<mtd> <mn>0</mn> </mtd>

<mtd> <mn>1</mn> </mtd>

</mtr>

</mtable>

<mo>) </mo>

</mrow>

This might be rendered as:⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

Note that the parentheses must be represented explicitly; they are not part of the mtable element’s

rendering. This allows use of other surrounding fences, such as brackets, or none at all.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 99

3.5.2 Row in Table or Matrix <mtr>

3.5.2.1 Description

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct

sub-expression of an mtable element, and specifies that its contents should form one row of the table.

Each argument of mtr is placed in a different column of the table, starting at the leftmost column in a

LTR context or rightmost column in a RTL context.

As described in Section 3.5.1, mtr elements are effectively padded with mtd elements when they are

shorter than other rows in a table.

3.5.2.2 Attributes

mtr elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

rowalign "top" | "bottom" | "center" | "baseline" | "axis" inherited

overrides, for this row, the vertical alignment of cells specified by the rowalign at-

tribute on the mtable.

columnalign ("left" | "center" | "right") + inherited

overrides, for this row, the horizontal alignment of cells specified by the columnalign

attribute on the mtable.

groupalign group-alignment-list-list inherited

[this attribute is described with the alignment elements, maligngroup and

malignmark, in Section 3.5.5.]

3.5.3 Labeled Row in Table or Matrix <mlabeledtr>

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as

determined by the side attribute. The label is the first child of mlabeledtr, and should be enclosed

in an mtd. The rest of the children represent the contents of the row and are treated identically to the

children of mtr; consequently all of the children must be mtd elements.

An mlabeledtr element is only allowed as a direct sub-expression of an mtable element. Each ar-

gument of mlabeledtr except for the first argument (the label) is placed in a different column of the

table, starting at the leftmost column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element

is not taken into consideration in the table layout for purposes of width and alignment calculations. For

example, in the case of an mlabeledtr with a label and a single centered mtd child, the child is first

centered in the enclosing mtable, and then the label is placed. Specifically, the child is not centered in

the space that remains in the table after placing the label.

While MathML does not specify an algorithm for placing labels, implementers of visual renderers may

find the following formatting model useful. To place a label, an implementor might think in terms of

creating a larger table, with an extra column on both ends. The columnwidth attributes of both these

border columns would be set to "fit" so that they expand to fill whatever space remains after the

inner columns have been laid out. Finally, depending on the values of side and minlabelspacing,

the label is placed in whatever border column is appropriate, possibly shifted down if necessary, and

aligned according to columnalignment.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

100 Chapter 3. Presentation Markup

3.5.3.2 Attributes

The attributes for mlabeledtr are the same as for mtr. Unlike the attributes for the mtable element,

attributes of mlabeledtr that apply to column elements also apply to the label. For example, in a one

column table,

<mlabeledtr rowalign=’top’>

means that the label and other entries in the row are vertically aligned along their top. To force a

particular alignment on the label, the appropriate attribute would normally be set on the mtd element

that surrounds the label content.

3.5.3.3 Equation Numbering

One of the important uses of mlabeledtr is for numbered equations. In a mlabeledtr, the label

represents the equation number and the elements in the row are the equation being numbered. The

side and minlabelspacing attributes of mtable determine the placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes important. While

automatic equation numbering and automatically resolving references to equation numbers is outside

the scope of MathML, these problems can be addressed by the use of style sheets or other means.

The mlabeledtr construction provides support for both of these functions in a way that is intended

to facilitate XSLT processing. The mlabeledtr element can be used to indicate the presence of a

numbered equation, and the first child can be changed to the current equation number, along with

incrementing the global equation number. For cross references, an id on either the mlabeledtr element

or on the first element itself could be used as a target of any link. Alternatively, in a CSS context, one

could use an empty mtd as the first child of mlabeledtr and use CSS counters and generated content

to fill in the equation number using a CSS style such as

body {counter-reset: eqnum;}

mtd.eqnum {counter-increment: eqnum;}

mtd.eqnum:before {content: "(" counter(eqnum) ")"}

3.5.3.4 Example

<mtable>

<mlabeledtr id=’e-is-m-c-square’>

<mtd>

<mtext> (2.1) </mtext>

</mtd>

<mtd>

<mrow>

<mi>E</mi>

<mo>=</mo>

<mrow>

<mi>m</mi>

<mo>⁢</mo>

<msup>

<mi>c</mi>

<mn>2</mn>

</msup>

</mrow>

</mrow>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 101

</mtd>

</mlabeledtr>

</mtable>

This should be rendered as:

E = mc2 (2.1)

3.5.4 Entry in Table or Matrix <mtd>

3.5.4.1 Description

An mtd element represents one entry, or cell, in a table or matrix. An mtd element is only allowed as a

direct sub-expression of an mtr or an mlabeledtr element.

The mtd element accepts a single argument possibly being an inferred mrow of multiple children; see

Section 3.1.3.

3.5.4.2 Attributes

mtd elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

rowspan positive-integer 1

causes the cell to be treated as if it occupied the number of rows specified. The corre-

sponding mtd in the following "rowspan"-1 rows must be omitted. The interpretation

corresponds with the similar attributes for HTML 4.01 tables.

columnspan positive-integer 1

causes the cell to be treated as if it occupied the number of columns specified. The

following "rowspan"-1 mtds must be omitted. The interpretation corresponds with the

similar attributes for HTML 4.01 tables.

rowalign "top" | "bottom" | "center" | "baseline" | "axis" inherited

specifies the vertical alignment of this cell, overriding any value specified on the con-

taining mrow and mtable. See the rowalign attribute of mtable.

columnalign "left" | "center" | "right" inherited

specifies the horizontal alignment of this cell, overriding any value specified on the

containing mrow and mtable. See the columnalign attribute of mtable.

groupalign group-alignment-list inherited

[this attribute is described with the alignment elements, maligngroup and

malignmark, in Section 3.5.5.]

The rowspan and columnspan attributes can be used around an mtd element that represents the label

in a mlabeledtr element. Also, the label of a mlabeledtr element is not considered to be part of a

previous rowspan and columnspan.

3.5.5 Alignment Markers <maligngroup/>, <malignmark/>

3.5.5.1 Description

Alignment markers are space-like elements (see Section 3.2.7) that can be used to vertically align

specified points within a column of MathML expressions by the automatic insertion of the necessary

amount of horizontal space between specified sub-expressions.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

102 Chapter 3. Presentation Markup

The discussion that follows will use the example of a set of simultaneous equations that should be

rendered with vertical alignment of the coefficients and variables of each term, by inserting spacing

somewhat like that shown here:

8.44x + 55 y = 0

3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear

as:

8.44x + 55y = 0

3.1x - 0.7y = -1.1

For audio renderers, it is suggested that the alignment elements produce the analogous behavior of

altering the rhythm of pronunciation so that it is the same for several sub-expressions in a column, by

the insertion of the appropriate time delays in place of the extra horizontal spacing described here.

The expressions whose parts are to be aligned (each equation, in the example above) must be given as

the table elements (i.e. as the mtd elements) of one column of an mtable. To avoid confusion, the term

‘table cell’ rather than ‘table element’ will be used in the remainder of this section.

All interactions between alignment elements are limited to the mtable column they arise in. That is,

every column of a table specified by an mtable element acts as an ‘alignment scope’ that contains

within it all alignment effects arising from its contents. It also excludes any interaction between its own

alignment elements and the alignment elements inside any nested alignment scopes it might contain.

The reason mtable columns are used as alignment scopes is that they are the only general way in

MathML to arrange expressions into vertical columns. Future versions of MathML may provide an

malignscope element that allows an alignment scope to be created around any MathML element, but

even then, table columns would still sometimes need to act as alignment scopes, and since they are

not elements themselves, but rather are made from corresponding parts of the content of several mtr

elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attribute alignmentscope="false" to cause its columns not to

act as alignment scopes. This is discussed further at the end of this section. Otherwise, the discussion

in this section assumes that this attribute has its default value of "true".

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be

aligned with corresponding points in other expressions, and the beginning of each alignment group of

sub-expressions that can be horizontally shifted as a unit to effect the alignment. Each alignment group

must contain one alignment point. It is also necessary to specify which expressions in the column have

no alignment groups at all, but are affected only by the ordinary column alignment for that column of

the table, i.e. by the columnalign attribute, described elsewhere.

The alignment groups start at the locations of invisible maligngroup elements, which are rendered

with zero width when they occur outside of an alignment scope, but within an alignment scope are

rendered with just enough horizontal space to cause the desired alignment of the alignment group that

follows them. A simple algorithm by which a MathML application can achieve this is given later. In the

example above, each equation would have one maligngroup element before each coefficient, variable,

and operator on the left-hand side, one before the = sign, and one before the constant on the right-hand

side.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith
group consisting of the elements entirely after the ith maligngroup element and before the (i+1)-th;

no element within the table cell’s content should occur entirely before its first maligngroup element.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 103

Note that the division into alignment groups does not necessarily fit the nested expression structure of

the MathML expression containing the groups — that is, it is permissible for one alignment group to

consist of the end of one mrow, all of another one, and the beginning of a third one, for example. This

can be seen in the MathML markup for the present example, given at the end of this section.

The nested expression structure formed by mrows and other layout schemata should reflect the mathe-

matical structure of the expression, not the alignment-group structure, to make possible optimal render-

ings and better automatic interpretations; see the discussion of proper grouping in section Section 3.3.1.

Insertion of alignment elements (or other space-like elements) should not alter the correspondence be-

tween the structure of a MathML expression and the structure of the mathematical expression it repre-

sents.

Although alignment groups need not coincide with the nested expression structure of layout schemata,

there are nonetheless restrictions on where an maligngroup element is allowed within a table cell. The

maligngroup element may only be contained within elements (directly or indirectly) of the following

types (which are themselves contained in the table cell):

• an mrow element, including an inferred mrow such as the one formed by a multi-child mtd

element, but excluding mrow which contains a change of direction using the dir attribute;

• an mstyle element , but excluding those which change direction using the dir attribute;

• an mphantom element;

• an mfenced element;

• an maction element, though only its selected sub-expression is checked;

• a semantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding

complexities involving things like overscripts, radical signs and fraction bars. They also ensure that a

simple algorithm suffices to accomplish the desired alignment.

Note that some positions for an maligngroup element, although legal, are not useful, such as an

maligngroup element that is an argument of an mfenced element. Similarly, when inserting an

maligngroup element in an element whose arguments have positional significance, it is necessary

to introduce a new mrow element containing just the maligngroup element and the child element it

precedes in order to preserve the proper expression structure. For example, to insert an maligngroup

before the denominator child of an mfrac element, it is necessary to enclose the maligngroup and

the denominator in an mrow to avoid introducing an illegal third child in the mfrac. In general, this

will be necessary except when the maligngroup element is inserted directly into an mrow or into an

element that can form an inferred mrow from its contents. See the warning about the legal grouping of

‘space-like elements’ in Section 3.2.7 for an analogous example involving malignmark.

For the table cells that are divided into alignment groups, every element in their content must be part

of exactly one alignment group, except for the elements from the above list that contain maligngroup

elements inside them and the maligngroup elements themselves. This means that, within any table

cell containing alignment groups, the first complete element must be an maligngroup element, though

this may be preceded by the start tags of other elements.

This requirement removes a potential confusion about how to align elements before the first

maligngroup element, and makes it easy to identify table cells that are left out of their column’s

alignment process entirely.

Note that it is not required that the table cells in a column that are divided into alignment groups each

contain the same number of groups. If they don’t, zero-width alignment groups are effectively added

on the right side (or left side, in a RTL context) of each table cell that has fewer groups than other table

cells in the same column.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

104 Chapter 3. Presentation Markup

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contain no maligngroup ele-

ments. Expressions with no alignment groups are aligned using only the columnalign attribute that

applies to the table column as a whole, and are not affected by the groupalign attribute described

below. If such an expression is wider than the column width needed for the table cells containing

alignment groups, all the table cells containing alignment groups will be shifted as a unit within the

column as described by the columnalign attribute for that column. For example, a column heading

with no internal alignment could be added to the column of two equations given above by preced-

ing them with another table row containing an mtext element for the heading, and using the default

columnalign="center" for the table, to produce:

equations with aligned variables

8.44x + 55 y = 0

3.1 x - 0.7y = -1.1

or, with a shorter heading,

some equations

8.44x + 55 y = 0

3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using <malignmark/>

Each alignment group’s alignment point can either be specified by an malignmark element anywhere

within the alignment group (except within another alignment scope wholly contained inside it), or it is

determined automatically from the groupalign attribute. The groupalign attribute can be specified

on the group’s preceding maligngroup element or on its surrounding mtd, mtr, or mtable elements.

In typical cases, using the groupalign attribute is sufficient to describe the desired alignment points,

so no malignmark elements need to be provided.

The malignmark element indicates that the alignment point should occur on the right edge of the pre-

ceding element, or the left edge of the following element or character, depending on the edge attribute

of malignmark. Note that it may be necessary to introduce an mrow to group an malignmark element

with a neighboring element, in order not to alter the argument count of the containing element. (See the

warning about the legal grouping of ‘space-like elements’ in Section 3.2.7).

When an malignmark element is provided within an alignment group, it can occur in an arbitrarily

deeply nested element within the group, as long as it is not within a nested alignment scope. It is

not subject to the same restrictions on location as maligngroup elements. However, its immediate

surroundings need to be such that the element to its immediate right or left (depending on its edge

attribute) can be unambiguously identified. If no such element is present, renderers should behave as if

a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element

Y, and Y to the immediate right of X, whenever X and Y are successive arguments of one (possibly

inferred) mrow element, with X coming before Y (in a LTR context; with X coming after Y in a RTL

context). In the case of mfenced elements, MathML applications should evaluate this relation as if

the mfenced element had been replaced by the equivalent expanded form involving mrow. Similarly,

an maction element should be treated as if it were replaced by its currently selected sub-expression.

In all other cases, no relation of ‘to the immediate left or right’ is defined for two elements X and Y.

However, in the case of content elements interspersed in presentation markup, MathML applications

should attempt to evaluate this relation in a sensible way. For example, if a renderer maintains an

internal presentation structure for rendering content elements, the relation could be evaluated with

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 105

respect to that. (See Chapter 4 and Chapter 5 for further details about mixing presentation and content

markup.)

malignmark elements are allowed to occur within the content of token elements, such as mn, mi, or

mtext. When this occurs, the character immediately before or after the malignmark element will carry

the alignment point; in all other cases, the element to its immediate left or right will carry the alignment

point. The rationale for this is that it is sometimes desirable to align on the edges of specific characters

within multi-character token elements.

If there is more than one malignmark element in an alignment group, all but the first one will be

ignored. MathML applications may wish to provide a mode in which they will warn about this situation,

but it is not an error, and should trigger no warnings by default. The rationale for this is that it would be

inconvenient to have to remove all unnecessary malignmark elements from automatically generated

data, in certain cases, such as when they are used to specify alignment on ‘decimal points’ other than

the ’.’ character.

3.5.5.5 <malignmark/> Attributes

malignmark elements accept the attributes listed below in addition to those specified in Section 3.1.10

(however, neither mathcolor nor mathbackground have any effect).

Name values default

edge "left" | "right" left

see the discussion below.

The edge attribute specifies whether the alignment point will be found on the left or right edge of some

element or character. The precise location meant by ‘left edge’ or ‘right edge’ is discussed below. If

edge="right", the alignment point is the right edge of the element or character to the immediate left of

the malignmark element. If edge="left", the alignment point is the left edge of the element or character

to the immediate right of the malignmark element. Note that the attribute refers to the choice of edge

rather than to the direction in which to look for the element whose edge will be used.

For malignmark elements that occur within the content of MathML token elements, the preceding or

following character in the token element’s content is used; if there is no such character, a zero-width

character is effectively inserted for the purpose of carrying the alignment point on its edge. For all

other malignmark elements, the preceding or following element is used; if there is no such element, a

zero-width element is effectively inserted to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should

coincide with an edge of the character’s bounding box) is not specified by MathML, but is at the

discretion of the renderer; the renderer is allowed to let the edge position depend on the character’s

context as well as on the character itself.

For proper alignment of columns of numbers (using groupalign values of "left", "right", or

"decimalpoint"), it is likely to be desirable for the effective width (i.e. the distance between the left

and right edges) of decimal digits to be constant, even if their bounding box widths are not constant

(e.g. if ‘1’ is narrower than other digits). For other characters, such as letters and operators, it may be

desirable for the aligned edges to coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph

drawn to render the element or group, except that explicit space represented by mspace or mtext

elements should also count as ‘glyphs’ in this context, as should glyphs that would be drawn if not

for mphantom elements around them. The ‘right edge’ of an element or alignment group is defined

similarly.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

106 Chapter 3. Presentation Markup

3.5.5.6 <maligngroup/> Attributes

maligngroup elements accept the attributes listed below in addition to those specified in Section 3.1.10

(however, neither mathcolor nor mathbackground have any effect).

Name values default

groupalign "left" | "center" | "right" | "decimalpoint" inherited

see the discussion below.

maligngroup has one attribute, groupalign, which is used to determine the position of its group’s

alignment point when no malignmark element is present. The following discussion assumes that no

malignmark element is found within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7

alignment groups in each table cell; thus there are 7 columns of alignment groups, with 2 groups, one

above the other, in each column. These columns of alignment groups should be given the 7 groupalign

values ‘decimalpoint left left decimalpoint left left decimalpoint’, in that order. How to specify this list

of values for a table cell or table column as a whole, using attributes on elements surrounding the

maligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge,

at its right edge, or halfway between these edges, respectively. The meanings of ‘left edge’ and ‘right

edge’ are as discussed above in relation to malignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the character immediate-

ly before the left-most ’decimal point’, i.e. matching the character specified by the decimalpoint

attribute of mstyle (default ".", U+002E) in the first mn element found along the alignment group’s

baseline. More precisely, the alignment group is scanned recursively, depth-first, for the first mn ele-

ment, descending into all arguments of each element of the types mrow (including inferred mrows),

mstyle, mpadded, mphantom, menclose, mfenced, or msqrt, descending into only the first argument

of each ‘scripting’ element (msub, msup, msubsup, munder, mover, munderover, mmultiscripts)

or of each mroot or semantics element, descending into only the selected sub-expression of each

maction element, and skipping the content of all other elements. The first mn so found always contains

the alignment point, which is the right edge of the last character before the first decimal point in the

content of the mn element. If there is no decimal point in the mn element, the alignment point is the right

edge of the last character in the content. If the decimal point is the first character of the mn element’s

content, the right edge of a zero-width character inserted before the decimal point is used. If no mn

element is found, the right edge of the entire alignment group is used (as for groupalign="right").

In order to permit alignment on decimal points in cn elements, a MathML application can convert

a content expression into a presentation expression that renders the same way before searching for

decimal points as described above.

Characters other than ‘.’ can be used as ‘decimal points’ for alignment by using mstyle; more arbitrary

alignment points can chosen by embedding malignmark elements within the mn token’s content itself.

For any of the groupalign values, if an explicit malignmark element is present anywhere within the

group, the position it specifies (described earlier) overrides the automatic determination of alignment

point from the groupalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put a groupalign attribute on every maligngroup element. Since this

attribute is usually the same for every group in a column of alignment groups to be aligned, it can be

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 107

inherited from an attribute on the mtable that was used to set up the alignment scope as a whole, or

from the mtr or mtd elements surrounding the alignment group. It is inherited via an ‘inheritance path’

that proceeds from mtable through successively contained mtr, mtd, and maligngroup elements.

There is exactly one element of each of these kinds in this path from an mtable to any alignment

group inside it. In general, the value of groupalign will be inherited by any given alignment group

from the innermost element that surrounds the alignment group and provides an explicit setting for this

attribute. For example, if an mtable element specifies values for groupalign and a maligngroup

element within the table also specifies an explicit groupalign value, then then the value from the

maligngroup takes priority.

Note, however, that each mtd element needs, in general, a list of groupalign values, one for each

maligngroup element inside it (from left to right, in an LTR context, or from right to left in an RTL

context), rather than just a single value. Furthermore, an mtr or mtable element needs, in general, a list

of lists of groupalign values, since it spans multiple mtable columns, each potentially acting as an

alignment scope. Such lists of group-alignment values are specified using the following syntax rules:

group-alignment = "left" | "right" | "center" | "decimalpoint"

group-alignment-list = group-alignment +

group-alignment-list-list = ("{" group-alignment-list "}") +

As described in Section 2.1.5, | separates alternatives; + represents optional repetition (i.e. 1 or more

copies of what precedes it), with extra values ignored and the last value repeated if necessary to cover

additional table columns or alignment group columns; ’’ and ’’ represent literal braces; and (and

) are used for grouping, but do not literally appear in the attribute value.

The permissible values of the groupalign attribute of the elements that have this attribute are specified

using the above syntax definitions as follows:

Element type groupalign attribute syntax default value

mtable group-alignment-list-list left

mtr group-alignment-list-list inherited from mtable attribute

mlabeledtr group-alignment-list-list inherited from mtable attribute

mtd group-alignment-list inherited from within mtr attribute

maligngroup group-alignment inherited from within mtd attribute

In the example near the beginning of this section, the group alignment values could be specified on every

mtd element using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or on

every mtr element using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or

(most conveniently) on the mtable as a whole using groupalign = ‘decimalpoint left left decimalpoint

left left decimalpoint’, which provides a single braced list of group-alignment values for the single

column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start

of this section. To repeat the example, the desired rendering is:

8.44x + 55 y = 0

3.1 x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign=

"{decimalpoint left left decimalpoint left left decimalpoint}">

<mtr>

<mtd>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

108 Chapter 3. Presentation Markup

<mrow>

<mrow>

<mrow>

<maligngroup/>

<mn> 8.44 </mn>

<mo> ⁢ </mo>

<maligngroup/>

<mi> x </mi>

</mrow>

<maligngroup/>

<mo> + </mo>

<mrow>

<maligngroup/>

<mn> 55 </mn>

<mo> ⁢ </mo>

<maligngroup/>

<mi> y </mi>

</mrow>

</mrow>

<maligngroup/>

<mo> = </mo>

<maligngroup/>

<mn> 0 </mn>

</mrow>

</mtd>

</mtr>

<mtr>

<mtd>

<mrow>

<mrow>

<mrow>

<maligngroup/>

<mn> 3.1 </mn>

<mo> ⁢ </mo>

<maligngroup/>

<mi> x </mi>

</mrow>

<maligngroup/>

<mo> - </mo>

<mrow>

<maligngroup/>

<mn> 0.7 </mn>

<mo> ⁢ </mo>

<maligngroup/>

<mi> y </mi>

</mrow>

</mrow>

<maligngroup/>

<mo> = </mo>

<maligngroup/>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.5. Tabular Math 109

<mrow>

<mo> - </mo>

<mn> 1.1 </mn>

</mrow>

</mrow>

</mtd>

</mtr>

</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements maligngroup and malignmark can occur outside of alignment scopes, where

they are ignored. The rationale behind this is that in situations in which MathML is generated, or copied

from another document, without knowing whether it will be placed inside an alignment scope, it would

be inconvenient for this to be an error.

An mtable element can be given the attribute alignmentscope="false" to cause its columns not to

act as alignment scopes. In general, this attribute has the syntax ("true" | "false") +; if its value

is a list of Boolean values, each Boolean value applies to one column, with the last value repeated if

necessary to cover additional columns, or with extra values ignored. Columns that are not alignment

scopes are part of the alignment scope surrounding the mtable element, if there is one. Use of

alignmentscope="false" allows nested tables to contain malignmark elements for aligning the

inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML

does not specify how content elements should be rendered. However, many MathML applications are

likely to find it convenient to internally convert content elements to presentation elements that render

the same way. Thus, as a general rule, even if a renderer does not perform such conversions internally,

it is recommended that the alignment elements should be processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment ele-

ments with the matrix content element, since this element may or may not be internally converted

to an expression containing an mtable element for rendering. To partially resolve this ambiguity, it

is suggested, but not required, that if the matrix element is converted to an expression involving an

mtable element, that the mtable element be given the attribute alignmentscope="false", which

will make the interaction of the matrix element with the alignment elements no different than that of a

generic presentation element (in particular, it will allow it to contain malignmark elements that operate

within the alignment scopes created by the columns of an mtable that contains the matrix element in

one of its table cells).

The effect of alignment elements within table cells that have non-default values of the columnspan or

rowspan attributes is not specified, except that such use of alignment elements is not an error. Future

versions of MathML may specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of an mtable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML renderer can perform the alignment specified in this section

is given here. Since the alignment specification is deterministic (except for the definition of the left and

right edges of a character), any correct MathML alignment algorithm will have the same behavior as

this one. Each mtable column (alignment scope) can be treated independently; the algorithm given

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

110 Chapter 3. Presentation Markup

here applies to one mtable column, and takes into account the alignment elements, the

groupalign attribute described in this section, and the columnalign attribute described under

mtable (Section 3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero width for all

maligngroup and malignmark elements. The final rendering will be identical except for horizontal

shifts applied to each alignment group and/or table cell. The positions of alignment points specified

by any malignmark elements are noted, and the remaining alignment points are determined using

groupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge

are noted, allowing the width of the group on each side of the alignment point (left and right) to be

determined. The sum of these two ‘side-widths’, i.e. the sum of the widths to the left and right of the

alignment point, will equal the width of the alignment group.

Second, each column of alignment groups is scanned. The ith scan covers the ith alignment group in

each table cell containing any alignment groups. Table cells with no alignment groups, or with fewer

than i alignment groups, are ignored. Each scan computes two maximums over the alignment groups

scanned: the maximum width to the left of the alignment point, and the maximum width to the right of

the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one

total width, which will be the width of each table cell containing alignment groups. Call the maximum

number of alignment groups in one cell n; each such cell is divided into 2n horizontally adjacent sec-

tions, called L(i) and R(i) for i from 1 to n, using the 2n maximum side-widths computed above; for

each i, the width of all sections called L(i) is the maximum width of any cell’s ith alignment group to

the left of its alignment point, and the width of all sections called R(i) is the maximum width of any

cell’s ith alignment group to the right of its alignment point.

Each alignment group is then shifted horizontally as a block to a unique position that places: in the

section called L(i) that part of the ith group to the left of its alignment point; in the section called R(i)
that part of the ith group to the right of its alignment point. This results in the alignment point of each

ith group being on the boundary between adjacent sections L(i) and R(i), so that all alignment points of

ith groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial ren-

dering, and may be different for each cell, and different from the single width used for cells containing

alignment groups. The maximum of all the cell widths (for both kinds of cells) gives the width of the

table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the

columnalign attribute of the innermost surrounding mtable, mtr, or mtd element that has an explicit

value for it, as described in the sections on those elements. This may mean that the cells containing

alignment groups will be shifted within their column, in addition to their alignment groups having been

shifted within the cells as described above, but since each such cell has the same width, it will be shifted

the same amount within the column, thus maintaining the vertical alignment of the alignment points of

the corresponding alignment groups in each cell.

3.6 Elementary Math

Mathematics used in the lower grades such as two-dimensional addition, multiplication, and long divi-

sion tends to be tabular in nature. However, the specific notations used varies among countries much

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 111

more than for higher level math. Furthermore, elementary math often presents examples in some inter-

mediate state and MathML must be able to capture these intermediate or intentionally missing partial

forms. Indeed, these constructs represent memory aids or procedural guides, as much as they represent

‘mathematics’.

The elements used for basic alignments in elementary math are:

mstack align rows of digits and operators

msgroup groups rows with similar alignment

msrow groups digits and operators into a row

msline draws lines between rows of the stack

mscarries annotates the following row with optional borrows/carries and/or crossouts

mscarry a borrow/carry and/or crossout for a single digit

mlongdiv specifies a divisor and a quotient for long division, along with a stack of the intermediate

computations

mstack and mlongdiv are the parent elements for all elementary math layout. Any children of mstack,

mlongdiv, and msgroup, besides msrow, msgroup, mscarries and msline, are treated as if implicitly

surrounded by an msrow (See Section 3.6.4 for more details about rows).

Since the primary use of these stacking constructs is to stack rows of numbers aligned on their digits,

and since numbers are always formatted left-to-right, the columns of an mstack are always processed

left-to-right; the overall directionality in effect (ie. the dir attribute) does not affect to the ordering of

display of columns or carries in rows and, in particular, does not affect the ordering of any operators

within a row (See Section 3.1.5).

These elements are described in this section followed by examples of their use. In addition to two-

dimensional addition, subtraction, multiplication, and long division, these elements can be used to

represent several notations used for repeating decimals.

A very simple example of two-dimensional addition is shown below:

424
+33

The MathML for this is:

<mstack>

<mn>424</mn>

<msrow> <mo>+</mo> <mn>33</mn> </msrow>

<msline/>

</mstack>

Many more examples are given in Section 3.6.8.

3.6.1 Stacks of Characters <mstack>

3.6.1.1 Description

mstack is used to lay out rows of numbers that are aligned on each digit. This is common in many

elementary math notations such as 2D addition, subtraction, and multiplication.

The children of an mstack represent rows, or groups of them, to be stacked each below the previous

row; there can be any number of rows. An msrow represents a row; an msgroup groups a set of rows

together so that their horizontal alignment can be adjusted together; an mscarries represents a set

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

112 Chapter 3. Presentation Markup

of carries to be applied to the following row; an msline represents a line separating rows. Any other

element is treated as if implicitly surrounded by msrow.

Each row contains ‘digits’ that are placed into columns. (see Section 3.6.4 for further details). The

stackalign attribute together with the position and shift attributes of msgroup, mscarries, and

msrow determine to which column a character belongs.

The width of a column is the maximum of the widths of each ‘digit’ in that column — carries do not

participate in the width calculation; they are treated as having zero width. If an element is too wide to

fit into a column, it overflows into the adjacent column(s) as determined by the charalign attribute.

If there is no character in a column, its width is taken to be the width of a 0 in the current language (in

many fonts, all digits have the same width).

The method for laying out an mstack is:

1. The ‘digits’ in a row are determined.

2. All of the digits in a row are initially aligned according to the stackalign value.

3. Each row is positioned relative to that alignment based on the position attribute (if any)

that controls that row.

4. The maximum width of the digits in a column are determined and shorter and wider entries

in that column are aligned according to the charalign attribute.

5. The width and height of the mstack element are computed based on the rows and columns.

Any overflow from a column is not used as part of that computation.

6. The baseline of the mstack element is determined by the align attribute.

3.6.1.2 Attributes

mstack elements accept the attributes listed below in addition to those specified in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 113

Name values default

align ("top" | "bottom" | "center" | "baseline" | "axis"), rownumber? baseline

specifies the vertical alignment of the mstack with respect to its environment. The legal

values and their meanings are the same as that for mtable’s align attribute.

stackalign "left" | "center" | "right" | "decimalpoint" decimalpoint

specifies which column is used to horizontally align the rows. For "left", rows are

aligned flush on the left; similarly for "right", rows are flush on the right; for

"center", the middle column (or to the right of the middle, for an even number of

columns) is used for alignment. Rows with non-zero position, or affected by a shift,

are treated as if the requisite number of empty columns were added on the appropriate

side; see Section 3.6.3 and Section 3.6.4. For "decimalpoint", the column used is

the left-most column in each row that contains the decimalpoint character specified

using the decimalpoint attribute of mstyle (default "."). If there is no decimalpoint

character in the row, an implied decimal is assumed on the right of the first number in

the row; See "decimalpoint" for a discussion of "decimalpoint".

charalign "left" | "center" | "right" right

specifies the horizontal alignment of digits within a column. If the content is larger

than the column width, then it overflows the opposite side from the alignment. For

example, for "right", the content will overflow on the left side; for center, it overflows

on both sides. This excess does not participate in the column width calculation, nor does

it participate in the overall width of the mstack. In these cases, authors should take care

to avoid collisions between column overflows.

charspacing length | "loose" | "medium" | "tight" medium

specifies the amount of space to put between each column. Larger spacing might be

useful if carries are not placed above or are particularly wide. The keywords "loose",

"medium", and "tight" automatically adjust spacing to when carries or other entries in

a column are wide. The three values allow authors to some flexibility in choosing what

the layout looks like without having to figure out what values works well. In all cases,

the spacing between columns is a fixed amount and does not vary between different

columns.

3.6.2 Long Division <mlongdiv>

3.6.2.1 Description

Long division notation varies quite a bit around the world, although the heart of the notation is often

similar. mlongdiv is similar to mstack and used to layout long division. The first two children of

mlongdiv are the divisor and the result of the division, in that order. The remaining children are treated

as if they were children of mstack. The placement of these and the lines and separators used to display

long division are controlled by the longdivstyle attribute.

The result or divisor may be an elementary math element or may be none. In particular, if msgroup is

used, the elements in that group may or may not form their own mstack or be part of the dividend’s

mstack, depending upon the value of the longdivstyle attribute. For example, in the US style for

division, the result is treated as part of the dividend’s mstack, but divisor is not. MathML does not

specify when the result and divisor form their own mstack, nor does it specify what should happen if

msline or other elementary math elements are used for the result or divisor and they do not participate

in the dividend’s mstack layout.

In the remainder of this section on elementary math, anything that is said about mstack applies to

mlongdiv unless stated otherwise.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

114 Chapter 3. Presentation Markup

3.6.2.2 Attributes

mlongdiv elements accept all of the attributes that mstack elements accept (including those specified

in Section 3.1.10), along with the attribute listed below.

The values allowed for longdivstyle are open-ended. Conforming renderers may ignore any value

they do not handle, although renderers are encouraged to render as many of the values listed below

as possible. Any rules drawn as part of division layout should be drawn using the color specified by

mathcolor.

Name values default

longdivstyle "lefttop" | "stackedrightright" | "mediumstackedrightright" | "short-

stackedrightright" | "righttop" | "left/\right" | "left)(right" | ":right=right"

| "stackedleftleft" | "stackedleftlinetop"

lefttop

Controls the style of the long division layout. The names are meant as a rough mnemonic

that describes the position of the divisor and result in relation to the dividend.

See Section 3.6.8.3 for examples of how these notations are drawn. The values listed above are used

for long division notations in different countries around the world:

"lefttop" a notation that is commonly used in the United States, Great Britain, and elsewhere

"stackedrightright" a notation that is commonly used in France and elsewhere

"mediumrightright" a notation that is commonly used in Russia and elsewhere

"shortstackedrightright" a notation that is commonly used in Brazil and elsewhere

"righttop" a notation that is commonly used in China, Sweden, and elsewhere

"left/\right" a notation that is commonly used in Netherlands

"left)(right" a notation that is commonly used in India

":right=right " a notation that is commonly used in Germany

"stackedleftleft " a notation that is commonly used in Arabic countries

"stackedleftlinetop" a notation that is commonly used in Arabic countries

3.6.3 Group Rows with Similiar Positions <msgroup>

3.6.3.1 Description

msgroup is used to group rows inside of the mstack and mlongdiv elements that have a similar

position relative to the alignment of stack. If not explicitly given, the children representing the stack in

mstack and mlongdiv are treated as if they are implicitly surrounded by an msgroup element.

3.6.3.2 Attributes

msgroup elements accept the attributes listed below in addition to those specified in Section 3.1.10.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 115

Name values default

position integer 0

specifies the horizontal position of the rows within this group relative the position de-

termined by the containing msgroup (according to its position and shift attributes).

The resulting position value is relative to the column specified by stackalign of the

containing mstack or mlongdiv. Positive values move each row towards the tens digit,

like multiplying by a power of 10, effectively padding with empty columns on the right;

negative values move towards the ones digit, effectively padding on the left. The decimal

point is counted as a column and should be taken into account for negative values.

shift integer 0

specifies an incremental shift of position for successive children (rows or groups) within

this group. The value is interpreted as with position, but specifies the position of each

child (except the first) with respect to the previous child in the group.

3.6.4 Rows in Elementary Math <msrow>

3.6.4.1 Description

An msrow represents a row in an mstack. In most cases it is implied by the context, but is useful

explicitly for putting multiple elements in a single row, such as when placing an operator "+" or "-"

alongside a number within an addition or subtraction.

If an mn element is a child of msrow (whether implicit or not), then the number is split into its digits

and the digits are placed into successive columns. Any other element, with the exception of mstyle is

treated effectively as a single digit occupying the next column. An mstyle is treated as if its children

were directly the children of the msrow, but with their style affected by the attributes of the mstyle.

The empty element none may be used to create an empty column.

Note that a row is considered primarily as if it were a number, which are always displayed left-to-right,

and so the directionality used to display the columns is always left-to-right; textual bidirectionality

within token elements (other than mn) still applies, as does the overall directionality within any children

of the msrow (which end up treated as single digits); see Section 3.1.5.

3.6.4.2 Attributes

msrow elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

position integer 0

specifies the horizontal position of the rows within this group relative the position de-

termined by the containing msgroup (according to its position and shift attributes).

The resulting position value is relative to the column specified by stackalign of the

containing mstack or mlongdiv. Positive values move each row towards the tens digit,

like multiplying by a power of 10, effectively padding with empty columns on the right;

negative values move towards the ones digit, effectively padding on the left. The decimal

point is counted as a column and should be taken into account for negative values.

3.6.5 Carries, Borrows, and Crossouts <mscarries>

3.6.5.1 Description

The mscarries element is used for various annotations such as carries, borrows, and crossouts that

occur in elementary math. The children are associated with elements in the following row of the

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

116 Chapter 3. Presentation Markup

mstack. It is an error for mscarries to be the last element of an mstack or mlongdiv element. Each

child of the mscarries applies to the same column in the following row. As these annotations are used

to adorn what are treated as numbers, the attachment of carries to columns proceeds from left-to-right;

The overall directionality does not apply to the ordering of the carries, although it may apply to the

contents of each carry; see Section 3.1.5.

Each child of mscarries other than mscarry or none is treated as if implicitly surrounded by

mscarry; the element none is used when no carry for a particular column is needed. The

mscarries element sets displaystyle to "false", and increments scriptlevel by 1, so the chil-

dren are typically displayed in a smaller font. (See Section 3.1.6.) It also changes the default val-

ue of scriptsizemultiplier. The effect is that the inherited value of scriptsizemultiplier

should still override the default value, but the default value, inside mscarries, should be "0.6".

scriptsizemultiplier can be set on the mscarries element, and the value should override the

inherited value as usual.

If two rows of carries are adjacent to each other, the first row of carries annotates the second (following)

row as if the second row had location="n". This means that the second row, even if it does not draw,

visually uses some (undefined by this specification) amount of space when displayed.

3.6.5.2 Attributes

mscarries elements accept the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

position integer 0

specifies the horizontal position of the rows within this group relative the position deter-

mined by the containing msgroup (according to its position and shift attributes).

The resulting position value is relative to the column specified by stackalign of

the containing mstack or mlongdiv. The interpretation of the value is the same as

position for msgroup or msrow, but it alters the association of each carry with the

column below. For example, position=1 would cause the rightmost carry to be asso-

ciated with the second digit column from the right.

location "w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" n

specifies the location of the carry or borrow relative to the character below it in the

associated column. Compass directions are used for the values; the default is to place

the carry above the character.

crossout ("none" | "updiagonalstrike" | "downdiagonalstrike" | "verti-

calstrike" | "horizontalstrike")*

none

specifies how the column content below each carry is "crossed out"; one or more values

may be given and all values are drawn. If "none" is given with other values, it is ignored.

See Section 3.6.8 for examples of the different values. The crossout is only applied for

columns which have a corresponding mscarry. The crossouts should be drawn using

the color specified by mathcolor.

scriptsizemultiplier number inherited (0.6)

specifies the factor to change the font size by. See Section 3.1.6 for a description of how

this works with the scriptsize attribute.

3.6.6 A Single Carry <mscarry>

3.6.6.1 Description

mscarry is used inside of mscarries to represent the carry for an individual column. A carry is treated

as if its width were zero; it does not participate in the calculation of the width of its corresponding

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 117

column; as such, it may extend beyond the column boundaries. Although it is usually implied, the

element may be used explicitly to override the location and/or crossout attributes of the containing

mscarries. It may also be useful with none as its content in order to display no actual carry, but still

enable a crossout due to the enclosing mscarries to be drawn for the given column.

3.6.6.2 Attributes

The mscarry element accepts the attributes listed below in addition to those specified in Section 3.1.10.

Name values default

location "w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" inherited

specifies the location of the carry or borrow relative to the character in the corresponding

column in the row below it. Compass directions are used for the values.

crossout ("none" | "updiagonalstrike" | "downdiagonalstrike" | "verticalstrike" | "hori-

zontalstrike")*

inherited

specifies how the column content associated with the carry is "crossed out"; one or more

values may be given and all values are drawn. If "none" is given with other values,

it is essentially ignored. The crossout should be drawn using the color specified by

mathcolor.

3.6.7 Horizontal Line <msline/>

3.6.7.1 Description

msline draws a horizontal line inside of a mstack element. The position, length, and thickness of the

line are specified as attributes. If the length is specified, the line is positioned and drawn as if it were a

number with the given number of digits.

3.6.7.2 Attributes

msline elements accept the attributes listed below in addition to those specified in Section 3.1.10. The

line should be drawn using the color specified by mathcolor.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

118 Chapter 3. Presentation Markup

Name values default

position integer 0

specifies the horizontal position of the rows within this group relative the position de-

termined by the containing msgroup (according to its position and shift attributes).

The resulting position value is relative to the column specified by stackalign of the

containing mstack or mlongdiv. Positive values moves towards the tens digit (like mul-

tiplying by a power of 10); negative values moves towards the ones digit. The decimal

point is counted as a column and should be taken into account for negative values. Note

that since the default line length spans the entire mstack, the position has no effect

unless the length is specified as non-zero.

length unsigned-integer 0

Specifies the the number of columns that should be spanned by the line. A value of ’0’

(the default) means that all columns in the row are spanned (in which case position

and stackalign have no effect).

leftoverhang length 0

Specifies an extra amount that the line should overhang on the left of the leftmost col-

umn spanned by the line.

rightoverhang length 0

Specifies an extra amount that the line should overhang on the right of the rightmost

column spanned by the line.

mslinethickness length | "thin" | "medium" | "thick" medium

Specifies how thick the line should be drawn. The line should have height=0, and

depth=mslinethickness so that the top of the msline is on the baseline of the sur-

rounding context (if any). (See Section 3.3.2 for discussion of the thickness keywords

"medium", "thin" and "thick".)

3.6.8 Elementary Math Examples

3.6.8.1 Addition and Subtraction

Two-dimensional addition, subtraction, and multiplication typically involve numbers, carrries/borrows,

lines, and the sign of the operation.

Notice that the msline spans all of the columns and that none is used to make the "+" appear to the

left of all of the operands.

424
+ 33

The MathML for this is:

<mstack>

<mn>424</mn>

<msrow> <mo>+</mo> <none/> <mn>33</mn> </msrow>

<msline/>

</mstack>

Here is an example with the operator on the right. Placing the operator on the right is standard in the

Netherlands and some other countries. Notice that although there are a total of four columns in the

example, because the default alignment is on the implied decimal point to the right of the numbers, it

is not necessary to pad any row.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 119

123
456+
579

<mstack>

<mn>123</mn>

<msrow> <mn>456</mn> <mo>+</mo> </msrow>

<msline/>

<mn>579</mn>

</mstack>

Because the default alignment is placed to the right of number, the numbers align properly and none of

the rows need to be shifted.

The following two examples illustrate the use of mscarries, mscarry and using none to fill in a

column. The examples illustrate two different ways of displaying a borrow.

−
2,3 27

1,156

1,171

2 12

−
2,327

1,156

1,171

1
2

The MathML for the first example is:

<mstack>

<mscarries crossout=’updiagonalstrike’>

<mn>2</mn> <mn>12</mn> <mscarry crossout=’none’> <none/> </mscarry>

</mscarries>

<mn>2,327</mn>

<msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>

<msline/>

<mn>1,171</mn>

</mstack>

The MathML for the second example uses mscarry because a crossout should only happen on a single

column:

<mstack>

<mscarries location=’nw’>

<none/>

<mscarry crossout=’updiagonalstrike’ location=’n’> <mn>2</mn> </mscarry>

<mn>1</mn>

<none/>

</mscarries>

<mn>2,327</mn>

<msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>

<msline/>

<mn>1,171</mn>

</mstack>

Here is an example of subtraction where there is a borrow with multiple digits in a single column and

a cross out. The borrowed amount is underlined (the example is from a Swedish source):

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

120 Chapter 3. Presentation Markup

10

5/2
−7

45

There are two things to notice. The first is that menclose is used in the carry and that none is used for

the empty element so that mscarry can be used to create a crossout.

<mstack>

<mscarries>

<mscarry crossout=’updiagonalstrike’><none/></mscarry>

<menclose notation=’bottom’> <mn>10</mn> </menclose>

</mscarries>

<mn>52</mn>

<msrow> <mo>-</mo> <mn> 7</mn> </msrow>

<msline/>

<mn>45</mn>

</mstack>

3.6.8.2 Multiplication

Below is a simple multiplication example that illustrates the use of msgroup and the shift attribute.

The first msgroup does nothing. The second msgroup could also be removed, but msrow would be

needed for its second and third children. They would set the position or shift attributes, or would

add none elements.

×
123

321

123

2 46

369

<mstack>

<msgroup>

<mn>123</mn>

<msrow><mo>×</mo><mn>321</mn></msrow>

</msgroup>

<msline/>

<msgroup shift="1">

<mn>123</mn>

<mn>246</mn>

<mn>369</mn>

</msgroup>

<msline/>

</mstack>

This example has multiple rows of carries. It also (somewhat artificially) includes commas (",") as digit

separators. The encoding includes these separators in the spacing attribute value, along non-ASCII

values.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 121

11

11

1,234
×4,321

1 111 1

1,234
24,68

370,2
4,936

5,332,114

<mstack>

<mscarries><mn>1</mn><mn>1</mn><none/></mscarries>

<mscarries><mn>1</mn><mn>1</mn><none/></mscarries>

<mn>1,234</mn>

<msrow><mo>×</mo><mn>4,321</mn></msrow>

<msline/>

<mscarries position=’2’>

<mn>1</mn>

<none/>

<mn>1</mn>

<mn>1</mn>

<mn>1</mn>

<none/>

<mn>1</mn>

</mscarries>

<msgroup shift="1">

<mn>1,234</mn>

<mn>24,68</mn>

<mn>370,2</mn>

<msrow position="1"> <mn>4,936</mn> </msrow>

</msgroup>

<msline/>

<mn>5,332,114</mn>

</mstack>

3.6.8.3 Long Division

The notation used for long division varies considerably among countries. Most notations share the com-

mon characteristics of aligning intermediate results and drawing lines for the operands to be subtracted.

Minus signs are sometimes shown for the intermediate calculations, and sometimes they are not. The

line that is drawn varies in length depending upon the notation. The most apparent difference among

the notations is that the position of the divisor varies, as does the location of the quotient, remainder,

and intermediate terms.

The layout used is controlled by the longdivstyle attribute. Below are examples for the values listed

in Section 3.6.2.2

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

122 Chapter 3. Presentation Markup

"lefttop" "stackedrightright" "mediumstackedrightright" "shortstackedrightright" "righttop"

)
435.3

3 1306

12

10

9

16

15

1.0

9

1

1306 3
12 435,3

10

9

16

15

1,0

9

1

1306 3
12 435,3

10

9

16

15

1,0

9

1

1306 3

12 435,3

10

9

16

15

1,0

9

1

435,3
1306 3

12

10

9

16

15
1,0

9
1

"left/\right" "left)(right" ":right=right" "stackedleftleft" "stackedleftlinetop"

3 / 1306 \ 435,3

12

10

9

16

15

1,0

9

1

3)1306 (435,3

12

10

9

16

15

1,0

9

1

=1306 :3 435,3

12

10

9

16

15

1,0

9

1

3 1306
435,3 12

10

9

16

15

1,0

9

1

The MathML for the first example is shown below. It illustrates the use of nested msgroups and how

the position is calculated in those usages.

<mlongdiv longdivstyle="lefttop">

<mn> 3 </mn>

<mn> 435.3</mn>

<mn> 1306</mn>

<msgroup position="2" shift="-1">

<msgroup>

<mn> 12</mn>

<msline length="2"/>

</msgroup>

<msgroup>

<mn> 10</mn>

<mn> 9</mn>

<msline length="2"/>

</msgroup>

<msgroup>

<mn> 16</mn>

<mn> 15</mn>

<msline length="2"/>

<mn> 1.0</mn> <!- aligns on ’.’, not the right edge (’0’) ->

</msgroup>

<msgroup position=’-1’> <!- extra shift to move to the right of the "." ->

<mn> 9</mn>

<msline length="3"/>

<mn> 1</mn>

</msgroup>

</msgroup>

</mlongdiv>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.6. Elementary Math 123

With the exception of the last example, the encodings for the other examples are the same except that

the values for longdivstyle differ and that a "," is used instead of a "." for the decimal point. For the

last example, the only difference from the other examples besides a different value for longdivstyle

is that Arabic numerals have been used in place of Latin numerals, as shown below.

<mstyle decimalpoint="٫">

<mlongdiv longdivstyle="stackedleftlinetop">

<mn> ٣ </mn>

<mn> ٤٣٥٫٣</mn>

<mn> ١٣٠٦</mn>

<msgroup position="2" shift="-1">

<msgroup>

<mn> ١٢</mn>

<msline length="2"/>

</msgroup>

<msgroup>

<mn> ١٠</mn>

<mn> ٩</mn>

<msline length="2"/>

</msgroup>

<msgroup>

<mn> ١٦</mn>

<mn> ١٥</mn>

<msline length="2"/>

<mn> ١٫٠</mn>

</msgroup>

<msgroup position=’-1’>

<mn> ٩</mn>

<msline length="3"/>

<mn> ١</mn>

</msgroup>

</msgroup>

</mlongdiv>

</mstyle>

3.6.8.4 Repeating decimal

Decimal numbers that have digits that repeat infinitely such as 1/3 (.3333...) are represented using

several notations. One common notation is to put a horizontal line over the digits that repeat (in Portugal

an underline is used). Another notation involves putting dots over the digits that repeat. These notations

are shown below:

0.333333

0.142857

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

124 Chapter 3. Presentation Markup

0.142857

0.1̇42857̇

The MathML for these involves using mstack, msrow, and msline in a straightforward manner. The

MathML for the preceding examples above is given below.

<mstack stackalign="right">

<msline length="1"/>

<mn> 0.3333 </mn>

</mstack>

<mstack stackalign="right">

<msline length="6"/>

<mn> 0.142857 </mn>

</mstack>

<mstack stackalign="right">

<mn> 0.142857 </mn>

<msline length="6"/>

</mstack>

<mstack stackalign="right">

<msrow> <mo>.</mo> <none/><none/><none/><none/> <mo>.</mo> </msrow>

<mn> 0.142857 </mn>

</mstack>

3.7 Enlivening Expressions

3.7.1 Bind Action to Sub-Expression <maction>

To provide a mechanism for binding actions to expressions, MathML provides the maction element.

This element accepts any number of sub-expressions as arguments and the type of action that should

happen is controlled by the actiontype attribute. Only three actions are predefined by MathML, but

the list of possible actions is open. Additional predefined actions may be added in future versions of

MathML.

Linking to other elements, either locally within the math element or to some URL, is not handled

by maction. Instead, it is handled by adding a link directly on a MathML element as specified in

Section 6.4.4.

3.7.1.1 Attributes

maction elements accept the attributes listed below in addition to those specified in Section 3.1.10.

By default, MathML applications that do not recognize the specified actiontype should render the

selected sub-expression as defined below. If no selected sub-expression exists, it is a MathML error;

the appropriate rendering in that case is as described in Section 2.3.2.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

3.7. Enlivening Expressions 125

Name values default

actiontype string required

Specifies what should happen for this element. The values allowed are open-ended.

Conforming renderers may ignore any value they do not handle, although renderers are

encouraged to render the values listed below.

selection positive-integer 1

Specifies which child should be used for viewing. Its value should be between 1 and the

number of children of the element. The specified child is referred to as the ‘selected sub-

expression’ of the maction element. If the value specified is out of range, it is an error.

When the selection attribute is not specified (including for action types for which it

makes no sense), its default value is 1, so the selected sub-expression will be the first

sub-expression.

If a MathML application responds to a user command to copy a MathML sub-expression to the en-

vironment’s ‘clipboard’ (see Section 6.3), any maction elements present in what is copied should be

given selection values that correspond to their selection state in the MathML rendering at the time

of the copy command.

When a MathML application receives a mouse event that may be processed by two or more nested

maction elements, the innermost maction element of each action type should respond to the event.

The meanings of the various actiontype values is given below. Note that not all renderers support all

of the actiontype values, and that the allowed values are open-ended.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expres-
sion)... </maction>

The renderer alternately display the selected subexpression, cycling through them when there

is a click on the selected subexpression. Each click increments the selection value, wrap-

ping back to 1 when it reaches the last child. Typical uses would be for exercises in education,

ellipses in long computer algebra output, or to illustrate alternate notations. Note that the ex-

pressions may be of significantly different size, so that size negotiation with the browser

may be desirable. If size negotiation is not available, scrolling, elision, panning, or some

other method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
The renderer displays the first child. When a reader clicks on the expression or moves the

pointer over it, the renderer sends a rendering of the message to the browser statusline. Be-

cause most browsers in the foreseeable future are likely to be limited to displaying text on

their statusline, the second child should be an mtext element in most circumstances. For

non-mtext messages, renderers might provide a natural language translation of the markup,

but this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
The renderer displays the first child. When the pointer pauses over the expression for a long

enough delay time, the renderer displays a rendering of the message in a pop-up ‘tooltip’ box

near the expression. Many systems may limit the popup to be text, so the second child should

be an mtext element in most circumstances. For non-mtext messages, renderers may pro-

vide a natural language translation of the markup if full MathML rendering is not practical,

but this is not required.

<maction actiontype="input"> (expression) </maction>
The renderer displays the expression. For renderers that allow editing, when focus is passed

to this element, the maction is replaced by what is entered, pasted, etc. MathML does not

restrict what is allowed as input, nor does it require an editor to allow arbitrary input. Some

renderers/editors may restrict the input to simple (linear) text.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

126 Chapter 3. Presentation Markup

The actiontype values are open-ended. If another value is given and it requires additional attributes,

the attributes must be in a different namespace in XML; in HTML the attributes must begin with "data-

". An XML example is shown below:

<maction actiontype="highlight" my:color="red" my:background="yellow"> expression
</maction>

In the example, non-standard attributes from another namespace are being used to pass ad-

ditional information to renderers that support them, without violating the MathML Schema

(see Section 2.3.3). The my:color attributes might change the color of the characters in the

presentation, while the my:background attribute might change the color of the background

behind the characters.

3.8 Semantics and Presentation

MathML uses the semantics element to allow specifying semantic annotations to presentation MathML

elements; these can be content MathML or other notations. As such, semantics should be considered

part of both presentation MathML and content MathML. All MathML processors should process the

semantics element, even if they only process one of those subsets.

In semantic annotations a presentation MathML expression is typically the first child of the semantics

element. However, it can also be given inside of an annotation-xml element inside the semantics

element. If it is part of an annotation-xml element, then encoding=

"application/mathml-presentation+xml" or encoding="MathML-Presentation"may be used

and presentation MathML processors should use this value for the presentation.

See Section 5.1 for more details about the semantics and annotation-xml elements.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 4

Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup

The intent of Content Markup is to provide an explicit encoding of the underlying mathematical mean-

ing of an expression, rather than any particular rendering for the expression. Mathematics is distin-

guished both by its use of rigorous formal logic to define and analyze mathematical concepts, and by

the use of a (relatively) formal notational system to represent and communicate those concepts. How-

ever, mathematics and its presentation should not be viewed as one and the same thing. Mathematical

notation, though more rigorous than natural language, is nonetheless at times ambiguous, context-

dependent, and varies from community to community. In some cases, heuristics may adequately infer

mathematical semantics from mathematical notation. But in many others cases, it is preferable to work

directly with the underlying, formal, mathematical objects. Content Markup provides a rigorous, ex-

tensible semantic framework and a markup language for this purpose.

The difficulties in inferring semantics from a presentation stem from the fact that there are many to

one mappings from presentation to semantics and vice versa. For example the mathematical construct

‘H multiplied by e’ is often encoded using an explicit operator as in H × e. In different presentational

contexts, the multiplication operator might be invisible ‘H e’, or rendered as the spoken word ‘times’.

Generally, many different presentations are possible depending on the context and style preferences

of the author or reader. Thus, given ‘H e’ out of context it may be impossible to decide if this is the

name of a chemical or a mathematical product of two variables H and e. Mathematical presentation

also varies across cultures and geographical regions. For example, many notations for long division are

in use in different parts of the world today. Notations may lose currency, for example the use of musical

sharp and flat symbols to denote maxima and minima [Chaundy1954]. A notation in use in 1644 for

the multiplication mentioned above was �He [Cajori1928].

By encoding the underlying mathematical structure explicitly, without regard to how it is presented

aurally or visually, it is possible to interchange information more precisely between systems that se-

mantically process mathematical objects. In the trivial example above, such a system could substitute

values for the variables H and e and evaluate the result. Important application areas include computer

algebra systems, automatic reasoning system, industrial and scientific applications, multi-lingual trans-

lation systems, mathematical search, and interactive textbooks.

The organization of this chapter is as follows. In Section 4.2, a core collection of elements comprising

Strict Content Markup are described. Strict Content Markup is sufficient to encode general expression

trees in a semantically rigorous way. It is in one-to-one correspondence with OpenMath element set.

OpenMath is a standard for representing formal mathematical objects and semantics through the use

of extensible Content Dictionaries. Strict Content Markup defines a mechanism for associating precise

mathematical semantics with expression trees by referencing OpenMath Content Dictionaries. The next

127

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

128 Chapter 4. Content Markup

two sections introduce markup that is more convenient than Strict markup for some purposes, some-

what less formal and verbose. In Section 4.3, markup is introduced for representing a small number of

mathematical idioms, such as limits on integrals, sums and product. These constructs may all be rewrit-

ten as Strict Content Markup expressions, and rules for doing so are given. In Section 4.4, elements are

introduced for many common function, operators and constants. This section contains many examples,

including equivalent Strict Content expressions. In Section 4.5, elements from MathML 1 and 2 whose

use is now discouraged are listed. Finally, Section 4.6 summarizes the algorithm for translating arbi-

trary Content Markup into Strict Content Markup. It collects together in sequence all the rewrite rules

introduced throughout the rest of the chapter.

4.1.2 The Structure and Scope of Content MathML Expressions

Content MathML represents mathematical objects as expression trees. The notion of constructing a

general expression tree is e.g. that of applying an operator to sub-objects. For example, the sum ‘x+y’

can be thought of as an application of the addition operator to two arguments x and y. And the expression

‘cos(π)’ as the application of the cosine function to the number π.

As a general rule, the terminal nodes in the tree represent basic mathematical objects such as numbers,

variables, arithmetic operations and so on. The internal nodes in the tree represent function application

or other mathematical constructions that build up a compound objects. Function application provides

the most important example; an internal node might represent the application of a function to several

arguments, which are themselves represented by the nodes underneath the internal node.

The semantics of general mathematical expressions is not a matter of consensus. It would be an enor-

mous job to systematically codify most of mathematics – a task that can never be complete. Instead,

MathML makes explicit a relatively small number of commonplace mathematical constructs, chosen

carefully to be sufficient in a large number of applications. In addition, it provides a mechanism for

referring to mathematical concepts outside of the base collection, allowing them to be represented, as

well.

The base set of content elements is chosen to be adequate for simple coding of most of the formulas

used from kindergarten to the end of high school in the United States, and probably beyond through the

first two years of college, that is up to A-Level or Baccalaureate level in Europe.

While the primary role of the MathML content element set is to directly encode the mathematical

structure of expressions independent of the notation used to present the objects, rendering issues cannot

be ignored. There are different approaches for rendering Content MathML formulae, ranging from

native implementations of the MathML elements to declarative notation definitions, to XSLT style

sheets. Because rendering requirements for Content MathML vary widely, MathML 3 does not provide

a normative specification for rendering. Instead, typical renderings are suggested by way of examples.

4.1.3 Strict Content MathML

In MathML 3, a subset, or profile, of Content MathML is defined: Strict Content MathML. This uses

a minimal, but sufficient, set of elements to represent the meaning of a mathematical expression in a

uniform structure, while the full Content MathML grammar is backward compatible with MathML 2.0,

and generally tries to strike a more pragmatic balance between verbosity and formality.

Content MathML provides a large number of predefined functions encoded as empty elements (e.g.

sin, log, etc.) and a variety of constructs for forming compound objects (e.g. set, interval, etc.).

By contrast, Strict Content MathML uses a single element (csymbol) with an attribute pointing to an

external definition in extensible content dictionaries to represent all functions, and uses only apply

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.1. Introduction 129

and bind for building up compound objects. The token elements such as ci and cn are also considered

part of Strict Content MathML, but with a more restricted set of attributes and with content restricted

to text.

Strict Content MathML is designed to be compatible with OpenMath (in fact it is an XML encoding of

OpenMath Objects in the sense of [OpenMath2004]). OpenMath is a standard for representing formal

mathematical objects and semantics through the use of extensible Content Dictionaries. The table below

gives an element-by-element correspondence between the OpenMath XML encoding of OpenMath

objects and Strict Content MathML.

Strict Content MathML OpenMath

cn OMI, OMF

csymbol OMS

ci OMV

cs OMSTR

apply OMA

bind OMBIND

bvar OMBVAR

share OMR

semantics OMATTR

annotation, annotation-xml OMATP, OMFOREIGN

cerror OME

cbytes OMB

In MathML 3, formal semantics Content MathML expressions are given by specifying equivalent Strict

Content MathML expressions. Since Strict Content MathML expressions all have carefully-defined

semantics given in terms of OpenMath Content Dictionaries, all Content MathML expressions inherit

well-defined semantics in this way. To make the correspondence exact, an algorithm is given in terms of

transformation rules that are applied to rewrite non-Strict MathML constructs into a strict equivalents.

The individual rules are introduced in context throughout the chapter. In Section 4.6, the algorithm as

a whole is described.

As most transformation rules relate to classes of MathML elements that have similar argument struc-

ture, they are introduced in Section 4.3.4 where these classes are defined. Some special case rules for

specific elements are given in Section Section 4.4. Transformations in Section 4.2 concern non-Strict

usages of the core Content MathML elements, those in Section 4.3 concern the rewriting of some

additional structures not directly supported in Strict Content MathML.

The full algorithm described inSection 4.6 is complete in the sense that it gives every Content MathML

expression a specific meaning in terms of a Strict Content MathML expression. This means it has to

give specific strict interpretations to some expressions whose meaning was insufficiently specified in

MathML2. The intention of this algorithm is to be faithful to mathematical intuitions. However edge

cases may remain where the normative interpretation of the algorithm may break earlier intuitions.

A conformant MathML processor need not implement this transformation. The existence of these trans-

formation rules does not imply that a system must treat equivalent expressions identically. In particular

systems may give different presentation renderings for expressions that the transformation rules imply

are mathematically equivalent.

4.1.4 Content Dictionaries

Due to the nature of mathematics, any method for formalizing the meaning of the mathematical ex-

pressions must be extensible. The key to extensibility is the ability to define new functions and other

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

130 Chapter 4. Content Markup

symbols to expand the terrain of mathematical discourse. To do this, two things are required: a mech-

anism for representing symbols not already defined by Content MathML, and a means of associating

a specific mathematical meaning with them in an unambiguous way. In MathML 3, the csymbol ele-

ment provides the means to represent new symbols, while Content Dictionaries are the way in which

mathematical semantics are described. The association is accomplished via attributes of the csymbol

element that point at a definition in a CD. The syntax and usage of these attributes are described in

detail in Section 4.2.3.

Content Dictionaries are structured documents for the definition of mathematical concepts; see the

OpenMath standard, [OpenMath2004]. To maximize modularity and reuse, a Content Dictionary typ-

ically contains a relatively small collection of definitions for closely related concepts. The OpenMath

Society maintains a large set of public Content Dictionaries including the MathML CD group that in-

cluding contains definitions for all pre-defined symbols in MathML. There is a process for contributing

privately developed CDs to the OpenMath Society repository to facilitate discovery and reuse. MathML

3 does not require CDs be publicly available, though in most situations the goals of semantic markup

will be best served by referencing public CDs available to all user agents.

In the text below, descriptions of semantics for predefined MathML symbols refer to the Content Dic-

tionaries developed by the OpenMath Society in conjunction with the W3C Math Working Group. It

is important to note, however, that this information is informative, and not normative. In general, the

precise mathematical semantics of predefined symbols are not not fully specified by the MathML 3

Recommendation, and the only normative statements about symbol semantics are those present in the

text of this chapter. The semantic definitions provided by the OpenMath Content CDs are intended

to be sufficient for most applications, and are generally compatible with the semantics specified for

analogous constructs in the MathML 2.0 Recommendation. However, in contexts where highly precise

semantics are required (e.g. communication between computer algebra systems, within formal systems

such as theorem provers, etc.) it is the responsibility of the relevant community of practice to verify,

extend or replace definitions provided by OpenMath CDs as appropriate.

4.1.5 Content MathML Concepts

The basic building blocks of Content MathML expressions are numbers, identifiers and symbols. These

building blocks are combined using function applications and binding operators. It is important to have

a basic understanding of these key mathematical concepts, and how they are reflected in the design of

Content MathML. For the convenience of the reader, these concepts are reviewed here.

In the expression ‘x+y’, x is a mathematical variable, meaning an identifier that represents a quantity

with no fixed value. It may have other properties, such as being an integer, but its value is not a fixed

property. By contrast, the plus sign is an identifier that represents a fixed and externally defined object,

namely the addition function. Such an identifier is termed a symbol, to distinguish it from a variable.

Common elementary functions and operators all have fixed, external definitions, and are hence symbols.

Content MathML uses the ci element to represent variables, and the csymbol to represent symbols.

The most fundamental way in which symbols and variables are combined is function application. Con-

tent MathML makes a crucial semantic distinction between a function itself (a symbol such as the sine

function, or a variable such as f) and the result of applying the function to arguments. The apply ele-

ment groups the function with its arguments syntactically, and represents the expression resulting from

applying that function to its arguments.

Mathematically, variables are divided into bound and free variables. Bound variables are variables that

are assigned a special role by a binding operator within a certain scope. For example, the index variable

within a summation is a bound variable. They can be characterized as variables with the property

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 131

that they can be renamed consistently throughout the binding scope without changing the underlying

meaning of the expression. Variables that are not bound are termed free variables. Because the logical

distinction between bound and free variables is important for well-defined semantics, Content MathML

differentiates between the application of a function to a free variable, e.g. f (x) and the operation of

binding a variable within a scope. The bind element is used the delineate the binding scope, and group

the binding operator with its bound variables, which are indicated by the bvar element.

In Strict Content markup, the bind element is the only way of performing variable binding. In non-

Strict usage, however, markup is provided that more closely resembles well-known idiomatic notations,

such as the ‘limit’ notations for sums and integrals. These constructs often implicitly bind variables,

such as the variable of integration, or the index variable in a sum. MathML terms the elements used to

represent the auxiliary data such as limits required by these constructions qualifier elements.

Expressions involving qualifiers follow one of a small number of idiomatic patterns, each of which

applies to class of similar binding operators. For example, sums and products are in the same class

because they use index variables following the same pattern. The Content MathML operator classes are

described in detail in Section 4.3.4.

Each Content MathML element is described in a section below that begins with a table summarizing

the key information about the element. For elements that have different Strict and non-Strict usage,

these syntax tables are divided to clearly separate the two cases. The element’s content model is given

in the Content row, linked to the MathML Schema in Appendix A. The Attributes, and Attribute

Values rows similarly link to the schema. Where applicable, the Class row specifies the operator

class, which indicate how many arguments the operator represented by this element takes, and also in

many cases determines the mapping to Strict Content MathML, as described in Section 4.3.4. Finally,

the Qualifiers row clarifies whether the operator takes qualifiers and if so, which. Note Class and

Qualifiers specify how many siblings may follow the operator element in an apply, or the children

of the element for container elements; see Section 4.2.5 and Section 4.3.3 for details).

4.2 Content MathML Elements Encoding Expression Structure

In this section we will present the elements for encoding the structure of content MathML expressions.

These elements are the only ones used for the Strict Content MathML encoding. Concretely, we have

• basic expressions, i.e. Numbers, string literals, encoded bytes, Symbols, and Identifiers.

• derived expressions, i.e. function applications and binding expressions, and

• semantic annotations

• error markup

Full Content MathML allows further elements presented in Section 4.3 and Section 4.4, and allows a

richer content model presented in this section. Differences in Strict and non-Strict usage of are high-

lighted in the sections discussing each of the Strict element below.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

132 Chapter 4. Content Markup

4.2.1 Numbers <cn>
Schema Fragment (Strict) Schema Fragment (Full)

Class Cn Cn

Attributes CommonAtt, type CommonAtt, DefEncAtt, type?, base?

type Attribute Values "integer" | "real" |

"double" |

"hexdouble"

"integer" | "real" |

"double" |

"hexdouble" |

"e-notation" |

"rational" |

"complex-cartesian"

| "complex-polar" |

"constant" | text

default is real

base Attribute Values integer default is 10

Content text (text | mglyph | sep | PresentationExpression)*

The cn element is the Content MathML element used to represent numbers. Strict Content MathML

supports integers, real numbers, and double precision floating point numbers. In these types of numbers,

the content of cn is text. Additionally, cn supports rational numbers and complex numbers in which

the different parts are separated by use of the sep element. Constructs using sep may be rewritten in

Strict Content MathML as constructs using apply as described below.

The type attribute specifies which kind of number is represented in the cn element. The default value

is "real". Each type implies that the content be of a certain form, as detailed below.

4.2.1.1 Rendering <cn>,<sep/>-Represented Numbers

The default rendering of the text content of cn is the same as that of the Presentation element mn, with

suggested variants in the case of attributes or sep being used, as listed below.

4.2.1.2 Strict uses of <cn>

In Strict Content MathML, the type attribute is mandatory, and may only take the values "integer",

"real", "hexdouble" or "double":

integer An integer is represented by an optional sign followed by a string of one or more decimal

‘digits’.

real A real number is presented in radix notation. Radix notation consists of an optional sign (‘+’ or

‘-’) followed by a string of digits possibly separated into an integer and a fractional part by

a decimal point. Some examples are 0.3, 1, and -31.56.

double This type is used to mark up those double-precision floating point numbers that can be rep-

resented in the IEEE 754 standard format [IEEE754]. This includes a subset of the (math-

ematical) real numbers, negative zero, positive and negative real infinity and a set of "not

a number" values. The lexical rules for interpreting the text content of a cn as an IEEE

double are specified by Section 3.1.2.5 of XML Schema Part 2: Datatypes Second Edition

[XMLSchemaDatatypes]. For example, -1E4, 1267.43233E12, 12.78e-2, 12 , -0, 0 and INF

are all valid doubles in this format.

hexdouble This type is used to directly represent the 64 bits of an IEEE 754 double-precision float-

ing point number as a 16 digit hexadecimal number. Thus the number represents mantissa,

exponent, and sign from lowest to highest bits using a least significant byte ordering. This

consists of a string of 16 digits 0-9, A-F. The following example represents a NaN value.

Note that certain IEEE doubles, such as the NaN in the example, cannot be represented in

the lexical format for the "double" type.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 133

<cn type="hexdouble">7F800000</cn>

Sample Presentation

<mn>0x7F800000</mn>

0x7F800000

4.2.1.3 Non-Strict uses of <cn>

The base attribute is used to specify how the content is to be parsed. The attribute value is a base

10 positive integer giving the value of base in which the text content of the cn is to be interpreted.

The base attribute should only be used on elements with type "integer" or "real". Its use on cn

elements of other type is deprecated. The default value for base is "10".

Additional values for the type attribute element for supporting e-notations for real numbers, rational

numbers, complex numbers and selected important constants. As with the "integer", "real",

"double" and "hexdouble" types, each of these types implies that the content be of a certain form.

If the type attribute is omitted, it defaults to "real".

integer Integers can be represented with respect to a base different from 10: If base is present, it spec-

ifies (in base 10) the base for the digit encoding. Thus base=’16’ specifies a hexadecimal

encoding. When base > 10, Latin letters (A-Z, a-z) are used in alphabetical order as digits.

The case of letters used as digits is not significant. The following example encodes the base

10 number 32736.

<cn base="16">7FE0</cn>

Sample Presentation

<msub><mn>7FE0</mn><mn>16</mn></msub>

7FE016

When base > 36, some integers cannot be represented using numbers and letters alone. For

example, while

<cn base="1000">10F</cn>
arguably represents the number written in base 10 as 1,000,015, the number written in base

10 as 1,000,037 cannot be represented using letters and numbers alone when base is 1000.

Consequently, support for additional characters (if any) that may be used for digits when

base > 36 is application specific.

real Real numbers can be represented with respect to a base different than 10. If a base attribute is

present, then the digits are interpreted as being digits computed relative to that base (in the

same way as described for type "integer").

e-notation A real number may be presented in scientific notation using this type. Such numbers have

two parts (a significand and an exponent) separated by a <sep/> element. The first part is

a real number, while the second part is an integer exponent indicating a power of the base.

For example, <cn type="e-notation">12.3<sep/>5</cn> represents 12.3 times 105.

The default presentation of this example is 12.3e5. Note that this type is primarily useful

for backwards compatibility with MathML 2, and in most cases, it is preferable to use the

"double" type, if the number to be represented is in the range of IEEE doubles:

rational A rational number is given as two integers to be used as the numerator and denominator of a

quotient. The numerator and denominator are separated by <sep/>.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

134 Chapter 4. Content Markup

<cn type="rational">22<sep/>7</cn>

Sample Presentation

<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

22/7

complex-cartesian A complex cartesian number is given as two numbers specifying the real and imag-

inary parts. The real and imaginary parts are separated by the <sep/> element, and each part

has the format of a real number as described above.

<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

Sample Presentation

<mrow>

<mn>12.3</mn><mo>+</mo><mn>5</mn><mo>⁢</mo><mi>i</mi>

</mrow>

12.3+5i
complex-polar A complex polar number is given as two numbers specifying the magnitude and angle.

The magnitude and angle are separated by the <sep/> element, and each part has the format

of a real number as described above.

<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>

Sample Presentation

<mrow>

<mn>2</mn>

<mo>⁢</mo>

<msup>

<mi>e</mi>

<mrow><mi>i</mi><mo>⁢</mo><mn>3.1415</mn></mrow>

</msup>

</mrow>

2ei3.1415

<mrow>

<mi>Polar</mi>

<mo>⁡</mo>

<mfenced><mn>2</mn><mn>3.1415</mn></mfenced>

</mrow>

Polar(2,3.1415)

constant If the value type is "constant", then the content should be a Unicode representation of a

well-known constant. Some important constants and their common Unicode representations

are listed below.This cn type is primarily for backward compatibility with MathML 1.0.

MathML 2.0 introduced many empty elements, such as <pi/> to represent constants, and

using these representations or a Strict csymbol representation is preferred.

In addition to the additional values of the type attribute, the content of cn element can contain (in

addition to the sep element allowed in Strict Content MathML) mglyph elements to refer to characters

not currently available in Unicode, or a general presentation construct (see Section 3.1.9), which is used

for rendering (see Section 4.1.2).

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 135

Mapping to Strict Content MathML

If a base attribute is present, it specifies the base used for the digit encoding of both integers. The use

of base with "rational" numbers is deprecated.

Rewrite: cn sep

If there are sep children of the cn, then intervening text may be rewritten as cn elements. If the cn

element containing sep also has a base attribute, this is copied to each of the cn arguments of the

resulting symbol, as shown below.

<cn type="rational " base="b ">n <sep/>d </cn>

is rewritten to

<apply><csymbol cd="nums1 ">rational </csymbol>

<cn type="integer" base="b ">n </cn>

<cn type="integer" base="b ">d </cn>

</apply>

The symbol used in the result depends on the type attribute according to the following table:

type attribute OpenMath Symbol

e-notation bigfloat

rational rational

complex-cartesian complex_cartesian

complex-polar complex_polar

Note: In the case of bigfloat the symbol takes three arguments, <cn type="integer">10</cn>

should be inserted as the second argument, denoting the base of the exponent used.

If the type attribute has a different value, or if there is more than one <sep/> element, then the inter-

vening expressions are converted as above, but a system-dependent choice of symbol for the head of

the application must be used.

If a base attribute has been used then the resulting expression is not Strict Content MathML, and each

of the arguments needs to be recursively processed.

Rewrite: cn based_integer

A cn element with a base attribute other than 10 is rewritten as follows. (A base attribute with value 10

is simply removed) .

<cn type="integer " base="16 ">FF60 </cn>

<apply><csymbol cd="nums1">based_integer </csymbol>

<cn type="integer">16 </cn>

<cs>FF60 </cs>

</apply>

If the original element specified type "integer" or if there is no type attribute, but the content of

the element just consists of the characters [a-zA-Z0-9] and white space then the symbol used as the

head in the resulting application should be based_integer as shown. Otherwise it should be should be

based_float.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

136 Chapter 4. Content Markup

Rewrite: cn constant

In Strict Content MathML, constants should be represented using csymbol elements. A number of

important constants are defined in the nums1 content dictionary. An expression of the form

<cn type="constant">c </cn>

has the Strict Content MathML equivalent

<csymbol cd="nums1">c2 </csymbol>

where c2 corresponds to c as specified in the following table.

Content Description OpenMath Symbol

U+03C0 (π) The usual π of trigonometry: approximately

3.141592653...

pi

U+2147 (

ⅇ

or ⅇ)

The base for natural logarithms: approximately

2.718281828...

e

U+2148 (

ⅈ or

ⅈ)

Square root of -1 i

U+03B3 (

γ)

Euler’s constant: approximately 0.5772156649... gamma

U+221E (∞

or &infty;)

Infinity. Proper interpretation varies with context infinity

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 137

Rewrite: cn presentation mathml

If the cn contains Presentation MathML markup, then it may be rewritten to Strict MathML using

variants of the rules above where the arguments of the constructor are ci elements annotated with the

supplied Presentation MathML.

A cn expression with non-text content of the form

<cn type="rational "> P <sep/> Q </cn>

is transformed to Strict Content MathML by rewriting it to

<apply><csymbol cd="nums1 ">rational </csymbol>

<semantics>

<ci>p </ci>

<annotation-xml encoding="MathML-Presentation">

P

</annotation-xml>

</semantics>

<semantics>

<ci>q </ci>

<annotation-xml encoding="MathML-Presentation">

Q

</annotation-xml>

</semantics>

</apply>

Where the identifier names, p and q, (which have to be a text string) should be determined from the

presentation MathML content, in a system defined way, perhaps as in the above example by taking the

character data of the element ignoring any element markup. Systems doing such rewriting should ensure

that constructs using the same Presentation MathML content are rewritten to semantics elements

using the same ci, and that conversely constructs that use different MathML should be rewritten to

different identifier names (even if the Presentation MathML has the same character data).

A related special case arises when a cn element contains character data not permitted in Strict Content

MathML usage, e.g. non-digit, alphabetic characters. Conceptually, this is analogous to a cn element

containing a presentation markup mtext element, and could be rewritten accordingly. However, since

the resulting annotation would contain no additional rendering information, such instances should be

rewritten directly as ci elements, rather than as a semantics construct.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

138 Chapter 4. Content Markup

4.2.2 Content Identifiers <ci>
Schema Fragment

(Strict)

Schema Fragment (Full)

Class Ci Ci

Attributes CommonAtt, type? CommonAtt, DefEncAtt, type?

type Attribute Values "integer"|

"rational"| "real"|

"complex"|

"complex-polar"|

"complex-cartesian"|

"constant"|

"function"|

"vector"| "list"|

"set"| "matrix"

string

Qualifiers BvarQ, DomainQ, degree, momentabout, logbase

Content text text | mglyph | PresentationExpression

Content MathML uses the ci element (mnemonic for ‘content identifier’) to construct a variable. Con-

tent identifiers represent ‘mathematical variables’ which have properties, but no fixed value. For exam-

ple, x and y are variables in the expression ‘x+y’, and the variable x would be represented as

<ci>x</ci>

In MathML, variables are distinguished from symbols, which have fixed, external definitions, and are

represented by the csymbol element.

After white space normalization the content of a ci element is interpreted as a name that identifies it.

Two variables are considered equal, if and only if their names are identical and in the same scope (see

Section 4.2.6 for a discussion).

4.2.2.1 Strict uses of <ci>

The ci element uses the type attribute to specify the basic type of object that it represents. In Strict

Content MathML, the set of permissible values is "integer", "rational", "real", "complex",

"complex-polar", "complex-cartesian", "constant", "function", vector, list, set, and

matrix. These values correspond to the symbols integer_type, rational_type, real_type, complex-

_polar_type, complex_cartesian_type, constant_type, fn_type, vector_type, list_type, set_type, and ma-

trix_type in the mathmltypes Content Dictionary: In this sense the following two expressions are con-

sidered equivalent:

<ci type="integer">n</ci>

<semantics>

<ci>n</ci>

<annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">

<csymbol cd="mathmltypes">integer_type</csymbol>

</annotation-xml>

</semantics>

Note that "complex" should be considered an alias for "complex-cartesian" and rewritten to the

same complex_cartesian_type symbol. It is perhaps a more natural type name for use with ci as the

distinction between cartesian and polar form really only affects the interpretation of literals encoded

with cn.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 139

4.2.2.2 Non-Strict uses of <ci>

The ci element allows any string value for the type attribute, in particular any of the names of the

MathML container elements or their type values.

For a more advanced treatment of types, the type attribute is inappropriate. Advanced types require

significant structure of their own (for example, vector(complex)) and are probably best constructed as

mathematical objects and then associated with a MathML expression through use of the semantics

element. See [MathMLTypes] for more examples.

Mapping to Strict Content MathML

Rewrite: ci type annotation

In Strict Content, type attributes are represented via semantic attribution. An expression of the form

<ci type="T ">n </ci>

is rewritten to

<semantics>

<ci>n </ci>

<annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">

<ci>T </ci>

</annotation-xml>

</semantics>

The ci element can contain mglyph elements to refer to characters not currently available in Unicode,

or a general presentation construct (see Section 3.1.9), which is used for rendering (see Section 4.1.2).

Rewrite: ci presentation mathml

A ci expression with non-text content of the form

<ci> P </ci>

is transformed to Strict Content MathML by rewriting it to

<semantics>

<ci>p </ci>

<annotation-xml encoding="MathML-Presentation">

P

</annotation-xml>

</semantics>

Where the identifier name, p, (which has to be a text string) should be determined from the presentation

MathML content, in a system defined way, perhaps as in the above example by taking the character

data of the element ignoring any element markup. Systems doing such rewriting should ensure that

constructs using the same Presentation MathML content are rewritten to semantics elements using

the same ci, and that conversely constructs that use different MathML should be rewritten to different

identifier names (even if the Presentation MathML has the same character data).

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

140 Chapter 4. Content Markup

The following example encodes an atomic symbol that displays visually as C2 and that, for purposes of

content, is treated as a single symbol

<ci>

<msup><mi>C</mi><mn>2</mn></msup>

</ci>

The Strict Content MathML equivalent is

<semantics>

<ci>C2</ci>

<annotation-xml encoding="MathML-Presentation">

<msup><mi>C</mi><mn>2</mn></msup>

</annotation-xml>

</semantics>

Sample Presentation

<msup><mi>C</mi><mn>2</mn></msup>

C2

4.2.2.3 Rendering Content Identifiers

If the content of a ci element consists of Presentation MathML, that presentation is used. If no such

tagging is supplied then the text content is rendered as if it were the content of an mi element. If an

application supports bidirectional text rendering, then the rendering follows the Unicode bidirectional

rendering.

The type attribute can be interpreted to provide rendering information. For example in

<ci type="vector">V</ci>

a renderer could display a bold V for the vector.

4.2.3 Content Symbols <csymbol>

Schema Fragment (Strict) Schema Fragment (Full)

Class Csymbol Csymbol

Attributes CommonAtt, cd CommonAtt, DefEncAtt, type?, cd?

Content SymbolName text | mglyph | PresentationExpression

Qualifiers BvarQ, DomainQ, degree, momentabout, logbase

A csymbol is used to refer to a specific, mathematically-defined concept with an external definition.

In the expression ‘x+y’, the plus sign is a symbol since it has a specific, external definition, namely

the addition function. MathML 3 calls such an identifier a symbol. Elementary functions and common

mathematical operators are all examples of symbols. Note that the term ‘symbol’ is used here in an

abstract sense and has no connection with any particular presentation of the construct on screen or

paper.

4.2.3.1 Strict uses of <csymbol>

The csymbol identifies the specific mathematical concept it represents by referencing its definition

via attributes. Conceptually, a reference to an external definition is merely a URI, i.e. a label unique-

ly identifying the definition. However, to be useful for communication between user agents, external

definitions must be shared.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 141

For this reason, several longstanding efforts have been organized to develop systematic, public reposi-

tories of mathematical definitions. Most notable of these, the OpenMath Society repository of Content

Dictionaries (CDs) is extensive, open and active. In MathML 3, OpenMath CDs are the preferred source

of external definitions. In particular, the definitions of pre-defined MathML 3 operators and functions

are given in terms of OpenMath CDs.

MathML 3 provides two mechanisms for referencing external definitions or content dictionaries. The

first, using the cd attribute, follows conventions established by OpenMath specifically for referencing

CDs. This is the form required in Strict Content MathML. The second, using the definitionURL

attribute, is backward compatible with MathML 2, and can be used to reference CDs or any other

source of definitions that can be identified by a URI. It is described in the following section

When referencing OpenMath CDs, the preferred method is to use the cd attribute as follows. Abstract-

ly, OpenMath symbol definitions are identified by a triple of values: a symbol name, a CD name, and a

CD base, which is a URI that disambiguates CDs of the same name. To associate such a triple with a

csymbol, the content of the csymbol specifies the symbol name, and the name of the Content Dictio-

nary is given using the cd attribute. The CD base is determined either from the document embedding the

math element which contains the csymbol by a mechanism given by the embedding document format,

or by system defaults, or by the cdgroup attribute , which is optionally specified on the enclosing math

element; see Section 2.2.1. In the absence of specific information http://www.openmath.org/cd is

assumed as the CD base for all csymbol elements annotation, and annotation-xml. This is the CD

base for the collection of standard CDs maintained by the OpenMath Society.

The cdgroup specifies a URL to an OpenMath CD Group file. For a detailed description of the format

of a CD Group file, see Section 4.4.2 (CDGroups) in [OpenMath2004]. Conceptually, a CD group file

is a list of pairs consisting of a CD name, and a corresponding CD base. When a csymbol references

a CD name using the cd attribute, the name is looked up in the CD Group file, and the associated CD

base value is used for that csymbol. When a CD Group file is specified, but a referenced CD name does

not appear in the group file, or there is an error in retrieving the group file, the referencing csymbol is

not defined. However, the handling of the resulting error is not defined, and is the responsibility of the

user agent.

While references to external definitions are URIs, it is strongly recommended that CD files be retriev-

able at the location obtained by interpreting the URI as a URL. In particular, other properties of the

symbol being defined may be available by inspecting the Content Dictionary specified. These include

not only the symbol definition, but also examples and other formal properties. Note, however, that there

are multiple encodings for OpenMath Content Dictionaries, and it is up to the user agent to correctly

determine the encoding when retrieving a CD.

4.2.3.2 Non-Strict uses of <csymbol>

In addition to the forms described above, the csymbol and element can contain mglyph elements to

refer to characters not currently available in Unicode, or a general presentation construct (see Sec-

tion 3.1.9), which is used for rendering (see Section 4.1.2). In this case, when writing to Strict Content

MathML, the csymbol should be treated as a ci element, and rewritten using Rewrite: ci presentation

mathml.

External definitions (in OpenMath CDs or elsewhere) may also be specified directly for a csymbol

using the definitionURL attribute. When used to reference OpenMath symbol definitions, the abstract

triple of (symbol name, CD name, CD base) is mapped to a fully-qualified URI as follows:

{URI = }cdbase{ + ’/’ + }cd −name{ + ’#’ + }symbol −name

For example,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

142 Chapter 4. Content Markup

(plus, arith1, http://www.openmath.org/cd)

is mapped to

{http://www.openmath.org/cd/arith1#plus}

The resulting URI is specified as the value of the definitionURL attribute.

This form of reference is useful for backwards compatibility with MathML2 and to facilitate the use of

Content MathML within URI-based frameworks (such as RDF [rdf] in the Semantic Web or OMDoc

[OMDoc1.2]). Another benefit is that the symbol name in the CD does not need to correspond to the

content of the csymbol element. However, in general, this method results in much longer MathML

instances. Also, in situations where CDs are under development, the use of a CD Group file allows

the locations of CDs to change without a change to the markup. A third drawback to definitionURL

is that unlike the cd attribute, it is not limited to referencing symbol definitions in OpenMath content

dictionaries. Hence, it is not in general possible for a user agent to automatically determine the proper

interpretation for definitionURL values without further information about the context and community

of practice in which the MathML instance occurs.

Both the cd and definitionURL mechanisms of external reference may be used within a single

MathML instance. However, when both a cd and a definitionURL attribute are specified on a single

csymbol, the cd attribute takes precedence.

Mapping to Strict Content MathML

In non-Strict usage csymbol allows the use of a type attribute.

Rewrite: csymbol type annotation

In Strict Content, type attributes are represented via semantic attribution. An expression of the form

<csymbol type="T ">symbolname</csymbol>

is rewritten to

<semantics>

<csymbol>symbolname</csymbol>

<annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">

<ci>T </ci>

</annotation-xml>

</semantics>

4.2.3.3 Rendering Symbols

If the content of a csymbol element is tagged using presentation tags, that presentation is used. If no

such tagging is supplied then the text content is rendered as if it were the content of an mi element. In

particular if an application supports bidirectional text rendering, then the rendering follows the Unicode

bidirectional rendering.

4.2.4 String Literals <cs>

Schema Fragment (Strict) Schema Fragment (Full)

Class Cs Cs

Attributes CommonAtt CommonAtt, DefEncAtt

Content text text

The cs element encodes ‘string literals’ which may be used in Content MathML expressions.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 143

The content of cs is text; no Presentation MathML constructs are allowed even when used in non-strict

markup. Specifically, cs may not contain mglyph elements, and the content does not undergo white

space normalization.

Content MathML

<set>

<cs>A</cs><cs>B</cs><cs> </cs>

</set>

Sample Presentation

<mrow>

<mo>{</mo>

<ms>A</ms>

<mo>,</mo>

<ms>B</ms>

<mo>,</mo>

<ms> </ms>

<mo>}</mo>

</mrow>

{"A","B"," "}

4.2.5 Function Application <apply>

Schema Fragment (Strict) Schema Fragment (Full)

Class Apply Apply

Attributes CommonAtt CommonAtt, DefEncAtt

Content ContExp+ ContExp+ | (ContExp, BvarQ, Qualifier?, ContExp*)

The most fundamental way of building a compound object in mathematics is by applying a function or

an operator to some arguments.

4.2.5.1 Strict Content MathML

In MathML, the apply element is used to build an expression tree that represents the application a

function or operator to its arguments. The resulting tree corresponds to a complete mathematical ex-

pression. Roughly speaking, this means a piece of mathematics that could be surrounded by parentheses

or ‘logical brackets’ without changing its meaning.

For example, (x + y) might be encoded as

<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>

The opening and closing tags of apply specify exactly the scope of any operator or function. The most

typical way of using apply is simple and recursive. Symbolically, the content model can be described

as:

<apply> op [a b ...] </apply>

where the operands a, b, ... are MathML expression trees themselves, and op is a MathML expression

tree that represents an operator or function. Note that apply constructs can be nested to arbitrary depth.

An apply may in principle have any number of operands. For example, (x + y + z) can be encoded as

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

144 Chapter 4. Content Markup

<apply><csymbol cd="arith1">plus</csymbol>

<ci>x</ci>

<ci>y</ci>

<ci>z</ci>

</apply>

Note that MathML also allows applications without operands, e.g. to represent functions like

random(), or current-date().

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For

example, a x + b would be encoded as

<apply><csymbol cd="arith1">plus</csymbol>

<apply><csymbol cd="arith1">times</csymbol>

<ci>a</ci>

<ci>x</ci>

</apply>

<ci>b</ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse expres-

sions correctly. The apply tags provide the proper grouping for the re-use of the expressions within

other constructs. Any expression enclosed by an apply element is well-defined, coherent object whose

interpretation does not depend on the surrounding context. This is in sharp contrast to presentation

markup, where the same expression may have very different meanings in different contexts. For exam-

ple, an expression with a visual rendering such as (F+G)(x) might be a product, as in

<apply><csymbol cd="arith1">times</csymbol>

<apply><csymbol cd="arith1">plus</csymbol>

<ci>F</ci>

<ci>G</ci>

</apply>

<ci>x</ci>

</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by

constructing the sum

<apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>

and applying it to the argument x as in

<apply>

<apply><csymbol cd="arith1">plus</csymbol>

<ci>F</ci>

<ci>G</ci>

</apply>

<ci>x</ci>

</apply>

In both cases, the interpretation of the outer apply is explicit and unambiguous, and does not change

regardless of where the expression is used.

The preceding example also illustrates that in an apply construct, both the function and the arguments

may be simple identifiers or more complicated expressions.

The apply element is conceptually necessary in order to distinguish between a function or operator,

and an instance of its use. The expression constructed by applying a function to 0 or more arguments

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 145

is always an element from the codomain of the function. Proper usage depends on the operator that

is being applied. For example, the plus operator may have zero or more arguments, while the minus

operator requires one or two arguments in order to be properly formed.

4.2.5.2 Rendering Applications

Strict Content MathML applications are rendered as mathematical function applications. If F denotes

the rendering of f and Ai the rendering of ai , the the sample rendering of a simple application

is as follows:

Content MathML

<apply> f

a1

a2

...

an

</apply>

Sample Presentation

<mrow>

F

<mo>⁡</mo>

<mrow>

<mo fence="true">(</mo>

A1

<mo separator="true">,</mo>

...

<mo separator="true">,</mo>

A2

<mo separator="true">,</mo>

An

<mo fence="true">)</mo>

</mrow>

</mrow>

Non-Strict MathML applications may also be used with qualifiers. In the absence of any more specific

rendering rules for well-known operators, rendering should follow the sample presentation below, mo-

tivated by the typical presentation for sum. Let Op denote the rendering of op , X the rendering

of x , and so on. Then:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

146 Chapter 4. Content Markup

Content MathML

<apply> op

<bvar> x </bvar>

<domainofapplication> d </domainofapplication>

expression-in-x

</apply>

Sample Presentation

<mrow>

<munder>

Op

<mrow> X <mo>∈</mo><!-ELEMENT OF-> D </mrow>

</munder>

<mo>⁡</mo><!-FUNCTION APPLICATION->

<mrow>

<mo fence="true">(</mo>

Expression-in-X

<mo fence="true">)</mo>

</mrow>

</mrow>

4.2.6 Bindings and Bound Variables <bind> and <bvar>

Many complex mathematical expressions are constructed with the use of bound variables, and bound

variables are an important concept of logic and formal languages. Variables become bound in the scope

of an expression through the use of a quantifier. Informally, they can be thought of as the "dummy vari-

ables" in expressions such as integrals, sums, products, and the logical quantifiers "for all" and "there

exists". A bound variable is characterized by the property that systematically renaming the variable (to

a name not already appearing in the expression) does not change the meaning of the expression.

4.2.6.1 Bindings

Schema Fragment (Strict) Schema Fragment (Full)

Class Bind Bind

Attributes CommonAtt CommonAtt, DefEncAtt

Content ContExp, BvarQ*, ContExp ContExp, BvarQ*, Qualifier*, ContExp+

Binding expressions are represented as MathML expression trees using the bind element. Its first

child is a MathML expression that represents a binding operator, for example integral operator. This is

followed by a non-empty list of bvar elements denoting the bound variables, and then the final child

which is a general Content MathML expression, known as the body of the binding.

4.2.6.2 Bound Variables

Schema Fragment (Strict) Schema Fragment (Full)

Class BVar BVar

Attributes CommonAtt CommonAtt, DefEncAtt

Content ci | semantics-ci (ci | semantics-ci), degree? | degree?, (ci | semantics-ci

The bvar element is used to denote the bound variable of a binding expression, e.g. in sums, products,

and quantifiers or user defined functions.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 147

The content of a bvar element is an annotated variable, i.e. either a content identifier represented by

a ci element or a semantics element whose first child is an annotated variable. The name of an

annotated variable of the second kind is the name of its first child. The name of a bound variable is that

of the annotated variable in the bvar element.

Bound variables are identified by comparing their names. Such identification can be made explicit by

placing an id on the ci element in the bvar element and referring to it using the xref attribute on all

other instances. An example of this approach is

<bind><csymbol cd="quant1">forall</csymbol>

<bvar><ci id="var-x">x</ci></bvar>

<apply><csymbol cd="relation1">lt</csymbol>

<ci xref="var-x">x</ci>

<cn>1</cn>

</apply>

</bind>

This id based approach is especially helpful when constructions involving bound variables are nested.

It is sometimes necessary to associate additional information with a bound variable. The information

might be something like a detailed mathematical type, an alternative presentation or encoding or a do-

main of application. Such associations are accomplished in the standard way by replacing a ci element

(even inside the bvar element) by a semantics element containing both the ci and the additional

information. Recognition of an instance of the bound variable is still based on the actual ci elements

and not the semantics elements or anything else they may contain. The id based-approach outlined

above may still be used.

The following example encodes forall x. x+y=y+x.

<bind><csymbol cd="quant1">forall</csymbol>

<bvar><ci>x</ci></bvar>

<apply><csymbol cd="relation1">eq</csymbol>

<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>

<apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>

</apply>

</bind>

In non-Strict Content markup, the bvar element is used in a number of idiomatic constructs. These are

described in Section 4.3.3 and Section 4.4.

4.2.6.3 Renaming Bound Variables

It is a defining property of bound variables that they can be renamed consistently in the scope of their

parent bind element. This operation, sometimes known as α-conversion, preserves the semantics of

the expression.

A bound variable x may be renamed to say y so long as y does not occur free in the body of the binding,

or in any annotations of the bound variable, x to be renamed, or later bound variables.

If a bound variable x is renamed, all free occurrences of x in annotations in its bvar element, any

following bvar children of the bind and in the expression in the body of the bind should be renamed.

In the example in the previous section, note how renaming x to z produces the equivalent expression

forall z. z+y=y+z, whereas x may not be renamed to y, as y is free in the body of the binding and

would be captured, producing the expression forall y. y+y=y+y which is not equivalent to the original

expression.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

148 Chapter 4. Content Markup

4.2.6.4 Rendering Binding Constructions

If b and s are Content MathML expressions that render as the Presentation MathML expressions

B and S then the sample rendering of a binding element is as follows:

Content MathML

<bind> b

<bvar> x1 </bvar>

<bvar> ... </bvar>

<bvar> xn </bvar>

s

</bind>

Sample Presentation

<mrow>

B

<mrow>

x1

<mo separator="true">,</mo>

...

<mo separator="true">,</mo>

xn

</mrow>

<mo separator="true">.</mo>

S

</mrow>

4.2.7 Structure Sharing <share>

To conserve space in the XML encoding, MathML expression trees can make use of structure sharing.

4.2.7.1 The share element

Schema Fragment

Class Share

Attributes CommonAtt, src

src Attribute Values URI
Content Empty

The share element has an href attribute used to to reference a MathML expression tree. The value of

the href attribute is a URI specifying the id attribute of the root node of the expression tree. When

building a MathML expression tree, the share element is equivalent to a copy of the MathML expres-

sion tree referenced by the href attribute. Note that this copy is structurally equal, but not identical to

the element referenced. The values of the share will often be relative URI references, in which case

they are resolved using the base URI of the document containing the share element.

For instance, the mathematical object f (f (f (a,a), f (a,a)), f (f (a,a), f (a,a))) can be encoded as either

one of the following representations (and some intermediate versions as well).

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 149

<apply><ci>f</ci>

<apply><ci>f</ci>

<apply><ci>f</ci>

<ci>a</ci>

<ci>a</ci>

</apply>

<apply><ci>f</ci>

<ci>a</ci>

<ci>a</ci>

</apply>

</apply>

<apply><ci>f</ci>

<apply><ci>f</ci>

<ci>a</ci>

<ci>a</ci>

</apply>

<apply><ci>f</ci>

<ci>a</ci>

<ci>a</ci>

</apply>

</apply>

</apply>

<apply><ci>f</ci>

<apply id="t1"><ci>f</ci>

<apply id="t11"><ci>f</ci>

<ci>a</ci>

<ci>a</ci>

</apply>

<share href="#t11"/>

</apply>

<share href="#t1"/>

</apply>

4.2.7.2 An Acyclicity Constraint

Say that an element dominates all its children and all elements they dominate. Say also that a

share element dominates its target, i.e. the element that carries the id attribute pointed to by the href

attribute. For instance in the representation on the right above, the apply element with id="t1" and

also the second share (with href="t11") both dominate the apply element with id="t11".

The occurrences of the share element must obey the following global acyclicity constraint : An element

may not dominate itself. For example, the following representation violates this constraint:

<apply id="badid1"><csymbol cd="arith1">divide</csymbol>

<cn>1</cn>

<apply><csymbol cd="arith1">plus</csymbol>

<cn>1</cn>

<share href="#badid1"/>

</apply>

</apply>

Here, the apply element with id="badid1" dominates its third child, which dominates the share

element, which dominates its target: the element with id="badid1". So by transitivity, this element

dominates itself. By the acyclicity constraint, the example is not a valid MathML expression tree. It

might be argued that such an expression could be given the interpretation of the continued fraction
1

1+ 1

1+ 1
1+...

. However, the procedure of building an expression tree by replacing share element does not

terminate for such an expression, and hence such expressions are not allowed by Content MathML.

Note that the acyclicity constraints is not restricted to such simple cases, as the following example

shows:

<apply id="bar"> <apply id="baz">

<csymbol cd="arith1">plus</csymbol> <csymbol cd="arith1">plus</csymbol>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

150 Chapter 4. Content Markup

<cn>1</cn> <cn>1</cn>

<share href="#baz"/> <share href="#bar"/>

</apply> </apply>

Here, the apply with id="bar" dominates its third child, the share with href="#baz". That element

dominates its target apply (with id="baz"), which in turn dominates its third child, the share with

href="#bar". Finally, the share with href="#bar" dominates its target, the original apply element

with id="bar". So this pair of representations ultimately violates the acyclicity constraint.

4.2.7.3 Structure Sharing and Binding

Note that the share element is a syntactic referencing mechanism: a share element stands for the

exact element it points to. In particular, referencing does not interact with binding in a semantically

intuitive way, since it allows a phenomenon called variable capture to occur. Consider an example:

<bind id="outer"><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<apply><ci>f</ci>

<bind id="inner"><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<share id="copy" href="#orig"/>

</bind>

<apply id="orig"><ci>g</ci><ci>x</ci></apply>

</apply>

</bind>

This represents a term λx. f (λx.g(x),g(x)) which has two sub-terms of the form g(x), one with

id="orig" (the one explicitly represented) and one with id="copy", represented by the share ele-

ment. In the original, explicitly-represented term, the variable x is bound by the outer bind element.

However, in the copy, the variable x is bound by the inner bind element. One says that the inner bind

has captured the variable x.

Using references that capture variables in this way can easily lead to representation errors, and is not

recommended. For instance, using α-conversion to rename the inner occurrence of x into, say, y leads

to the semantically equivalent expression λx. f (λy.g(y),g(x)). However, in this form, it is no longer

possible to share the expression g(x). Replacing x with y in the inner bvar without replacing the share

element results in a change in semantics.

4.2.7.4 Rendering Expressions with Structure Sharing

There are several acceptable renderings for the share element. These include rendering the element

as a hypertext link to the referenced element and using the rendering of the element referenced by the

href attribute.

4.2.8 Attribution via semantics

Content elements can be annotated with additional information via the semantics element. MathML

uses the semantics element to wrap the annotated element and the annotation-xml and

annotation elements used for representing the annotations themselves. The use of the semantics,

annotation and annotation-xml is described in detail Chapter 5.

The semantics element is be considered part of both presentation MathML and Content MathML.

MathML considers a semantics element (strict) Content MathML, if and only if its first child is

(strict) Content MathML.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.2. Content MathML Elements Encoding Expression Structure 151

4.2.9 Error Markup <cerror>

Schema Fragment (Strict) Schema Fragment (Full)

Class Error Error

Attributes CommonAtt CommonAtt, DefEncAtt

Content csymbol, ContExp* csymbol, ContExp*

A content error expression is made up of a csymbol followed by a sequence of zero or more MathML

expressions. The initial expression must be a csymbol indicating the kind of error. Subsequent children,

if present, indicate the context in which the error occurred.

The cerror element has no direct mathematical meaning. Errors occur as the result of some action

performed on an expression tree and are thus of real interest only when some sort of communication is

taking place. Errors may occur inside other objects and also inside other errors.

As an example, to encode a division by zero error, one might employ a hypothetical aritherror

Content Dictionary containing a DivisionByZero symbol, as in the following expression:

<cerror>

<csymbol cd="aritherror">DivisionByZero</csymbol>

<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>

Note that error markup generally should enclose only the smallest erroneous sub-expression. Thus a

cerror will often be a sub-expression of a bigger one, e.g.

<apply><csymbol cd="relation1">eq</csymbol>

<cerror>

<csymbol cd="aritherror">DivisionByZero</csymbol>

<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>

<cn>0</cn>

</apply>

The default presentation of a cerror element is an merror expression whose first child is a presenta-

tion of the error symbol, and whose subsequent children are the default presentations of the remaining

children of the cerror. In particular, if one of the remaining children of the cerror is a presentation

MathML expression, it is used literally in the corresponding merror.

<cerror>

<csymbol cd="aritherror">DivisionByZero</csymbol>

<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>

Sample Presentation

<merror>

<mtext>DivisionByZero: </mtext>

<mfrac><mi>x</mi><mn>0</mn></mfrac>

</merror>

DivisionByZero:
x
0

Note that when the context where an error occurs is so nonsensical that its default presentation would

not be useful, an application may provide an alternative representation of the error context. For example:

<cerror>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

152 Chapter 4. Content Markup

<csymbol cd="error">Illegal bound variable</csymbol>

<cs> <bvar><plus/></bvar> </cs>

</cerror>

4.2.10 Encoded Bytes <cbytes>

Schema Fragment (Strict) Schema Fragment (Full)

Class Cbytes Cbytes

Attributes CommonAtt CommonAtt, DefEncAtt

Content base64 base64

The content of cbytes represents a stream of bytes as a sequence of characters in Base64 encoding,

that is it matches the base64Binary data type defined in [XMLSchemaDatatypes]. All white space is

ignored.

The cbytes element is mainly used for OpenMath compatibility, but may be used, as in OpenMath, to

encapsulate output from a system that may be hard to encode in MathML, such as binary data relating

to the internal state of a system, or image data.

The rendering of cbytes is not expected to represent the content and the proposed rendering is that of

an empty mrow. Typically cbytes is used in an annotation-xml or is itself annotated with Presenta-

tion MathML, so this default rendering should rarely be used.

4.3 Content MathML for Specific Structures

The elements of Strict Content MathML described in the previous section are sufficient to encode log-

ical assertions and expression structure, and they do so in a way that closely models the standard con-

structions of mathematical logic that underlie the foundations of mathematics. As a consequence, Strict

markup can be used to represent all of mathematics, and is ideal for providing consistent mathematical

semantics for all Content MathML expressions.

At the same time, many notational idioms of mathematics are not straightforward to represent direct-

ly with Strict Content markup. For example, standard notations for sums, integrals, sets, piecewise

functions and many other common constructions require non-obvious technical devices, such as the in-

troduction of lambda functions, to rigorously encode them using Strict markup. Consequently, in order

to make Content MathML easier to use, a range of additional elements have been provided for encoding

such idiomatic constructs more directly. This section discusses the general approach for encoding such

idiomatic constructs, and their Strict Content equivalents. Specific constructions are discussed in detail

in Section 4.4.

Most idiomatic constructions which Content markup addresses fall into about a dozen classes. Some

of these classes, such as container elements , have their own syntax. Similarly, a small number of non-

Strict constructions involve a single element with an exceptional syntax, for example partialdiff.

These exceptional elements are discussed on a case-by-case basis in Section 4.4. However, the majority

of constructs consist of classes of operator elements which all share a particular usage of qualifiers .

These classes of operators are described in Section 4.3.4.

In all cases, non-Strict expressions may be rewritten using only Strict markup. In most cases, the trans-

formation is completely algorithmic, and may be automated. Rewrite rules for classes of non-Strict con-

structions are introduced and discussed later in this section, and rewrite rules for exceptional constructs

involving a single operator are given in Section 4.4. The complete algorithm for rewriting arbitrary

Content MathML as Strict Content markup is summarized at the end of the Chapter in Section 4.6.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 153

4.3.1 Container Markup

Many mathematical structures are constructed from subparts or parameters. The motivating example is

a set. Informally, one thinks of a set as a certain kind of mathematical object that contains a collection

of elements. Thus, it is intuitively natural for the markup for a set to contain, in the XML sense, the

markup for its constituent elements. The markup may define the set elements explicitly by enumerat-

ing them, or implicitly by rule, using qualifier elements. However, in either case, the markup for the

elements is contained in the markup for the set, and consequently this style of representation is termed

container markup in MathML. By contrast, Strict markup represents an instance of a set as the result

of applying a function or constructor symbol to arguments. In this style of markup, the markup for the

set construction is a sibling of the markup for the set elements in an enclosing apply element.

While the two approaches are formally equivalent, container markup is generally more intuitive for non-

expert authors to use, while Strict markup is preferable is contexts where semantic rigor is paramount.

In addition, MathML 2 relied on container markup, and thus container markup is necessary in cases

where backward compatibility is required.

MathML provides container markup for the following mathematical constructs: sets, lists, intervals,

vectors, matrices (two elements), piecewise functions (three elements) and lambda functions. There are

corresponding constructor symbols in Strict markup for each of these, with the exception of lambda

functions, which correspond to binding symbols in Strict markup. Note that in MathML 2, the term

"container markup" was also taken to include token elements, and the deprecated declare, fn and

reln elements, but MathML 3 limits usage of the term to the above constructs.

The rewrite rules for obtaining equivalent Strict Content markup from container markup depend on

the operator class of the particular operator involved. For details about a specific container element,

obtain its operator class (and any applicable special case information) by consulting the syntax table

and discussion for that element in Section 4.4. Then apply the rewrite rules for that specific operator

class as described in Section 4.3.4.

4.3.1.1 Container Markup for Constructor Symbols

The arguments to container elements corresponding to constructors may either be explicitly given as

a sequence of child elements, or they may be specified by a rule using qualifiers. The only exceptions

are the piecewise, piece, and otherwise elements used for representing functions with piecewise

definitions. The arguments of these elements must always be specified explicitly.

Here is an example of container markup with explicitly specified arguments:

<set><ci>a</ci><ci>b</ci><ci>c</ci></set>

This is equivalent to the following Strict Content MathML expression:

<apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

154 Chapter 4. Content Markup

Another example of container markup, where the list of arguments is given indirectly as an expression

with a bound variable. The container markup for the set of even integers is:

<set>

<bvar><ci>x</ci></bvar>

<domainofapplication><integers/></domainofapplication>

<apply><times/><cn>2</cn><ci>x</ci></apply>

</set>

This may be written as follows in Strict Content MathML:

<apply><csymbol cd="set1">map</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<apply><csymbol cd="arith1">times</csymbol>

<cn>2</cn>

<ci>x</ci>

</apply>

</bind>

<csymbol cd="setname1">Z</csymbol>

</apply>

4.3.1.2 Container Markup for Binding Constructors

The lambda element is a container element corresponding to the lambda symbol in the fns1 Content

Dictionary. However, unlike the container elements of the preceding section, which purely construct

mathematical objects from arguments, the lambda element performs variable binding as well. There-

fore, the child elements of lambda have distinguished roles. In particular, a lambda element must have

at least one bvar child, optionally followed by qualifier elements, followed by a Content MathML ele-

ment. This basic difference between the lambda container and the other constructor container elements

is also reflected in the OpenMath symbols to which they correspond. The constructor symbols have an

OpenMath role of "application", while the lambda symbol has a role of "bind".

This example shows the use of lambda container element and the equivalent use of bind in Strict

Content MathML

<lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar><ci>x</ci>

</bind>

4.3.2 Bindings with <apply>

MathML allows the use of the apply element to perform variable binding in non-Strict constructions

instead of the bind element. This usage conserves backwards compatibility with MathML 2. It also

simplifies the encoding of several constructs involving bound variables with qualifiers as described

below.

Use of the apply element to bind variables is allowed in two situations. First, when the operator to

be applied is itself a binding operator, the apply element merely substitutes for the bind element.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 155

The logical quantifiers <forall/>, <exists/> and the container element lambda are the primary

examples of this type.

The second situation arises when the operator being applied allows the use of bound variables with

qualifiers. The most common examples are sums and integrals. In most of these cases, the variable

binding is to some extent implicit in the notation, and the equivalent Strict representation requires the

introduction of auxiliary constructs such as lambda expressions for formal correctness.

Because expressions using bound variables with qualifiers are idiomatic in nature, and do not always

involve true variable binding, one cannot expect systematic renaming (alpha-conversion) of variables

"bound" with apply to preserve meaning in all cases. An example for this is the diff element where

the bvar term is technically not bound at all.

The following example illustrates the use of apply with a binding operator. In these cases, the corre-

sponding Strict equivalent merely replaces the apply element with a bind element:

<apply><forall/>

<bvar><ci>x</ci></bvar>

<apply><geq/><ci>x</ci><ci>x</ci></apply>

</apply>

The equivalent Strict expression is:

<bind><csymbol cd="logic1">forall</csymbol>

<bvar><ci>x</ci></bvar>

<apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>

</bind>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

156 Chapter 4. Content Markup

In this example, the sum operator is not itself a binding operator, but bound variables with qualifiers

are implicit in the standard notation, which is reflected in the non-Strict markup. In the equivalent

Strict representation, it is necessary to convert the summand into a lambda expression, and recast the

qualifiers as an argument expression:

<apply><sum/>

<bvar><ci>i</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<uplimit><cn>100</cn></uplimit>

<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

The equivalent Strict expression is:

<apply><csymbol cd="arith1">sum</csymbol>

<apply><csymbol cd="interval1">integer_interval</csymbol>

<cn>0</cn>

<cn>100</cn>

</apply>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>i</ci></bvar>

<apply><csymbol cd="arith1">power</csymbol>

<ci>x</ci>

<ci>i</ci>

</apply>

</bind>

</apply>

4.3.3 Qualifiers

Many common mathematical constructs involve an operator together with some additional data. The

additional data is either implicit in conventional notation, such as a bound variable, or thought of as part

of the operator, as is the case with the limits of a definite integral. MathML 3 uses qualifier elements to

represent the additional data in such cases.

Qualifier elements are always used in conjunction with operator or container elements. Their meaning

is idiomatic, and depends on the context in which they are used. When used with an operator, qualifiers

always follow the operator and precede any arguments that are present. In all cases, if more than one

qualifier is present, they appear in the order bvar, lowlimit, uplimit, interval, condition,

domainofapplication, degree, momentabout, logbase.

The precise function of qualifier elements depends on the operator or container that they modify. The

majority of use cases fall into one of several categories, discussed below, and usage notes for specific

operators and qualifiers are given in Section 4.4.

4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and

<uplimit>

Class qualifier

Attributes CommonAtt

Content ContExp

(For the syntax of interval see Section 4.4.1.1.)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 157

The primary use of domainofapplication, interval, uplimit, lowlimit and condition is to

restrict the values of a bound variable. The most general qualifier is domainofapplication. It is

used to specify a set (perhaps with additional structure, such as an ordering or metric) over which an

operation is to take place. The interval qualifier, and the pair lowlimit and uplimit also restrict

a bound variable to a set in the special case where the set is an interval. The condition qualifier,

like domainofapplication, is general, and can be used to restrict bound variables to arbitrary sets.

However, unlike the other qualifiers, it restricts the bound variable by specifying a Boolean-valued

function of the bound variable. Thus, condition qualifiers always contain instances of the bound

variable, and thus require a preceding bvar, while the other qualifiers do not. The other qualifiers may

even be used when no variables are being bound, e.g. to indicate the restriction of a function to a

subdomain.

In most cases, any of the qualifiers capable of representing the domain of interest can be used in-

terchangeably. The most general qualifier is domainofapplication, and therefore has a privileged

role. It is the preferred form, unless there are particular idiomatic reasons to use one of the other

qualifiers, e.g. limits for an integral. In MathML 3, the other forms are treated as shorthand notations

for domainofapplication because they may all be rewritten as equivalent domainofapplication

constructions. The rewrite rules to do this are given below. The other qualifier elements are pro-

vided because they correspond to common notations and map more easily to familiar presentations.

Therefore, in the situations where they naturally arise, they may be more convenient and direct than

domainofapplication.

To illustrate these ideas, consider the following examples showing alternative representations of a defi-

nite integral. Let C denote the interval from 0 to 1, and f (x) = x2. Then domainofapplication could

be used express the integral of a function f over C in this way:

<apply><int/>

<domainofapplication>

<ci type="set">C</ci>

</domainofapplication>

<ci type="function">f</ci>

</apply>

Note that no explicit bound variable is identified in this encoding, and the integrand is a function.

Alternatively, the interval qualifier could be used with an explicit bound variable:

<apply><int/>

<bvar><ci>x</ci></bvar>

<interval><cn>0</cn><cn>1</cn></interval>

<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

The pair lowlimit and uplimit can also be used. This is perhaps the most "standard" representation

of this integral:

<apply><int/>

<bvar><ci>x</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<uplimit><cn>1</cn></uplimit>

<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Finally, here is the same integral, represented using a condition on the bound variable:

<apply><int/>

<bvar><ci>x</ci></bvar>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

158 Chapter 4. Content Markup

<condition>

<apply><and/>

<apply><leq/><cn>0</cn><ci>x</ci></apply>

<apply><leq/><ci>x</ci><cn>1</cn></apply>

</apply>

</condition>

<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Note the use of the explicit bound variable within the condition term. Note also that when a bound

variable is used, the integrand is an expression in the bound variable, not a function.

The general technique of using a condition element together with domainofapplication is quite

powerful. For example, to extend the previous example to a multivariate domain, one may use an extra

bound variable and a domain of application corresponding to a cartesian product:

<apply><int/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<domainofapplication>

<set>

<bvar><ci>t</ci></bvar>

<bvar><ci>u</ci></bvar>

<condition>

<apply><and/>

<apply><leq/><cn>0</cn><ci>t</ci></apply>

<apply><leq/><ci>t</ci><cn>1</cn></apply>

<apply><leq/><cn>0</cn><ci>u</ci></apply>

<apply><leq/><ci>u</ci><cn>1</cn></apply>

</apply>

</condition>

<list><ci>t</ci><ci>u</ci></list>

</set>

</domainofapplication>

<apply><times/>

<apply><power/><ci>x</ci><cn>2</cn></apply>

<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>

</apply>

Note that the order of the inner and outer bound variables is significant.

Mappings to Strict Content MathML

When rewriting expressions to Strict Content MathML, qualifier elements are removed via a series of

rules described in this section. The general algorithm for rewriting a MathML expression involving

qualifiers proceeds in two steps. First, constructs using the interval, condition, uplimit and

lowlimit qualifiers are converted to constructs using only domainofapplication. Second,

domainofapplication expressions are then rewritten as Strict Content markup.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 159

Rewrite: interval qualifier

<apply> H

<bvar> x </bvar>

<lowlimit> a </lowlimit>

<uplimit> b </uplimit>

C

</apply>

<apply> H

<bvar> x </bvar>

<domainofapplication>

<apply><csymbol cd="interval1">interval </csymbol>

a

b

</apply>

</domainofapplication>

C

</apply>

The symbol used in this translation depends on the head of the application, denoted by H here. By

default interval should be used, unless the semantics of the head term can be determined and indicate

a more specific interval symbols. In particular, several predefined Content MathML element should be

used with more specific interval symbols. If the head is int then oriented_interval is used. When the

head term is sum or product, integer_interval should be used.

The above technique for replacing lowlimit and uplimit qualifiers with a domainofapplication

element is also used for replacing the interval qualifier.

The condition qualifier restricts a bound variable by specifying a Boolean-valued expression on a

larger domain, specifying whether a given value is in the restricted domain. The condition element

contains a single child that represents the truth condition. Compound conditions are formed by applying

Boolean operators such as and in the condition.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

160 Chapter 4. Content Markup

Rewrite: condition

To rewrite an expression using the condition qualifier as one using domainofapplication,

<bvar> x1 </bvar>

<bvar> xn </bvar>

<condition> P </condition>

is rewritten to

<bvar> x1 </bvar>

<bvar> xn </bvar>

<domainofapplication>

<apply><csymbol cd="set1">suchthat</csymbol>

R

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x1 </bvar>

<bvar> xn </bvar>

P

</bind>

</apply>

</domainofapplication>

If the apply has a domainofapplication (perhaps originally expressed as interval or an uplimit/

lowlimit pair) then that is used for R . Otherwise R is a set determined by the type attribute of the

bound variable as specified in Section 4.2.2.2, if that is present. If the type is unspecified, the translation

introduces an unspecified domain via content identifier <ci>R</ci>.

By applying the rules above, expression using the interval, condition, uplimit and lowlimit can

be rewritten using only domainofapplication. Once a domainofapplication has been obtained,

the final mapping to Strict markup is accomplished using the following rules:

Rewrite: restriction

An application of a function that is qualified by the domainofapplication qualifier (expressed by an

apply element without bound variables) is converted to an application of a function term constructed

with the restriction symbol.

<apply> F

<domainofapplication>

C

</domainofapplication>

a1

an

</apply>

may be written as:

<apply>

<apply><csymbol cd="fns1">restriction</csymbol>

F

C

</apply>

a1

an

</apply>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 161

In general, an application involving bound variables and (possibly) domainofapplication is rewrit-

ten using the following rule, which makes the domain the first positional argument of the application,

and uses the lambda symbol to encode the variable bindings. Certain classes of operator have alternative

rules, as described below.

Rewrite: apply bvar domainofapplication

A content MathML expression with bound variables and domainofapplication

<apply> H

<bvar> v1 </bvar>

...

<bvar> vn </bvar>

<domainofapplication> D </domainofapplication>

A1

...

Am

</apply>

is rewritten to

<apply> H

D

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> v1 </bvar>

...

<bvar> vn </bvar>

A1

</bind>

...

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> v1 </bvar>

...

<bvar> vn </bvar>

Am

</bind>

</apply>

If there is no domainofapplication qualifier the D child is omitted.

4.3.3.2 Uses of <degree>

Class qualifier

Attributes CommonAtt

Content ContExp

The degree element is a qualifier used to specify the ‘degree’ or ‘order’ of an operation. MathML

uses the degree element in this way in three contexts: to specify the degree of a root, a moment,

and in various derivatives. Rather than introduce special elements for each of these families, MathML

provides a single general construct, the degree element in all three cases.

Note that the degree qualifier is not used to restrict a bound variable in the same sense of the qualifiers

discussed above. Indeed, with roots and moments, no bound variable is involved at all, either explicitly

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

162 Chapter 4. Content Markup

or implicitly. In the case of differentiation, the degree element is used in conjunction with a bvar, but

even in these cases, the variable may not be genuinely bound.

For the usage of degree with the root and moment operators, see the discussion of those operators be-

low. The usage of degree in differentiation is more complex. In general, the degree element indicates

the order of the derivative with respect to that variable. The degree element is allowed as the second

child of a bvar element identifying a variable with respect to which the derivative is being taken. Here

is an example of a second derivative using the degree qualifier:

<apply><diff/>

<bvar>

<ci>x</ci>

<degree><cn>2</cn></degree>

</bvar>

<apply><power/><ci>x</ci><cn>4</cn></apply>

</apply>

For details see Section 4.4.4.2 and Section 4.4.4.3.

4.3.3.3 Uses of <momentabout> and <logbase>

The qualifiers momentabout and logbase are specialized elements specifically for use with the

moment and log operators respectively. See the descriptions of those operators below for their usage.

4.3.4 Operator Classes

The Content MathML elements described in detail in the next section may be broadly separated into

classes. The class of each element is shown in the syntax table that introduces the element in Section 4.4.

The class gives an indication of the general intended mathematical usage of the element, and also

determines its usage as determined by the schema. The class also determines the applicable rewrite

rules for mapping to Strict Content MathML. This section presents the rewrite rules for each of the

operator classes.

The rules in this section cover the use cases applicable to specific operator classes. Special-case rewrite

rules for individual elements are discussed in the sections below. However, the most common usage

pattern is generic, and is used by operators from almost all operator classes. It consists of applying

an operator to an explicit list of arguments using an apply element. In these cases, rewriting to Strict

Content MathML is simply a matter of replacing the empty element with an appropriate csymbol, as

listed in the syntax tables in Section 4.4. This is summarized in the following rule.

Rewrite: element

For example,

<plus/>

is equivalent to the Strict form

<csymbol cd="arith1 ">plus </csymbol>

In MathML 2, the definitionURL attribute could be used to redefine or modify the meaning of an

operator element. When the definitionURL attribute is present, the value for the cd attribute on the

csymbol should be determined by the definitionURL value if possible. The correspondence between

cd and definitionURL values is described Section 4.2.3.2.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 163

4.3.4.1 N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set,

nary-constructor)

Many MathML operators may be used with an arbitrary number of arguments. The corresponding

OpenMath symbols for elements in these classes also take an arbitrary number of arguments. In all

such cases, either the arguments my be given explicitly as children of the apply or bind element, or

the list may be specified implicitly via the use of qualifier elements.

Schema Patterns

The elements representing these n-ary operators are specified in the following schema patterns in Ap-

pendix A: nary-arith.class, nary-functional.class, nary-logical.class, nary-linalg.class, nary-set.class,

nary-constructor.class.

Rewriting to Strict Content MathML

If the argument list is given explicitly, the Rewrite: element rule applies.

Any use of qualifier elements is expressed in Strict Content MathML, via explicitly applying the

function to a list of arguments using the apply_to_list symbol as shown in the following rule. The

rule only considers the domainofapplication qualifier as other qualifiers may be rewritten to

domainofapplication as described earlier.

Rewrite: n-ary domainofapplication

An expression of the following form, where <union/> represents any element of the relevant class and

expression-in-x is an arbitrary expression involving the bound variable(s)

<apply><union/>

<bvar> x </bvar>

<domainofapplication> D </domainofapplication>

expression-in-x

</apply>

is rewritten to

<apply><csymbol cd="fns2">apply_to_list</csymbol>

<csymbol cd="set1 ">union </csymbol>

<apply><csymbol cd="list1">map</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

D

</apply>

</apply>

The above rule applies to all symbols in the listed classes. In the case of nary-set.class the choice

of Content Dictionary to use depends on the type attribute on the arguments, defaulting to set1, but

multiset1 should be used if type="multiset".

Note that the members of the nary-constructor.class, such as vector, use constructor syntax

where the arguments and qualifiers are given as children of the element rather than as children of a

containing apply. In this case, the above rules apply with the analogous syntactic modifications.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

164 Chapter 4. Content Markup

4.3.4.2 N-ary Constructors for set and list (class nary-setlist-constructor)

The use of set and list follows the same format as other n-ary constructors, however when rewriting

to Strict Content MathML a variant of the above rule is used. This is because the map symbol implicitly

constructs the required set or list, and apply_to_list is not needed in this case.

Schema Patterns

The elements representing these n-ary operators are specified in the schema pattern nary-setlist-constructor.

class.

Rewriting to Strict Content MathML

If the argument list is given explicitly, the Rewrite: element rule applies.

When qualifiers are used to specify the list of arguments, the following rule is used.

Rewrite: n-ary setlist domainofapplication

An expression of the following form, where <set/> is either of the elements set or list and

expression-in-x is an arbitrary expression involving the bound variable(s)

<set>

<bvar> x </bvar>

<domainofapplication> D </domainofapplication>

expression-in-x

</set>

is rewritten to

<apply><csymbol cd="set1 ">map</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

D

</apply>

Note that when D is already a set or list of the appropriate type for the container element, and the

lambda function created from expression-in-x is the identity, the entire container element should

be rewritten directly as D .

In the case of set, the choice of Content Dictionary and symbol depends on the value of the type

attribute of the arguments. By default the set symbol is used, but if one of the arguments has type

attribute with value "multiset", the multiset symbol is used. If there is a type attribute with value

other than "set" or "multiset" the set symbol should be used, and the arguments should be annotated

with their type by rewriting the type attribute using the rule Rewrite: attributes.

4.3.4.3 N-ary Relations (classes nary-reln, nary-set-reln)

MathML allows transitive relations to be used with multiple arguments, to give a natural expression to

‘chains’ of relations such as a < b < c < d. However unlike the case of the arithmetic operators, the

underlying symbols used in the Strict Content MathML are classed as binary, so it is not possible to

use apply_to_list as in the previous section, but instead a similar function predicate_on_list is used, the

semantics of which is essentially to take the conjunction of applying the predicate to elements of the

domain two at a time.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 165

Schema Patterns

The elements representing these n-ary operators are specified in the following schema patterns in Ap-

pendix A: nary-reln.class, nary-set-reln.class.

Rewriting to Strict Content MathML

Rewrite: n-ary relations

An expression of the form

<apply><lt/>

a b c d

</apply>

rewrites to Strict Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>

<csymbol cd="reln1 ">lt </csymbol>

<apply><csymbol cd="list1">list</csymbol>

a b c d

</apply>

</apply>

Rewrite: n-ary relations bvar

An expression of the form

<apply><lt/>

<bvar> x </bvar>

<domainofapplication> R </domainofapplication>

expression-in-x

</apply>

where expression-in-x is an arbitrary expression involving the bound variable, rewrites to the

Strict Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>

<csymbol cd="reln1 ">lt </csymbol>

<apply><csymbol cd="list1">map</csymbol>

R

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

</apply>

</apply>

The above rules apply to all symbols in classes nary-reln.class and nary-set-reln.class. In

the latter case the choice of Content Dictionary to use depends on the type attribute on the symbol,

defaulting to set1, but multiset1 should be used if type="multiset".

4.3.4.4 N-ary/Unary Operators (classes nary-minmax, nary-stats)

The MathML elements, max, min and some statistical elements such as mean may be used as a n-

ary function as in the above classes, however a special interpretation is given in the case that a single

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

166 Chapter 4. Content Markup

argument is supplied. If a single argument is supplied the function is applied to the elements represented

by the argument.

The underlying symbol used in Strict Content MathML for these elements is Unary and so if the

MathML is used with 0 or more than 1 arguments, the function is applied to the set constructed from

the explicitly supplied arguments according to the following rule.

Schema Patterns

The elements representing these n-ary operators are specified in the following schema patterns in Ap-

pendix A: nary-minmax.class, nary-stats.class.

Rewriting to Strict Content MathML

Rewrite: n-ary unary set

When an element, <max/> , of class nary-stats or nary-minmax is applied to an explicit list of 0 or 2 or

more arguments, a1 a2 an

<apply><max/> a1 a2 an </apply>

It is is translated to the unary application of the symbol <csymbol cd="minmax1 " name="max "/>

as specified in the syntax table for the element to the set of arguments, constructed using the <csymbol

cd="set1" name="set"/> symbol.

<apply><csymbol cd="minmax1 ">max </csymbol>

<apply><csymbol cd="set1">set</csymbol>

a1 a2 an

</apply>

</apply>

Like all MathML n-ary operators, The list of arguments may be specified implicitly using qualifier

elements. This is expressed in Strict Content MathML using the following rule, which is similar to the

rule Rewrite: n-ary domainofapplication but differs in that the symbol can be directly applied to the

constructed set of arguments and it is not necessary to use apply_to_list.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 167

Rewrite: n-ary unary domainofapplication

An expression of the following form, where <max/> represents any element of the relevant class and

expression-in-x is an arbitrary expression involving the bound variable(s)

<apply><max/>

<bvar> x </bvar>

<domainofapplication> D </domainofapplication>

expression-in-x

</apply>

is rewritten to

<apply><csymbol cd="minmax1 ">max </csymbol>

<apply><csymbol cd="set1">map</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

D

</apply>

</apply>

Note that when D is already a set and the lambda function created from expression-in-x is the

identity, the domainofapplication term should should be rewritten directly as D .

If the element is applied to a single argument the set symbol is not used and the symbol is applied

directly to the argument.

Rewrite: n-ary unary single

When an element, <max/> , of class nary-stats or nary-minmax is applied to a single argument,

<apply><max/> a </apply>

It is is translated to the unary application of the symbol in the syntax table for the element.

<apply><csymbol cd="minmax1 ">max </csymbol> a </apply>

Note: Earlier versions of MathML were not explicit about the correct interpretation of elements in this

class, and left it undefined as to whether an expression such as max(X) was a trivial application of

max to a singleton, or whether it should be interpreted as meaning the maximum of values of the set

X. Applications finding that the rule Rewrite: n-ary unary single can not be applied as the supplied

argument is a scalar may wish to use the rule Rewrite: n-ary unary set as an error recovery. As a further

complication, in the case of the statistical functions the Content Dictionary to use in this case depends

on the desired interpretation of the argument as a set of explicit data or a random variable representing

a distribution.

4.3.4.5 Binary Operators (classes binary-arith, binary-logical, binary-reln, binary-linalg, binary-set)

Binary operators take two arguments and simply map to OpenMath symbols via Rewrite: element

without the need of any special rewrite rules. The binary constructor interval is similar but uses

constructor syntax in which the arguments are children of the element, and the symbol used depends

on the type element as described in Section 4.4.1.1

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

168 Chapter 4. Content Markup

Schema Patterns

The elements representing these binary operators are specified in the following schema patterns in

Appendix A: binary-arith.class, binary-logical.class, binary-reln.class, binary-linalg.class, binary-set.

class.

4.3.4.6 Unary Operators (classes unary-arith, unary-linalg, unary-functional, unary-set,

unary-elementary, unary-veccalc)

Unary operators take a single argument and map to OpenMath symbols via Rewrite: element without

the need of any special rewrite rules.

Schema Patterns

The elements representing these unary operators are specified in the following schema patterns in

Appendix A: unary-arith.class, unary-functional.class, unary-set.class, unary-elementary.class, unary-

veccalc.class.

4.3.4.7 Constants (classes constant-arith, constant-set)

Constant symbols relate to mathematical constants such as e and true and also to names of sets such as

the Real Numbers, and Integers. In Strict Content MathML, they rewrite simply to the corresponding

symbol listed in the syntax tables for these elements in Section 4.4.10.

Schema Patterns

The elements representing these constants are specified in the schema patterns constant-arith.class and

constant-set.class.

4.3.4.8 Quantifiers (class quantifier)

The Quantifier class is used for the forall and exists quantifiers of predicate calculus.

Schema Patterns

The elements representing quantifiers are specified in the schema pattern quantifier.class.

Rewriting to Strict Content MathML

If used with bind and no qualifiers, then the interpretation in Strict Content MathML is simple. In

general if used with apply or qualifiers, the interpretation in Strict Content MathML is via the following

rule.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.3. Content MathML for Specific Structures 169

Rewrite: quantifier

An expression of following form where <exists/> denotes an element of class quantifier and

expression-in-x is an arbitrary expression involving the bound variable(s)

<apply><exists/>

<bvar> x </bvar>

<domainofapplication> D </domainofapplication>

expression-in-x

</apply>

is rewritten to an expression

<bind><csymbol cd="quant1 ">exists </csymbol>

<bvar> x </bvar>

<apply><csymbol cd="logic1 ">and </csymbol>

<apply><csymbol cd="set1">in</csymbol> x D </apply>

expression-in-x

</apply>

</bind>

where the symbols <csymbol cd="quant1 ">exists </csymbol> and

<csymbol cd="logic1 ">and </csymbol> are as specified in the syntax table of the element. (The

additional symbol being and in the case of exists and implies in the case of forall.) When no

domainofapplication is present, no logical conjunction is necessary, and the translation is direct.

4.3.4.9 Other Operators (classes lambda, interval, int, diff partialdiff, sum, product, limit)

Special purpose classes, described in the sections for the appropriate elements

Schema Patterns

The elements are specified in the following schema patterns in Appendix A: lambda.class, interval.

class, int.class, partialdiff.class, sum.class, product.class, limit.class.

4.3.5 Non-strict Attributes

A number of content MathML elements such as cn and interval allow attributes to specialize the

semantics of the objects they represent. For these cases, special rewrite rules are given on a case-by-

case basis in Section 4.4. However, content MathML elements also accept attributes shared all MathML

elements, and depending on the context, may also contain attributes from other XML namespaces. Such

attributes must be rewritten in alternative form in Strict Content Markup.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

170 Chapter 4. Content Markup

Rewrite: attributes

For instance,

<ci class="foo " xmlns:other="http://example.com " other:att="bla ">x </ci>

is rewritten to

<semantics>

<ci>x </ci>

<annotation cd="mathmlattr"

name="class" encoding="text/plain">foo </annotation>

<annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content">

<apply><csymbol cd="mathmlattr">foreign_attribute</csymbol>

<cs>http://example.com </cs>

<cs>other </cs>

<cs>att </cs>

<cs>bla </cs>

</apply>

</annotation-xml>

</semantics>

For MathML attributes not allowed in Strict Content MathML the content dictionary mathmlattr is

referenced, which provides symbols for all attributes allowed on content MathML elements.

4.4 Content MathML for Specific Operators and Constants

This section presents elements representing a core set of mathematical operators, functions and con-

stants. Most are empty elements, covering the subject matter of standard mathematics curricula up to

the level of calculus. The remaining elements are container elements for sets, intervals, vectors and so

on. For brevity, all elements defined in this section are sometimes called operator elements.

Each subsection below discusses a specific operator element, beginning with a syntax table, giving the

elements operator class. Special case rules for rewriting as Strict Markup are introduced as needed.

However, in most cases, the generic rewrite rules for the appropriate operator class is sufficient. In

particular, unless otherwise indicated, elements are to be rewritten using the default Rewrite: element

rule. Note, however, that all elements in this section must be rewritten in some fashion, since they are

not allowed in Strict Content markup.

In MathML 2, the definitionURL attribute could be used to redefine or modify the meaning of an

operator element. This use of the definitionURL attribute is deprecated in MathML 3. Instead a

csymbol element should be used. In general, the value of cd attribute on the csymbol will correspond

to the definitionURL value.

4.4.1 Functions and Inverses

4.4.1.1 Interval <interval>

Class interval

Attributes CommonAtt, DefEncAtt,closure?

Content ContExp,ContExp

OM Symbols interval_cc, interval_oc, interval_co, interval_oo

The interval element is a container element used to represent simple mathematical intervals of the

real number line. It takes an optional attribute closure, with a default value of "closed".

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 171

Content MathML

<interval closure="open"><ci>x</ci><cn>1</cn></interval>

<interval closure="closed"><cn>0</cn><cn>1</cn></interval>

<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>

<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>

Sample Presentation

<mfenced><mi>x</mi><mn>1</mn></mfenced>

(x,1)

<mfenced open="[" close="]"><mn>0</mn><mn>1</mn></mfenced>

[0,1]

<mfenced open="(" close="]"><mn>0</mn><mn>1</mn></mfenced>

(0,1]

<mfenced open="[" close=")"><mn>0</mn><mn>1</mn></mfenced>

[0,1)

Mapping to Strict Content MathML

In Strict markup, the interval element corresponds to one of four symbols from the interval1 content

dictionary. If closure has the value "open" then interval corresponds to the interval_oo. With

the value "closed" interval corresponds to the symbol interval_cc, with value "open-closed" to

interval_oc, and with "closed-open" to interval_co.

4.4.1.2 Inverse <inverse>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols inverse

The inverse element is applied to a function in order to construct a generic expression for the func-

tional inverse of that function. The inverse element may either be applied to arguments, or it may

appear alone, in which case it represents an abstract inversion operator acting on other functions.

Content MathML

<apply><inverse/>

<ci> f </ci>

</apply>

Sample Presentation

<msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>

f (−1)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

172 Chapter 4. Content Markup

Content MathML

<apply>

<apply><inverse/><ci type="matrix">A</ci></apply>

<ci>a</ci>

</apply>

Sample Presentation

<mrow>

<msup><mi>A</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>

<mo>⁡</mo>

<mfenced><mi>a</mi></mfenced>

</mrow>

A (−1) (a)

4.4.1.3 Lambda <lambda>

Class lambda

Attributes CommonAtt, DefEncAtt

Content BvarQ, DomainQ, ContExp

Qualifiers BvarQ,DomainQ

OM Symbols lambda

The lambda element is used to construct a user-defined function from an expression, bound variables,

and qualifiers. In a lambda construct with n (possibly 0) bound variables, the first n children are bvar

elements that identify the variables that are used as placeholders in the last child for actual parameter

values. The bound variables can be restricted by an optional domainofapplication qualifier or one

of its shorthand notations. The meaning of the lambda construct is an n-ary function that returns the

expression in the last child where the bound variables are replaced with the respective arguments.

The domainofapplication child restricts the possible values of the arguments of the constructed

function. For instance, the following lambda construct represents a function on the integers.

<lambda>

<bvar><ci> x </ci></bvar>

<domainofapplication><integers/></domainofapplication>

<apply><sin/><ci> x </ci></apply>

</lambda>

If a lambda construct does not contain bound variables, then the lambda construct is superfluous and

may be removed, unless it also contains a domainofapplication construct. In that case, if the last

child of the lambda construct is itself a function, then the domainofapplication restricts its existing

functional arguments, as in this example, which is a variant representation for the function above.

<lambda>

<domainofapplication><integers/></domainofapplication>

<sin/>

</lambda>

Otherwise, if the last child of the lambda construct is not a function, say a number, then the lambda

construct will not be a function, but the same number, and any domainofapplication is ignored.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 173

Content MathML

<lambda>

<bvar><ci>x</ci></bvar>

<apply><sin/>

<apply><plus/><ci>x</ci><cn>1</cn></apply>

</apply>

</lambda>

Sample Presentation

<mrow>

<mi>λ</mi>

<mi>x</mi>

<mo>.</mo>

<mfenced>

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow>

</mrow>

</mfenced>

</mrow>

λx.(sin (x+1))

<mrow>

<mi>x</mi>

<mo>↦</mo>

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow>

</mrow>

</mrow>

x �→ sin (x+1)

Mapping to Strict Markup

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

174 Chapter 4. Content Markup

Rewrite: lambda

If the lambda element does not contain qualifiers, the lambda expression is directly translated into a

bind expression.

<lambda>

<bvar> x1 </bvar><bvar> xn </bvar>

expression-in-x1-xn

</lambda>

rewrites to the Strict Content MathML

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x1 </bvar><bvar> xn </bvar>

expression-in-x1-xn

</bind>

Rewrite: lambda domainofapplication

If the lambda element does contain qualifiers, the qualifier may be rewritten to

domainofapplication and then the lambda expression is translated to a function term constructed

with lambda and restricted to the specified domain using restriction.

<lambda>

<bvar> x1 </bvar><bvar> xn </bvar>

<domainofapplication> D </domainofapplication>

expression-in-x1-xn

</lambda>

rewrites to the Strict Content MathML

<apply><csymbol cd="fns1">restriction</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x1 </bvar><bvar> xn </bvar>

expression-in-x1-xn

</bind>

D

</apply>

4.4.1.4 Function composition <compose/>

Class nary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols left_compose

The compose element represents the function composition operator. Note that MathML makes no as-

sumption about the domain and codomain of the constituent functions in a composition; the domain of

the resulting composition may be empty.

The compose element is a commutative n-ary operator. Consequently, it may be lifted to the induced

operator defined on a collection of arguments indexed by a (possibly infinite) set by using qualifier

elements as described in Section 4.3.4.1.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 175

Content MathML

<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>

Sample Presentation

<mrow><mi>f</mi><mo>∘</mo><mi>g</mi><mo>∘</mo><mi>h</mi></mrow>

f ◦g◦h

Content MathML

<apply><eq/>

<apply>

<apply><compose/><ci>f</ci><ci>g</ci></apply>

<ci>x</ci>

</apply>

<apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>

</apply>

Sample Presentation

<mrow>

<mrow>

<mrow><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo></mrow>

<mo>⁡</mo>

<mfenced><mi>x</mi></mfenced>

</mrow>

<mo>=</mo>

<mrow>

<mi>f</mi>

<mo>⁡</mo>

<mfenced>

<mrow>

<mi>g</mi>

<mo>⁡</mo>

<mfenced><mi>x</mi></mfenced>

</mrow>

</mfenced>

</mrow>

</mrow>

(f ◦g)(x) = f (g(x))

4.4.1.5 Identity function <ident/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols identity

The ident element represents the identity function. Note that MathML makes no assumption about the

domain and codomain of the represented identity function, which depends on the context in which it is

used.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

176 Chapter 4. Content Markup

Content MathML

<apply><eq/>

<apply><compose/>

<ci type="function">f</ci>

<apply><inverse/>

<ci type="function">f</ci>

</apply>

</apply>

<ident/>

</apply>

Sample Presentation

<mrow>

<mrow>

<mi>f</mi>

<mo>∘</mo>

<msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>

</mrow>

<mo>=</mo>

<mi>id</mi>

</mrow>

f ◦ f (−1) = id

4.4.1.6 Domain <domain/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols domain

The domain element represents the domain of the function to which it is applied. The domain is the set

of values over which the function is defined.

Content MathML

<apply><eq/>

<apply><domain/><ci>f</ci></apply>

<reals/>

</apply>

Sample Presentation

<mrow>

<mrow><mi>domain</mi><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow>

<mo>=</mo>

<mi mathvariant="double-struck">R</mi>

</mrow>

domain(f) = R

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 177

4.4.1.7 codomain <codomain/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols range

The codomain represents the codomain, or range, of the function to which is is applied. Note that the

codomain is not necessarily equal to the image of the function, it is merely required to contain the

image.

Content MathML

<apply><eq/>

<apply><codomain/><ci>f</ci></apply>

<rationals/>

</apply>

Sample Presentation

<mrow>

<mrow><mi>codomain</mi><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow>

<mo>=</mo>

<mi mathvariant="double-struck">Q</mi>

</mrow>

codomain(f) =Q

4.4.1.8 Image <image/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols image

The image element represent the image of the function to which it is applied. The image of a function

is the set of values taken by the function. Every point in the image is generated by the function applied

to some point of the domain.

Content MathML

<apply><eq/>

<apply><image/><sin/></apply>

<interval><cn>-1</cn><cn> 1</cn></interval>

</apply>

Sample Presentation

<mrow>

<mrow><mi>image</mi><mo>⁡</mo><mfenced><mi>sin</mi></mfenced></mrow>

<mo>=</mo>

<mfenced open="[" close="]"><mn>-1</mn><mn>1</mn></mfenced>

</mrow>

image(sin) = [−1,1]

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

178 Chapter 4. Content Markup

4.4.1.9 Piecewise declaration <piecewise>, <piece>, <otherwise>

Class Constructor

Attributes CommonAtt, DefEncAtt

Content piece* otherwise?

OM Symbols piecewise

Syntax Table for piecewise

Class Constructor

Attributes CommonAtt, DefEncAtt

Content ContExp ContExp

OM Symbols piece

Syntax Table for piece

Class Constructor

Attributes CommonAtt, DefEncAtt

Content ContExp

OM Symbols otherwise

Syntax Table for otherwise

The piecewise, piece, and otherwise elements are used to represent ‘piecewise’ function defini-

tions of the form ‘ H(x) = 0 if x less than 0, H(x) = 1 otherwise’.

The declaration is constructed using the piecewise element. This contains zero or more piece el-

ements, and optionally one otherwise element. Each piece element contains exactly two children.

The first child defines the value taken by the piecewise expression when the condition specified in

the associated second child of the piece is true. The degenerate case of no piece elements and no

otherwise element is treated as undefined for all values of the domain.

The otherwise element allows the specification of a value to be taken by the piecewise function

when none of the conditions (second child elements of the piece elements) is true, i.e. a default value.

It should be noted that no ‘order of execution’ is implied by the ordering of the piece child elements

within piecewise. It is the responsibility of the author to ensure that the subsets of the function domain

defined by the second children of the piece elements are disjoint, or that, where they overlap, the values

of the corresponding first children of the piece elements coincide. If this is not the case, the meaning

of the expression is undefined.

Here is an example:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 179

Content MathML

<piecewise>

<piece>

<apply><minus/><ci>x</ci></apply>

<apply><lt/><ci>x</ci><cn>0</cn></apply>

</piece>

<piece>

<cn>0</cn>

<apply><eq/><ci>x</ci><cn>0</cn></apply>

</piece>

<piece>

<ci>x</ci>

<apply><gt/><ci>x</ci><cn>0</cn></apply>

</piece>

</piecewise>

Sample Presentation

<mrow>

<mo>{</mo>

<mtable>

<mtr>

<mtd><mrow><mo>−</mo><mi>x</mi></mrow></mtd>

<mtd columnalign="left"><mtext> if </mtext></mtd>

<mtd><mrow><mi>x</mi><mo><</mo><mn>0</mn></mrow></mtd>

</mtr>

<mtr>

<mtd><mn>0</mn></mtd>

<mtd columnalign="left"><mtext> if </mtext></mtd>

<mtd><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></mtd>

</mtr>

<mtr>

<mtd><mi>x</mi></mtd>

<mtd columnalign="left"><mtext> if </mtext></mtd>

<mtd><mrow><mi>x</mi><mo>></mo><mn>0</mn></mrow></mtd>

</mtr>

</mtable>

</mrow> ⎧⎨
⎩
−x if x < 0
0 if x = 0
x if x > 0

Mapping to Strict Markup

In Strict Content MathML, the container elements piecewise, piece and otherwise are mapped

to applications of the constructor symbols of the same names in the piece1 CD. Apart from the fact

that these three elements (respectively symbols) are used together, the mapping to Strict markup is

straightforward:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

180 Chapter 4. Content Markup

Content MathML

<piecewise>

<piece>

<cn>0</cn>

<apply><lt/><ci>x</ci><cn>0</cn></apply>

</piece>

<piece>

<cn>1</cn>

<apply><gt/><ci>x</ci><cn>1</cn></apply>

</piece>

<otherwise>

<ci>x</ci>

</otherwise>

</piecewise>

Strict Content MathML equivalent

<apply><csymbol cd="piece1">piecewise</csymbol>

<apply><csymbol cd="piece1">piece</csymbol>

<cn>0</cn>

<apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>

</apply>

<apply><csymbol cd="piece1">piece</csymbol>

<cn>1</cn>

<apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>

</apply>

<apply><csymbol cd="piece1">otherwise</csymbol>

<ci>x</ci>

</apply>

</apply>

4.4.2 Arithmetic, Algebra and Logic

4.4.2.1 Quotient <quotient/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols quotient

The quotient element represents the integer division operator. When the operator is applied to integer

arguments a and b, the result is the ‘quotient of a divided by b’. That is, the quotient of integers a and

b, is the integer q such that a = b * q + r, with |r| less than |b| and a * r positive. In common usage, q is

called the quotient and r is the remainder.

Content MathML

<apply><quotient/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mo>⌊</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>⌋</mo></mrow>

�a/b	

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 181

4.4.2.2 Factorial <factorial/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols factorial

This element represents the unary factorial operator on non-negative integers.

The factorial of an integer n is given by n! = n*(n-1)* ... * 1

Content MathML

<apply><factorial/><ci>n</ci></apply>

Sample Presentation

<mrow><mi>n</mi><mo>!</mo></mrow>

n!

4.4.2.3 Division <divide/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols divide

The divide element represents the division operator in a number field.

Content MathML

<apply><divide/>

<ci>a</ci>

<ci>b</ci>

</apply>

Sample Presentation

<mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow>

a/b

4.4.2.4 Maximum <max/>

Class nary-minmax

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols max

The max element denotes the maximum function, which returns the largest of the arguments to which it

is applied. Its arguments may be explicitly specified in the enclosing apply element, or specified using

qualifier elements as described in Section 4.3.4.4. Note that when applied to infinite sets of arguments,

no maximal argument may exist.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

182 Chapter 4. Content Markup

Content MathML

<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>

Sample Presentation

<mrow>

<mi>max</mi>

<mrow>

<mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>}</mo>

</mrow>

</mrow>

max{2,3,5}

Content MathML

<apply><max/>

<bvar><ci>y</ci></bvar>

<condition>

<apply><in/>

<ci>y</ci>

<interval><cn>0</cn><cn>1</cn></interval>

</apply>

</condition>

<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>

Sample Presentation

<mrow>

<mi>max</mi>

<mrow>

<mo>{</mo><mi>y</mi><mo>|</mo>

<mrow>

<msup><mi>y</mi><mn>3</mn></msup>

<mo>∈</mo>

<mfenced open="[" close="]"><mn>0</mn><mn>1</mn></mfenced>

</mrow>

<mo>}</mo>

</mrow>

</mrow>

max
{

y3
∣∣y ∈ [0,1]

}

4.4.2.5 Minimum <min/>

Class nary-minmax

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols min

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 183

The min element denotes the minimum function, which returns the smallest of the arguments to which it

is applied. Its arguments may be explicitly specified in the enclosing apply element, or specified using

qualifier elements as described in Section 4.3.4.4. Note that when applied to infinite sets of arguments,

no minimal argument may exist.

Content MathML

<apply><min/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow>

<mi>min</mi>

<mrow><mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>}</mo></mrow>

</mrow>

min{a,b}

Content MathML

<apply><min/>

<bvar><ci>x</ci></bvar>

<condition>

<apply><notin/><ci>x</ci><ci type="set">B</ci></apply>

</condition>

<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Sample Presentation

<mrow>

<mi>min</mi>

<mrow><mo>{</mo><msup><mi>x</mi><mn>2</mn></msup><mo>|</mo>

<mrow><mi>x</mi><mo>∉</mo><mi>B</mi></mrow>

<mo>}</mo>

</mrow>

</mrow>

min
{

x2
∣∣x �∈ B

}

4.4.2.6 Subtraction <minus/>

Class unary-arith, binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols unary_minus, minus

The minus element can be used as a unary arithmetic operator (e.g. to represent - x), or as a binary

arithmetic operator (e.g. to represent x- y).

If it is used with one argument, minus corresponds to the unary_minus symbol.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

184 Chapter 4. Content Markup

Content MathML

<apply><minus/><cn>3</cn></apply>

Sample Presentation

<mrow><mo>−</mo><mn>3</mn></mrow>

−3

If it is used with two arguments, minus corresponds to the minus symbol

Content MathML

<apply><minus/><ci>x</ci><ci>y</ci></apply>

Sample Presentation

<mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow>

x− y

In both cases, the translation to Strict Content markup is direct, as described in Rewrite: element. It is

merely a matter of choosing the symbol that reflects the actual usage.

4.4.2.7 Addition <plus/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols plus

The plus element represents the addition operator. Its arguments are normally specified explicitly

in the enclosing apply element. As an n-ary commutative operator, it can be used with qualifiers to

specify arguments, however, this is discouraged, and the sum operator should be used to represent such

expressions instead.

Content MathML

<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>

Sample Presentation

<mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow>

x+ y+ z

4.4.2.8 Exponentiation <power/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols power

The power element represents the exponentiation operator. The first argument is raised to the power of

the second argument.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 185

Content MathML

<apply><power/><ci>x</ci><cn>3</cn></apply>

Sample Presentation

<msup><mi>x</mi><mn>3</mn></msup>

x3

4.4.2.9 Remainder <rem/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols remainder

The rem element represents the modulus operator, which returns the remainder that results from divid-

ing the first argument by the second. That is, when applied to integer arguments a and b, it returns the

unique integer r such that a = b * q + r, with |r| less than |b| and a * r positive.

Content MathML

<apply><rem/><ci> a </ci><ci> b </ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>mod</mo><mi>b</mi></mrow>

a mod b

4.4.2.10 Multiplication <times/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols times

The times element represents the n-ary multiplication operator. Its arguments are normally specified

explicitly in the enclosing apply element. As an n-ary commutative operator, it can be used with

qualifiers to specify arguments by rule, however, this is discouraged, and the product operator should

be used to represent such expressions instead.

Content MathML

<apply><times/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>⁢</mo><mi>b</mi></mrow>

ab

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

186 Chapter 4. Content Markup

4.4.2.11 Root <root/>

Class unary-arith, binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers degree

OM Symbols root

The root element is used to extract roots. The kind of root to be taken is specified by a ‘degree’

element, which should be given as the second child of the apply element enclosing the root element.

Thus, square roots correspond to the case where degree contains the value 2, cube roots correspond to

3, and so on. If no degree is present, a default value of 2 is used.

Content MathML

<apply><root/>

<degree><ci type="integer">n</ci></degree>

<ci>a</ci>

</apply>

Sample Presentation

<mroot><mi>a</mi><mi>n</mi></mroot>

n
√

a

Mapping to Strict Content Markup

In Strict Content markup, the root symbol is always used with two arguments, with the second indicat-

ing the degree of the root being extracted.

Content MathML

<apply><root/><ci>x</ci></apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">root</csymbol>

<ci>x</ci>

<cn type="integer">2</cn>

</apply>

Content MathML

<apply><root/>

<degree><ci type="integer">n</ci></degree>

<ci>a</ci>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">root</csymbol>

<ci>a</ci>

<cn type="integer">n</cn>

</apply>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 187

4.4.2.12 Greatest common divisor <gcd/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols gcd

The gcd element represents the n-ary operator which returns the greatest common divisor of its argu-

ments. Its arguments may be explicitly specified in the enclosing apply element, or specified by rule

as described in Section 4.3.4.1.

Content MathML

<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>

Sample Presentation

<mrow>

<mi>gcd</mi>

<mo>⁡</mo>

<mfenced><mi>a</mi><mi>b</mi><mi>c</mi></mfenced>

</mrow>

gcd(a,b,c)

This default rendering is English-language locale specific: other locales may have different default

renderings.

When the gcd element is applied to an explicit list of arguments, the translation to Strict Content

markup is direct, using the gcd symbol, as described in Rewrite: element. However, when qualifiers are

used, the equivalent Strict markup is computed via Rewrite: n-ary domainofapplication.

4.4.2.13 And <and/>

Class nary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols and

The and element represents the logical ‘and’ function which is an n-ary function taking Boolean ar-

guments and returning a Boolean value. It is true if all arguments are true, and false otherwise. Its

arguments may be explicitly specified in the enclosing apply element, or specified by rule as described

in Section 4.3.4.1.

Content MathML

<apply><and/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∧</mo><mi>b</mi></mrow>

a∧b

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

188 Chapter 4. Content Markup

Content MathML

<apply><and/>

<bvar><ci>i</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<uplimit><ci>n</ci></uplimit>

<apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn></apply>

</apply>

Strict Content MathML

<apply><csymbol cd="fns2">apply_to_list</csymbol>

<csymbol cd="logic1">and</csymbol>

<apply><csymbol cd="list1">map</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>i</ci></bvar>

<apply><csymbol cd="relation1">gt</csymbol>

<apply><csymbol cd="linalg1">vector_selector</csymbol>

<ci>i</ci>

<ci>a</ci>

</apply>

<cn>0</cn>

</apply>

</bind>

<apply><csymbol cd="interval1">integer_interval</csymbol>

<cn type="integer">0</cn>

<ci>n</ci>

</apply>

</apply>

</apply>

Sample Presentation

<mrow>

<munderover>

<mo>⋀</mo>

<mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow>

<mi>n</mi>

</munderover>

<mrow>

<mo>(</mo>

<msub><mi>a</mi><mi>i</mi></msub>

<mo>></mo>

<mn>0</mn>

<mo>)</mo>

</mrow>

</mrow>
n∧

i=0

(ai > 0)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 189

4.4.2.14 Or <or/>

Class nary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols or

The or element represents the logical ‘or’ function. It is true if any of the arguments are true, and false

otherwise.

Content MathML

<apply><or/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∨</mo><mi>b</mi></mrow>

a∨b

4.4.2.15 Exclusive Or <xor/>

Class nary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols xor

The xor element represents the logical ‘xor’ function. It is true if there are an odd number of true

arguments or false otherwise.

Content MathML

<apply><xor/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>xor</mo><mi>b</mi></mrow>

a xor b

4.4.2.16 Not <not/>

Class unary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols not

The not element represents the logical not function which takes one Boolean argument, and returns the

opposite Boolean value.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

190 Chapter 4. Content Markup

Content MathML

<apply><not/><ci>a</ci></apply>

Sample Presentation

<mrow><mo>¬</mo><mi>a</mi></mrow>

¬a

4.4.2.17 Implies <implies/>

Class binary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols implies

The implies element represents the logical implication function which takes two Boolean expressions

as arguments. It evaluates to false if the first argument is true and the second argument is false, otherwise

it evaluates to true.

Content MathML

<apply><implies/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>⇒</mo><mi>B</mi></mrow>

A ⇒ B

4.4.2.18 Universal quantifier <forall/>

Class quantifier

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols forall, implies

The forall element represents the universal ("for all") quantifier which takes one or more bound

variables, and an argument which specifies the assertion being quantified. In addition, condition or

other qualifiers may be used as described in Section 4.3.4.8 to limit the domain of the bound variables.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 191

Content MathML

<bind><forall/>

<bvar><ci>x</ci></bvar>

<apply><eq/>

<apply><minus/><ci>x</ci><ci>x</ci></apply>

<cn>0</cn>

</apply>

</bind>

Sample Presentation

<mrow>

<mo>∀</mo>

<mi>x</mi>

<mo>.</mo>

<mfenced>

<mrow>

<mrow><mi>x</mi><mo>−</mo><mi>x</mi></mrow>

<mo>=</mo>

<mn>0</mn>

</mrow>

</mfenced>

</mrow>

∀x.(x− x = 0)

Mapping to Strict Markup

When the forall element is used with a condition qualifier the strict equivalent is constructed with

the help of logical implication by the rule Rewrite: quantifier. Thus

<bind><forall/>

<bvar><ci>p</ci></bvar>

<bvar><ci>q</ci></bvar>

<condition>

<apply><and/>

<apply><in/><ci>p</ci><rationals/></apply>

<apply><in/><ci>q</ci><rationals/></apply>

<apply><lt/><ci>p</ci><ci>q</ci></apply>

</apply>

</condition>

<apply><lt/>

<ci>p</ci>

<apply><power/><ci>q</ci><cn>2</cn></apply>

</apply>

</bind>

translates to

<bind><csymbol cd="quant1">forall</csymbol>

<bvar><ci>p</ci></bvar>

<bvar><ci>q</ci></bvar>

<apply><csymbol cd="logic1">implies</csymbol>

<apply><csymbol cd="logic1">and</csymbol>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

192 Chapter 4. Content Markup

<apply><csymbol cd="set1">in</csymbol>

<ci>p</ci>

<csymbol cd="setname1">Q</csymbol>

</apply>

<apply><csymbol cd="set1">in</csymbol>

<ci>q</ci>

<csymbol cd="setname1">Q</csymbol>

</apply>

<apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply>

</apply>

<apply><csymbol cd="relation1">lt</csymbol>

<ci>p</ci>

<apply><csymbol cd="arith1">power</csymbol>

<ci>q</ci>

<cn>2</cn>

</apply>

</apply>

</apply>

</bind>

Sample Presentation

<mrow>

<mo>∀</mo>

<mrow>

<mrow><mi>p</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi></mrow>

<mo>∧</mo>

<mrow><mi>q</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi></mrow>

<mo>∧</mo>

<mrow><mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo></mrow>

</mrow>

<mo>.</mo>

<mfenced>

<mrow><mi>p</mi><mo><</mo><msup><mi>q</mi><mn>2</mn></msup></mrow>

</mfenced>

</mrow>

∀p ∈Q∧q ∈Q∧ (p < q) .
(

p < q2
)

<mrow>

<mo>∀</mo>

<mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow>

<mo>.</mo>

<mfenced>

<mrow>

<mrow>

<mo>(</mo>

<mrow>

<mi>p</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi>

</mrow>

<mo>∧</mo>

<mrow>

<mi>q</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 193

</mrow>

<mo>∧</mo>

<mrow><mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo></mrow>

<mo>)</mo>

</mrow>

<mo>⇒</mo>

<mrow>

<mo>(</mo>

<mi>p</mi>

<mo><</mo>

<msup><mi>q</mi><mn>2</mn></msup>

<mo>)</mo>

</mrow>

</mrow>

</mfenced>

</mrow>

∀p,q.
(
(p ∈Q∧q ∈Q∧ (p < q)) ⇒ (

p < q2
))

4.4.2.19 Existential quantifier <exists/>

Class quantifier

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols exists, and

The exists element represents the existential ("there exists") quantifier which takes one or more bound

variables, and an argument which specifies the assertion being quantified. In addition, condition or

other qualifiers may be used as described in Section 4.3.4.8 to limit the domain of the bound variables.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

194 Chapter 4. Content Markup

Content MathML

<bind><exists/>

<bvar><ci>x</ci></bvar>

<apply><eq/>

<apply><ci>f</ci><ci>x</ci></apply>

<cn>0</cn>

</apply>

</bind>

Sample Presentation

<mrow>

<mo>∃</mo>

<mi>x</mi>

<mo>.</mo>

<mfenced>

<mrow>

<mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow>

<mo>=</mo>

<mn>0</mn>

</mrow>

</mfenced>

</mrow>

∃x.(f (x) = 0)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 195

Content MathML

<apply><exists/>

<bvar><ci>x</ci></bvar>

<domainofapplication>

<integers/>

</domainofapplication>

<apply><eq/>

<apply><ci>f</ci><ci>x</ci></apply>

<cn>0</cn>

</apply>

</apply>

Strict MathML equivalent:

<bind><csymbol cd="quant1">exists</csymbol>

<bvar><ci>x</ci></bvar>

<apply><csymbol cd="logic1">and</csymbol>

<apply><csymbol cd="set1">in</csymbol>

<ci>x</ci>

<csymbol cd="setname1">Z</csymbol>

</apply>

<apply><csymbol cd="relation1">eq</csymbol>

<apply><ci>f</ci><ci>x</ci></apply>

<cn>0</cn>

</apply>

</apply>

</bind>

Sample Presentation

<mrow>

<mo>∃</mo>

<mi>x</mi>

<mo>.</mo>

<mfenced separators="">

<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow>

<mo>∧</mo>

<mrow>

<mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow>

<mo>=</mo>

<mn>0</mn>

</mrow>

</mfenced>

</mrow>

∃x.(x ∈ Z∧ f (x) = 0)

4.4.2.20 Absolute Value <abs/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols abs

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

196 Chapter 4. Content Markup

The abs element represents the absolute value function. The argument should be numerically valued.

When the argument is a complex number, the absolute value is often referred to as the modulus.

Content MathML

<apply><abs/><ci>x</ci></apply>

Sample Presentation

<mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow>

|x|

4.4.2.21 Complex conjugate <conjugate/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols conjugate

The conjugate element represents the function defined over the complex numbers with returns the

complex conjugate of its argument.

Content MathML

<apply><conjugate/>

<apply><plus/>

<ci>x</ci>

<apply><times/><cn>ⅈ</cn><ci>y</ci></apply>

</apply>

</apply>

Sample Presentation

<mover>

<mrow>

<mi>x</mi>

<mo>+</mo>

<mrow><mn>ⅈ</mn><mo>⁢</mo><mi>y</mi></mrow>

</mrow>

<mo>¯</mo>

</mover>

x+ iy

4.4.2.22 Argument <arg/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols argument

The arg element represents the unary function which returns the angular argument of a complex num-

ber, namely the angle which a straight line drawn from the number to zero makes with the real line

(measured anti-clockwise).

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 197

Content MathML

<apply><arg/>

<apply><plus/>

<ci> x </ci>

<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>

</apply>

Sample Presentation

<mrow>

<mi>arg</mi>

<mo>⁡</mo>

<mfenced>

<mrow>

<mi>x</mi>

<mo>+</mo>

<mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow>

</mrow>

</mfenced>

</mrow>

arg(x+ iy)

4.4.2.23 Real part <real/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols real

The real element represents the unary operator used to construct an expression representing the "real"

part of a complex number, that is, the x component in x + iy.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

198 Chapter 4. Content Markup

Content MathML

<apply><real/>

<apply><plus/>

<ci>x</ci>

<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>

</apply>

Sample Presentation

<mrow>

<mo>ℛ</mo>

<mo>⁡</mo>

<mfenced>

<mrow>

<mi>x</mi>

<mo>+</mo>

<mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow>

</mrow>

</mfenced>

</mrow>

R (x+ iy)

4.4.2.24 Imaginary part <imaginary/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols imaginary

The imaginary element represents the unary operator used to construct an expression representing the

"imaginary" part of a complex number, that is, the y component in x + iy.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 199

Content MathML

<apply><imaginary/>

<apply><plus/>

<ci>x</ci>

<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>

</apply>

Sample Presentation

<mrow>

<mo>ℑ</mo>

<mo>⁡</mo>

<mfenced>

<mrow>

<mi>x</mi>

<mo>+</mo>

<mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow>

</mrow>

</mfenced>

</mrow>

I(x+ iy)

4.4.2.25 Lowest common multiple <lcm/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols lcm

The lcm element represents the n-ary operator used to construct an expression which represents the

least common multiple of its arguments. If no argument is provided, the lcm is 1. If one argument is

provided, the lcm is that argument. The least common multiple of x and 1 is x.

Content MathML

<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>

Sample Presentation

<mrow>

<mi>lcm</mi>

<mo>⁡</mo>

<mfenced><mi>a</mi><mi>b</mi><mi>c</mi></mfenced>

</mrow>

lcm(a,b,c)

This default rendering is English-language locale specific: other locales may have different default

renderings.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

200 Chapter 4. Content Markup

4.4.2.26 Floor <floor/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols floor

The floor element represents the operation that rounds down (towards negative infinity) to the nearest

integer. This function takes one real number as an argument and returns an integer.

Content MathML

<apply><floor/><ci>a</ci></apply>

Sample Presentation

<mrow><mo>⌊</mo><mi>a</mi><mo>⌋</mo></mrow>

�a	

4.4.2.27 Ceiling <ceiling/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols ceiling

The ceiling element represents the operation that rounds up (towards positive infinity) to the nearest

integer. This function takes one real number as an argument and returns an integer.

Content MathML

<apply><ceiling/><ci>a</ci></apply>

Sample Presentation

<mrow><mo>⌈</mo><mi>a</mi><mo>⌉</mo></mrow>

�a�

4.4.3 Relations

4.4.3.1 Equals <eq/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols eq

The eq elements represents the equality relation. While equality is a binary relation, eq may be used

with more than two arguments, denoting a chain of equalities, as described in Section 4.3.4.3.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 201

Content MathML

<apply><eq/>

<cn type="rational">2<sep/>4</cn>

<cn type="rational">1<sep/>2</cn>

</apply>

Sample Presentation

<mrow>

<mrow><mn>2</mn><mo>/</mo><mn>4</mn></mrow>

<mo>=</mo>

<mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow>

</mrow>

2/4 = 1/2

4.4.3.2 Not Equals <neq/>

Class binary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols neq

The neq element represents the binary inequality relation, i.e. the relation "not equal to" which returns

true unless the two arguments are equal.

Content MathML

<apply><neq/><cn>3</cn><cn>4</cn></apply>

Sample Presentation

<mrow><mn>3</mn><mo>≠</mo><mn>4</mn></mrow>

3 �= 4

4.4.3.3 Greater than <gt/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols gt

The gt element represents the "greater than" function which returns true if the first argument is greater

than the second, and returns false otherwise. While this is a binary relation, gt may be used with more

than two arguments, denoting a chain of inequalities, as described in Section 4.3.4.3.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

202 Chapter 4. Content Markup

Content MathML

<apply><gt/><cn>3</cn><cn>2</cn></apply>

Sample Presentation

<mrow><mn>3</mn><mo>></mo><mn>2</mn></mrow>

3 > 2

4.4.3.4 Less Than <lt/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols lt

The lt element represents the "less than" function which returns true if the first argument is less than

the second, and returns false otherwise. While this is a binary relation, lt may be used with more than

two arguments, denoting a chain of inequalities, as described in Section 4.3.4.3.

Content MathML

<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>

Sample Presentation

<mrow><mn>2</mn><mo><</mo><mn>3</mn><mo><</mo><mn>4</mn></mrow>

2 < 3 < 4

4.4.3.5 Greater Than or Equal <geq/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols geq

The geq element represents the "greater than or equal to" function which returns true if the first argu-

ment is greater than or equal to the second, and returns false otherwise. While this is a binary relation,

geq may be used with more than two arguments, denoting a chain of inequalities, as described in

Section 4.3.4.3.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 203

Content MathML

<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>

Strict Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>

<csymbol cd="reln1">geq</csymbol>

<apply><csymbol cd="list1">list</csymbol>

<cn>4</cn><cn>3</cn><cn>3</cn>

</apply>

</apply>

Sample Presentation

<mrow><mn>4</mn><mo>≥</mo><mn>3</mn><mo>≥</mo><mn>3</mn></mrow>

4 ≥ 3 ≥ 3

4.4.3.6 Less Than or Equal <leq/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols leq

The leq element represents the "less than or equal to" function which returns true if the first argument

is less than or equal to the second, and returns false otherwise. While this is a binary relation, leq may

be used with more than two arguments, denoting a chain of inequalities, as described in Section 4.3.4.3.

Content MathML

<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>

Sample Presentation

<mrow><mn>3</mn><mo>≤</mo><mn>3</mn><mo>≤</mo><mn>4</mn></mrow>

3 ≤ 3 ≤ 4

4.4.3.7 Equivalent <equivalent/>

Class binary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols equivalent

The equivalent element represents the relation that asserts two Boolean expressions are logically

equivalent, that is have the same Boolean value for any inputs.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

204 Chapter 4. Content Markup

Content MathML

<apply><equivalent/>

<ci>a</ci>

<apply><not/><apply><not/><ci>a</ci></apply></apply>

</apply>

Sample Presentation

<mrow>

<mi>a</mi>

<mo>≡</mo>

<mrow><mo>¬</mo><mrow><mo>¬</mo><mi>a</mi></mrow></mrow>

</mrow>

a ≡ ¬¬a

4.4.3.8 Approximately <approx/>

Class binary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols approx

The approx element represent the relation that asserts the approximate equality of its arguments.

Content MathML

<apply><approx/>

<pi/>

<cn type="rational">22<sep/>7</cn>

</apply>

Sample Presentation

<mrow>

<mi>π</mi>

<mo>≃</mo>

<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

</mrow>

π � 22/7

4.4.3.9 Factor Of <factorof/>

Class binary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols factorof

The factorof element is used to indicate the mathematical relationship that the first argument "is a

factor of" the second. This relationship is true if and only if b mod a = 0.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 205

Content MathML

<apply><factorof/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>|</mo><mi>b</mi></mrow>

a|b

4.4.4 Calculus and Vector Calculus

4.4.4.1 Integral <int/>

Class int

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols int defint

The int element is the operator element for a definite or indefinite integral over a function or a definite

over an expression with a bound variable.

Content MathML

<apply><eq/>

<apply><int/><sin/></apply>

<cos/>

</apply>

Sample Presentation

<mrow><mrow><mi>∫</mi><mi>sin</mi></mrow><mo>=</mo><mi>cos</mi></mrow>∫
sin = cos

Content MathML

<apply><int/>

<interval><ci>a</ci><ci>b</ci></interval>

<cos/>

</apply>

Sample Presentation

<mrow>

<msubsup><mi>∫</mi><mi>a</mi><mi>b</mi></msubsup><mi>cos</mi>

</mrow> ∫ b

a
cos

The int element can also be used with bound variables serving as the integration variables.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

206 Chapter 4. Content Markup

Content MathML

Here, definite integrals are indicated by providing qualifier elements specifying a domain of integration

(here a lowlimit/uplimit pair). This is perhaps the most "standard" representation of this integral:

<apply><int/>

<bvar><ci>x</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<uplimit><cn>1</cn></uplimit>

<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Sample Presentation

<mrow>

<msubsup><mi>∫</mi><mn>0</mn><mn>1</mn></msubsup>

<msup><mi>x</mi><mn>2</mn></msup>

<mi>d</mi>

<mi>x</mi>

</mrow> ∫ 1

0
x2dx

Mapping to Strict Markup

As an indefinite integral applied to a function, the int element corresponds to the int symbol from the

calculus1 content dictionary. As a definite integral applied to a function, the int element corresponds

to the defint symbol from the calculus1 content dictionary.

When no bound variables are present, the translation of an indefinite integral to Strict Content Markup

is straight forward. When bound variables are present, the following rule should be used.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 207

Rewrite: int

Translate an indefinite integral, where expression-in-x is an arbitrary expression involving the

bound variable(s) x

<apply><int/>

<bvar> x </bvar>

expression-in-x

</apply>

to the expression

<apply>

<apply><csymbol cd="calculus1">int</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

</apply>

x

</apply>

Note that as x is not bound in the original indefinite integral, the integrated function is applied to the

variable x making it an explicit free variable in Strict Content Markup expression, even though it is

bound in the subterm used as an argument to int.

For instance, the expression

<apply><int/>

<bvar><ci>x</ci></bvar>

<apply><cos/><ci>x</ci></apply>

</apply>

has the Strict Content MathML equivalent

<apply>

<apply><csymbol cd="calculus1">int</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<apply><cos/><ci>x</ci></apply>

</bind>

</apply>

<ci>x</ci>

</apply>

For a definite integral without bound variables, the translation is also straightforward.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

208 Chapter 4. Content Markup

For instance, the integral of a differential form f over an arbitrary domain C represented as

<apply><int/>

<domainofapplication><ci>C</ci></domainofapplication>

<ci>f</ci>

</apply>

is equivalent to the Strict Content MathML:

<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>

Note, however, the additional remarks on the translations of other kinds of qualifiers that may be used

to specify a domain of integration in the rules for definite integrals following.

When bound variables are present, the situation is more complicated in general, and the following rules

are used.

Rewrite: defint

Translate a definite integral, where expression-in-x is an arbitrary expression involving the

bound variable(s) x

<apply><int/>

<bvar> x </bvar>

<domainofapplication> D </domainofapplication>

expression-in-x

</apply>

to the expression

<apply><csymbol cd="calculus1">defint</csymbol>

D

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

</apply>

But the definite integral with an lowlimit/uplimit pair carries the strong intuition that the range of

integration is oriented, and thus swapping lower and upper limits will change the sign of the result. To

accommodate this, use the following special translation rule:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 209

Rewrite: defint limits

<apply><int/>

<bvar> x </bvar>

<lowlimit> a </lowlimit>

<uplimit> b </uplimit>

expression-in-x

</apply>

where expression-in-x is an expression in the variable x is translated to to the expression:

<apply><csymbol cd="calculus1">defint</csymbol>

<apply><csymbol cd="interval1">oriented_interval</csymbol>

a b

</apply>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

</apply>

The oriented_interval symbol is also used when translating the interval qualifier, when it is used to

specify the domain of integration. Integration is assumed to proceed from the left endpoint to the right

endpoint.

The case for multiple integrands is treated analogously.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

210 Chapter 4. Content Markup

Note that use of the condition qualifier also requires special treatment. In particular, it extends to

multivariate domains by using extra bound variables and a domain corresponding to a cartesian product

as in:

<bind><int/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<condition>

<apply><and/>

<apply><leq/><cn>0</cn><ci>x</ci></apply>

<apply><leq/><ci>x</ci><cn>1</cn></apply>

<apply><leq/><cn>0</cn><ci>y</ci></apply>

<apply><leq/><ci>y</ci><cn>1</cn></apply>

</apply>

</condition>

<apply><times/>

<apply><power/><ci>x</ci><cn>2</cn></apply>

<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>

</bind>

Strict Content MathML equivalent

<apply><csymbol cd="calculus1">defint</csymbol>

<apply><csymbol cd="set1">suchthat</csymbol>

<apply><csymbol cd="set1">cartesianproduct</csymbol>

<csymbol cd="setname1">R</csymbol>

<csymbol cd="setname1">R</csymbol>

</apply>

<apply><csymbol cd="logic1">and</csymbol>

<apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>

<apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>

<apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>

<apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>

</apply>

<bind><csymbol cd="fns11">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<apply><csymbol cd="arith1">times</csymbol>

<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>

<apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>

</apply>

</bind>

</apply>

</apply>

4.4.4.2 Differentiation <diff/>

Class Differential-Operator

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols diff

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 211

The diff element is the differentiation operator element for functions or expressions of a single vari-

able. It may be applied directly to an actual function thereby denoting a function which is the derivative

of the original function, or it can be applied to an expression involving a single variable.

Content MathML

<apply><diff/><ci>f</ci></apply>

Sample Presentation

<msup><mi>f</mi><mo>′</mo></msup>

f
′

Content MathML

<apply><eq/>

<apply><diff/>

<bvar><ci>x</ci></bvar>

<apply><sin/><ci>x</ci></apply>

</apply>

<apply><cos/><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<mfrac>

<mrow><mi>d</mi><mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow></mrow>

<mrow><mi>d</mi><mi>x</mi></mrow>

</mfrac>

<mo>=</mo>

<mrow><mi>cos</mi><mo>⁡</mo><mi>x</mi></mrow>

</mrow>

dsinx
dx

= cosx

The bvar element may also contain a degree element, which specifies the order of the derivative to be

taken.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

212 Chapter 4. Content Markup

Content MathML

<apply><diff/>

<bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>

<apply><power/><ci>x</ci><cn>4</cn></apply>

</apply>

Sample Presentation

<mfrac>

<mrow>

<msup><mi>d</mi><mn>2</mn></msup>

<msup><mi>x</mi><mn>4</mn></msup>

</mrow>

<mrow><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow>

</mfrac>

Mapping to Strict Markup

For the translation to strict Markup it is crucial to realize that in the expression case, the variable is

actually not bound by the differentiation operator.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 213

Rewrite: diff

Translate an expression

<apply><diff/>

<bvar> x </bvar>

expression-in-x

</apply>

where expression-in-x is an expression in the variable x to the expression

<apply>

<apply><csymbol cd="calculus1">diff</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

E

</bind>

</apply>

x

</apply>

Note that the differentiated function is applied to the variable x making its status as a free variable

explicit in strict markup. Thus the strict equivalent of

<apply><diff/>

<bvar><ci>x</ci></bvar>

<apply><sin/><ci>x</ci></apply>

</apply>

is

<apply>

<apply><csymbol cd="calculus1">diff</csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>

</apply>

<ci>x</ci>

</apply>

If the bvar element contains a degree element, use the nthdiff symbol.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

214 Chapter 4. Content Markup

Rewrite: nthdiff

<apply><diff/>

<bvar> x <degree> n </degree></bvar>

expression-in-x

</apply>

where expression-in-x is an is an expression in the variable x is translated to to the expression:

<apply>

<apply><csymbol cd="calculus1">nthdiff</csymbol>

n

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

</apply>

x

</apply>

For example

<apply><diff/>

<bvar><degree><cn>2</cn></degree><ci>x</ci></bvar>

<apply><sin/><ci>x</ci></apply>

</apply>

Strict Content MathML equivalent

<apply>

<apply><csymbol cd="calculus1">nthdiff</csymbol>

<cn>2</cn>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>

</apply>

<ci>x</ci>

</apply>

4.4.4.3 Partial Differentiation <partialdiff/>

Class partialdiff

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols partialdiff partialdiffdegree

The partialdiff element is the partial differentiation operator element for functions or expressions

in several variables.

For the case of partial differentiation of a function, the containing partialdiff takes two arguments:

firstly a list of indices indicating by position which function arguments are involved in constructing the

partial derivatives, and secondly the actual function to be partially differentiated. The indices may be

repeated.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 215

Content MathML

<apply><partialdiff/>

<list><cn>1</cn><cn>1</cn><cn>3</cn></list>

<ci type="function">f</ci>

</apply>

Sample Presentation

<mrow>

<msub>

<mi>D</mi>

<mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn></mrow>

</msub>

<mi>f</mi>

</mrow>

D1,1,3 f

Content MathML

<apply><partialdiff/>

<list><cn>1</cn><cn>1</cn><cn>3</cn></list>

<lambda>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<bvar><ci>z</ci></bvar>

<apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply>

</lambda>

</apply>

Sample Presentation

<mfrac>

<mrow>

<msup><mo>∂</mo><mn>3</mn></msup>

<mrow>

<mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced>

</mrow>

</mrow>

<mrow>

<mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow>

<mrow><mo>∂</mo><mi>z</mi></mrow>

</mrow>

</mfrac>

∂3 f (x,y,z)
∂x2∂z

In the case of algebraic expressions, the bound variables are given by bvar elements, which are children

of the containing apply element. The bvar elements may also contain degree element, which specify

the order of the partial derivative to be taken in that variable.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

216 Chapter 4. Content Markup

Content MathML

<apply><partialdiff/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>

</apply>

Sample Presentation

<mfrac>

<mrow>

<msup><mo>∂</mo><mn>2</mn></msup>

<mrow>

<mi>f</mi>

<mo>⁡</mo>

<mfenced><mi>x</mi><mi>y</mi></mfenced>

</mrow>

</mrow>

<mrow>

<mrow><mo>∂</mo><mi>x</mi></mrow>

<mrow><mo>∂</mo><mi>y</mi></mrow>

</mrow>

</mfrac>

∂2 f (x,y)
∂x∂y

Where a total degree of differentiation must be specified, this is indicated by use of a degree element

at the top level, i.e. without any associated bvar, as a child of the containing apply element.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 217

Content MathML

<apply><partialdiff/>

<bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>

<bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>

<degree><ci>k</ci></degree>

<apply><ci type="function">f</ci>

<ci>x</ci>

<ci>y</ci>

</apply>

</apply>

Sample Presentation

<mfrac>

<mrow>

<msup><mo>∂</mo><mi>k</mi></msup>

<mrow>

<mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced>

</mrow>

</mrow>

<mrow>

<mrow><mo>∂</mo><msup><mi>x</mi><mi>m</mi></msup></mrow>

<mrow><mo>∂</mo><msup><mi>y</mi><mi>n</mi></msup></mrow>

</mrow>

</mfrac>

∂k f (x,y)
∂xm∂yn

Mapping to Strict Markup

When applied to a function, the partialdiff element corresponds to the partialdiff symbol from the

calculus1 content dictionary. No special rules are necessary as the two arguments of partialdiff

translate directly to the two arguments of partialdiff.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

218 Chapter 4. Content Markup

Rewrite: partialdiffdegree

If partialdiff is used with an expression and bvar qualifiers it is rewritten to Strict Content MathML

using the partialdiffdegree symbol.

<apply><partialdiff/>

<bvar> x1 <degree> n1 </degree></bvar>

<bvar> xk <degree> nk </degree></bvar>

<degree> total-n1-nk </degree>

expression-in-x1-xk

</apply>

expression-in-x1-xk is an arbitrary expression involving the bound variables.

<apply>

<apply><csymbol cd="calculus1">partialdiffdegree</csymbol>

<apply><csymbol cd="list1">list</csymbol>

n1 nk

</apply>

total-n1-nk

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x1 </bvar>

<bvar> xk </bvar>

expression-in-x1-xk

</bind>

</apply>

x1

xk

</apply>

If any of the bound variables do not use a degree qualifier, <cn>1</cn> should be used in place of

the degree. If the original expression did not use the total degree qualifier then the second argument to

partialdiffdegree should be the sum of the degrees, for example

<apply><csymbol cd="arith1">plus</csymbol>

n1 nk

</apply>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 219

With this rule, the expression

<apply><partialdiff/>

<bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>

<bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>

<apply><sin/>

<apply><times/><ci>x</ci><ci>y</ci></apply>

</apply>

</apply>

is translated into

<apply>

<apply><csymbol cd="calculus1">partialdiffdegree</csymbol>

<apply><csymbol cd="list1">list</csymbol>

<ci>n</ci><ci>m</ci>

</apply>

<apply><csymbol cd="arith1">plus</csymbol>

<ci>n</ci><ci>m</ci>

</apply>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<apply><csymbol cd="transc1">sin</csymbol>

<apply><csymbol cd="arith1">times</csymbol>

<ci>x</ci><ci>y</ci>

</apply>

</apply>

</bind>

<ci>x</ci>

<ci>y</ci>

</apply>

</apply>

4.4.4.4 Divergence <divergence/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols divergence

The divergence element is the vector calculus divergence operator, often called div. It represents the

divergence function which takes one argument which should be a vector of scalar-valued functions,

intended to represent a vector-valued function, and returns the scalar-valued function giving the diver-

gence of the argument.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

220 Chapter 4. Content Markup

Content MathML

<apply><divergence/><ci>a</ci></apply>

Sample Presentation

<mrow><mi>div</mi><mo>⁡</mo><mfenced><mi>a</mi></mfenced></mrow>

div(a)

Content MathML

<apply><divergence/>

<ci type="vector">E</ci>

</apply>

Sample Presentation

<mrow><mi>div</mi><mo>⁡</mo><mfenced><mi>E</mi></mfenced></mrow>

div(E)

<mrow><mo>∇</mo><mo>⋅</mo><mi>E</mi></mrow>

∇ ·E
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the

coordinate names, in which case the coordinate names must be provided as bound variables.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 221

Content MathML

<apply><divergence/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<bvar><ci>z</ci></bvar>

<vector>

<apply><plus/><ci>x</ci><ci>y</ci></apply>

<apply><plus/><ci>x</ci><ci>z</ci></apply>

<apply><plus/><ci>z</ci><ci>y</ci></apply>

</vector>

</apply>

Sample Presentation

<mrow>

<mi>div</mi>

<mo>⁡</mo>

<mo>(</mo>

<mtable>

<mtr><mtd>

<mi>x</mi>

<mo>↦</mo>

<mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>

</mtd></mtr>

<mtr><mtd>

<mi>y</mi>

<mo>↦</mo>

<mrow><mi>x</mi><mo>+</mo><mi>z</mi></mrow>

</mtd></mtr>

<mtr><mtd>

<mi>z</mi>

<mo>↦</mo>

<mrow><mi>z</mi><mo>+</mo><mi>y</mi></mrow>

</mtd></mtr>

</mtable>

<mo>)</mo>

</mrow>

div

⎛
⎝x �→ x+ y

y �→ x+ z
z �→ z+ y

⎞
⎠

4.4.4.5 Gradient <grad/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols grad

The grad element is the vector calculus gradient operator, often called grad. It is used to represent the

grad function, which takes one argument which should be a scalar-valued function and returns a vector

of functions.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

222 Chapter 4. Content Markup

Content MathML

<apply><grad/><ci type="function">f</ci></apply>

Sample Presentation

<mrow><mi>grad</mi><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow>

grad(f)

<mrow><mo>∇</mo><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow>

∇(f)

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the

coordinate names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply><grad/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<bvar><ci>z</ci></bvar>

<apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply>

</apply>

Sample Presentation

<mrow>

<mi>grad</mi>

<mo>⁡</mo>

<mrow>

<mo>(</mo>

<mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced>

<mo>↦</mo>

<mrow>

<mi>x</mi><mo>⁢</mo><mi>y</mi><mo>⁢</mo><mi>z</mi>

</mrow>

<mo>)</mo>

</mrow>

</mrow>

grad ((x,y,z) �→ xyz)

4.4.4.6 Curl <curl/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols curl

The curl element is used to represent the curl function of vector calculus. It takes one argument which

should be a vector of scalar-valued functions, intended to represent a vector-valued function, and returns

a vector of functions.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 223

Content MathML

<apply><curl/><ci>a</ci></apply>

Sample Presentation

<mrow><mi>curl</mi><mo>⁡</mo><mfenced><mi>a</mi></mfenced></mrow>

curl(a)

<mrow><mo>∇</mo><mo>×</mo><mi>a</mi></mrow>

∇×a

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the

coordinate names, in which case the coordinate names must be provided as bound variables.

4.4.4.7 Laplacian <laplacian/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols Laplacian

The laplacian element represents the Laplacian operator of vector calculus. The Laplacian takes a

single argument which is a vector of scalar-valued functions representing a vector-valued function, and

returns a vector of functions.

Content MathML

<apply><laplacian/><ci type="vector">E</ci></apply>

Sample Presentation

<mrow>

<msup><mo>∇</mo><mn>2</mn></msup>

<mo>⁡</mo>

<mfenced><mi>E</mi></mfenced>

</mrow>

∇2 (E)

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the

coordinate names, in which case the coordinate names must be provided as bound variables.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

224 Chapter 4. Content Markup

Content MathML

<apply><laplacian/>

<bvar><ci>x</ci></bvar>

<bvar><ci>y</ci></bvar>

<bvar><ci>z</ci></bvar>

<apply><ci>f</ci><ci>x</ci><ci>y</ci></apply>

</apply>

Sample Presentation

<mrow>

<msup><mo>∇</mo><mn>2</mn></msup>

<mo>⁡</mo>

<mrow>

<mo>(</mo>

<mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced>

<mo>↦</mo>

<mrow>

<mi>f</mi>

<mo>⁡</mo>

<mfenced><mi>x</mi><mi>y</mi></mfenced>

</mrow>

<mo>)</mo>

</mrow>

</mrow>

∇2 ((x,y,z) �→ f (x,y))

4.4.5 Theory of Sets

4.4.5.1 Set <set>

Class nary-setlist-constructor

Attributes CommonAtt, DefEncAtt, type?

type Attribute Values "set" | "multiset" | text

Content ContExp*

Qualifiers BvarQ,DomainQ

OM Symbols set, multiset

The set represents a function which constructs mathematical sets from its arguments. It is an n-ary

function. The members of the set to be constructed may be given explicitly as child elements of the

constructor, or specified by rule as described in Section 4.3.1.1. There is no implied ordering to the

elements of a set.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 225

Content MathML

<set>

<ci>a</ci><ci>b</ci><ci>c</ci>

</set>

Sample Presentation

<mrow>

<mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>}</mo>

</mrow>

{a,b,c}

In general, a set can be constructed by providing a function and a domain of application. The elements

of the set correspond to the values obtained by evaluating the function at the points of the domain.

Content MathML

<set>

<bvar><ci>x</ci></bvar>

<condition>

<apply><lt/><ci>x</ci><cn>5</cn></apply>

</condition>

<ci>x</ci>

</set>

Sample Presentation

<mrow>

<mo>{</mo>

<mi>x</mi>

<mo>|</mo>

<mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>

<mo>}</mo>

</mrow>

{x|x < 5}

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

226 Chapter 4. Content Markup

Content MathML

<set>

<bvar><ci type="set">S</ci></bvar>

<condition>

<apply><in/><ci>S</ci><ci type="list">T</ci></apply>

</condition>

<ci>S</ci>

</set>

Sample Presentation

<mrow>

<mo>{</mo>

<mi>S</mi>

<mo>|</mo>

<mrow><mi>S</mi><mo>∈</mo><mi>T</mi></mrow>

<mo>}</mo>

</mrow>

{S|S ∈ T}

Content MathML

<set>

<bvar><ci> x </ci></bvar>

<condition>

<apply><and/>

<apply><lt/><ci>x</ci><cn>5</cn></apply>

<apply><in/><ci>x</ci><naturalnumbers/></apply>

</apply>

</condition>

<ci>x</ci>

</set>

Sample Presentation

<mrow>

<mo>{</mo>

<mi>x</mi>

<mo>|</mo>

<mrow>

<mrow><mo>(</mo><mi>x</mi><mo><</mo><mn>5</mn><mo>)</mo></mrow>

<mo>∧</mo>

<mrow>

<mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi>

</mrow>

</mrow>

<mo>}</mo>

</mrow>

{x|(x < 5) ∧ x ∈ N}

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 227

4.4.5.2 List <list>

Class nary-setlist-constructor

Attributes CommonAtt, DefEncAtt, order

order Attribute Values "numeric" | "lexicographic"

Content ContExp*

Qualifiers BvarQ,DomainQ

OM Symbols interval_cc, list

The list elements represents the n-ary function which constructs a list from its arguments. Lists differ

from sets in that there is an explicit order to the elements.

The list entries and order may be given explicitly.

Content MathML

<list>

<ci>a</ci><ci>b</ci><ci>c</ci>

</list>

Sample Presentation

<mrow>

<mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo>

</mrow>

(a,b,c)

In general a list can be constructed by providing a function and a domain of application. The elements

of the list correspond to the values obtained by evaluating the function at the points of the domain.

When this method is used, the ordering of the list elements may not be clear, so the kind of ordering

may be specified by the order attribute. Two orders are supported: lexicographic and numeric.

Content MathML

<list order="numeric">

<bvar><ci>x</ci></bvar>

<condition>

<apply><lt/><ci>x</ci><cn>5</cn></apply>

</condition>

</list>

Sample Presentation

<mrow>

<mo>(</mo>

<mi>x</mi>

<mo>|</mo>

<mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>

<mo>)</mo>

</mrow>

(x|x < 5)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

228 Chapter 4. Content Markup

4.4.5.3 Union <union/>

Class nary-set

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols union

The union element is used to denote the n-ary union of sets. It takes sets as arguments, and denotes the

set that contains all the elements that occur in any of them.

Arguments may be explicitly specified.

Content MathML

<apply><union/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>∪</mo><mi>B</mi></mrow>

A∪B

Arguments may also be specified using qualifier elements as described in Section 4.3.4.1. operator

element can be used as a binding operator to construct the union over a collection of sets.

Content MathML

<apply><union/>

<bvar><ci type="set">S</ci></bvar>

<domainofapplication>

<ci type="list">L</ci>

</domainofapplication>

<ci type="set"> S</ci>

</apply>

Sample Presentation

<mrow><munder><mo>⋃</mo><mi>L</mi></munder><mi>S</mi></mrow>⋃
L

S

4.4.5.4 Intersect <intersect/>

Class nary-set

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols intersect

The intersect element is used to denote the n-ary intersection of sets. It takes sets as arguments,

and denotes the set that contains all the elements that occur in all of them. Its arguments may be

explicitly specified in the enclosing apply element, or specified using qualifier elements as described

in Section 4.3.4.1.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 229

Content MathML

<apply><intersect/>

<ci type="set"> A </ci>

<ci type="set"> B </ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>∩</mo><mi>B</mi></mrow>

A∩B

Content MathML

<apply><intersect/>

<bvar><ci type="set">S</ci></bvar>

<domainofapplication><ci type="list">L</ci></domainofapplication>

<ci type="set"> S </ci>

</apply>

Sample Presentation

<mrow><munder><mo>⋂</mo><mi>L</mi></munder><mi>S</mi></mrow>⋂
L

S

4.4.5.5 Set inclusion <in/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols in

The in element represents the set inclusion relation. It has two arguments, an element and a set. It is

used to denote that the element is in the given set.

Content MathML

<apply><in/><ci>a</ci><ci type="set">A</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow>

a ∈ A

When translating to Strict Content Markup, if the type has value "multiset", then the in symbol

from multiset1 should be used instead.

4.4.5.6 Set exclusion <notin/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols notin

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

230 Chapter 4. Content Markup

The notin represents the negated set inclusion relation. It has two arguments, an element and a set. It

is used to denote that the element is not in the given set.

Content MathML

<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∉</mo><mi>A</mi></mrow>

a �∈ A

When translating to Strict Content Markup, if the type has value "multiset", then the in symbol

from multiset1 should be used instead.

4.4.5.7 Subset <subset/>

Class nary-set-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols subset

The subset element represents the subset relation. It is used to denote that the first argument is a subset

of the second. As described in Section 4.3.4.3, it may also be used as an n-ary operator to express that

each argument is a subset of its predecessor.

Content MathML

<apply><subset/>

<ci type="set">A</ci>

<ci type="set">B</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow>

A ⊆ B

4.4.5.8 Proper Subset <prsubset/>

Class nary-set-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols prsubset

The prsubset element represents the proper subset relation, i.e. that the first argument is a proper

subset of the second. As described in Section 4.3.4.3, it may also be used as an n-ary operator to

express that each argument is a proper subset of its predecessor.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 231

Content MathML

<apply><prsubset/>

<ci type="set">A</ci>

<ci type="set">B</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊂</mo><mi>B</mi></mrow>

A ⊂ B

4.4.5.9 Not Subset <notsubset/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols notsubset

The notsubset element represents the negated subset relation. It is used to denote that the first argu-

ment is not a subset of the second.

Content MathML

<apply><notsubset/>

<ci type="set">A</ci>

<ci type="set">B</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊈</mo><mi>B</mi></mrow>

A �⊆ B

When translating to Strict Content Markup, if the type has value "multiset", then the in symbol

from multiset1 should be used instead.

4.4.5.10 Not Proper Subset <notprsubset/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols notprsubset

The notprsubset element represents the negated proper subset relation. It is used to denote that the

first argument is not a proper subset of the second.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

232 Chapter 4. Content Markup

Content MathML

<apply><notprsubset/>

<ci type="set">A</ci>

<ci type="set">B</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊄</mo><mi>B</mi></mrow>

A �⊂ B

When translating to Strict Content Markup, if the type has value "multiset", then the in symbol

from multiset1 should be used instead.

4.4.5.11 Set Difference <setdiff/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols setdiff, setdiff

The setdiff element represents set difference operator. It takes two sets as arguments, and denotes

the set that contains all the elements that occur in the first set, but not in the second.

Content MathML

<apply><setdiff/>

<ci type="set">A</ci>

<ci type="set">B</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>∖</mo><mi>B</mi></mrow>

A\B

When translating to Strict Content Markup, if the type has value "multiset", then the in symbol

from multiset1 should be used instead.

4.4.5.12 Cardinality <card/>

Class unary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols size, size

The card element represents the cardinality function, which takes a set argument and returns its car-

dinality, i.e. the number of elements in the set. The cardinality of a set is a non-negative integer, or an

infinite cardinal number.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 233

Content MathML

<apply><eq/>

<apply><card/><ci>A</ci></apply>

<cn>5</cn>

</apply>

Sample Presentation

<mrow>

<mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow>

<mo>=</mo>

<mn>5</mn>

</mrow>

|A| = 5

When translating to Strict Content Markup, if the type has value "multiset", then the size symbol

from multiset1 should be used instead.

4.4.5.13 Cartesian product <cartesianproduct/>

Class nary-set

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols cartesian_product

The cartesianproduct element is used to represents the Cartesian product operator. It takes sets

as arguments, which may be explicitly specified in the enclosing apply element, or specified using

qualifier elements as described in Section 4.3.4.1.

Content MathML

<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow>

A×B

4.4.6 Sequences and Series

4.4.6.1 Sum <sum/>

Class sum

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols sum

The sum element represents the n-ary addition operator. The terms of the sum are normally specified by

rule through the use of qualifiers. While it can be used with an explicit list of arguments, this is strongly

discouraged, and the plus operator should be used instead in such situations.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

234 Chapter 4. Content Markup

The sum operator may be used either with or without explicit bound variables. When a bound variable

is used, the sum element is followed by one or more bvar elements giving the index variables, followed

by qualifiers giving the domain for the index variables. The final child in the enclosing apply is then an

expression in the bound variables, and the terms of the sum are obtained by evaluating this expression at

each point of the domain of the index variables. Depending on the structure of the domain, the domain

of summation is often given by using uplimit and lowlimit to specify upper and lower limits for the

sum.

When no bound variables are explicitly given, the final child of the enclosing apply element must be a

function, and the terms of the sum are obtained by evaluating the function at each point of the domain

specified by qualifiers.

Content MathML

<apply><sum/>

<bvar><ci>x</ci></bvar>

<lowlimit><ci>a</ci></lowlimit>

<uplimit><ci>b</ci></uplimit>

<apply><ci>f</ci><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<munderover>

<mo>∑</mo>

<mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow>

<mi>b</mi>

</munderover>

<mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow>

</mrow>
b

∑
x=a

f (x)

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 235

Content MathML

<apply><sum/>

<bvar><ci>x</ci></bvar>

<condition>

<apply><in/><ci>x</ci><ci type="set">B</ci></apply>

</condition>

<apply><ci type="function">f</ci><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<munder>

<mo>∑</mo>

<mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow>

</munder>

<mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow>

</mrow>

∑
x∈B

f (x)

Content MathML

<apply><sum/>

<domainofapplication>

<ci type="set">B</ci>

</domainofapplication>

<ci type="function">f</ci>

</apply>

Sample Presentation

<mrow><munder><mo>∑</mo><mi>B</mi></munder><mi>f</mi></mrow>

∑
B

f

Mapping to Strict Content MathML

When no explicit bound variables are used, no special rules are required to rewrite sums as Strict

Content beyond the generic rules for rewriting expressions using qualifiers. However, when bound

variables are used, it is necessary to introduce a lambda construction to rewrite the expression in the

bound variables as a function.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

236 Chapter 4. Content Markup

Content MathML

<apply><sum/>

<bvar><ci>i</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<uplimit><cn>100</cn></uplimit>

<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">sum</csymbol>

<apply><csymbol cd="interval1">integer_interval</csymbol>

<cn>0</cn>

<cn>100</cn>

</apply>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>i</ci></bvar>

<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>

</bind>

</apply>

4.4.6.2 Product <product/>

Class product

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols product

The product element represents the n-ary multiplication operator. The terms of the product are normal-

ly specified by rule through the use of qualifiers. While it can be used with an explicit list of arguments,

this is strongly discouraged, and the times operator should be used instead in such situations.

The product operator may be used either with or without explicit bound variables. When a bound vari-

able is used, the product element is followed by one or more bvar elements giving the index variables,

followed by qualifiers giving the domain for the index variables. The final child in the enclosing apply

is then an expression in the bound variables, and the terms of the product are obtained by evaluating

this expression at each point of the domain. Depending on the structure of the domain, it is commonly

given using uplimit and lowlimit qualifiers.

When no bound variables are explicitly given, the final child of the enclosing apply element must be

a function, and the terms of the product are obtained by evaluating the function at each point of the

domain specified by qualifiers.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 237

Content MathML

<apply><product/>

<bvar><ci>x</ci></bvar>

<lowlimit><ci>a</ci></lowlimit>

<uplimit><ci>b</ci></uplimit>

<apply><ci type="function">f</ci>

<ci>x</ci>

</apply>

</apply>

Sample Presentation

<mrow>

<munderover>

<mo>∏</mo>

<mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow>

<mi>b</mi>

</munderover>

<mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow>

</mrow>

b

∏
x=a

f (x)

Content MathML

<apply><product/>

<bvar><ci>x</ci></bvar>

<condition>

<apply><in/>

<ci>x</ci>

<ci type="set">B</ci>

</apply>

</condition>

<apply><ci>f</ci><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<munder>

<mo>∏</mo>

<mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow>

</munder>

<mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow>

</mrow>

∏
x∈B

f (x)

Mapping to Strict Content MathML

When no explicit bound variables are used, no special rules are required to rewrite products as Strict

Content beyond the generic rules for rewriting expressions using qualifiers. However, when bound

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

238 Chapter 4. Content Markup

variables are used, it is necessary to introduce a lambda construction to rewrite the expression in the

bound variables as a function.

Content MathML

<apply><product/>

<bvar><ci>i</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<uplimit><cn>100</cn></uplimit>

<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">product</csymbol>

<apply><csymbol cd="interval1">integer_interval</csymbol>

<cn>0</cn>

<cn>100</cn>

</apply>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar><ci>i</ci></bvar>

<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>

</bind>

</apply>

4.4.6.3 Limits <limit/>

Class limit

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers lowlimit, condition

OM Symbols limit, both_sides, above, below, null

The limit element represents the operation of taking a limit of a sequence. The limit point is expressed

by specifying a lowlimit and a bvar, or by specifying a condition on one or more bound variables.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 239

Content MathML

<apply><limit/>

<bvar><ci>x</ci></bvar>

<lowlimit><cn>0</cn></lowlimit>

<apply><sin/><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<munder>

<mi>lim</mi>

<mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow>

</munder>

<mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow>

</mrow>

lim
x→0

sinx

Content MathML

<apply><limit/>

<bvar><ci>x</ci></bvar>

<condition>

<apply><tendsto/><ci>x</ci><cn>0</cn></apply>

</condition>

<apply><sin/><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<munder>

<mi>lim</mi>

<mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow>

</munder>

<mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow>

</mrow>

lim
x→0

sinx

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

240 Chapter 4. Content Markup

Content MathML

<apply><limit/>

<bvar><ci>x</ci></bvar>

<condition>

<apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>

</condition>

<apply><sin/><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>

<munder>

<mi>lim</mi>

<mrow><mi>x</mi><mo>→</mo><msup><mi>a</mi><mo>+</mo></msup></mrow>

</munder>

<mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow>

</mrow>

lim
x→a+

sinx

The direction from which a limiting value is approached is given as an argument limit in Strict Content

MathML, which supplies the direction specifier symbols both_sides, above, and below for this purpose.

The first correspond to the values "all", "above", and "below" of the type attribute of the tendsto

element below. The null symbol corresponds to the case where no type attribute is present. We translate

Rewrite: limits condition

<apply><limit/>

<bvar> x </bvar>

<condition>

<apply><tendsto/> x <cn>0</cn> </apply>

</condition>

expression-in-x

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="limit1">limit</csymbol>

<cn>0</cn>

<csymbol cd="limit1">null </csymbol>

<bind><csymbol cd="fns1">lambda</csymbol>

<bvar> x </bvar>

expression-in-x

</bind>

</apply>

where expression-in-x is an arbitrary expression involving the bound variable(s), and the choice

of symbol, null depends on the type attribute of the tendsto element as described above.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 241

4.4.6.4 Tends To <tendsto/>

Class binary-reln

Attributes CommonAtt, DefEncAtt, type?

type Attribute Values string

Content Empty

OM Symbols limit

The tendsto element is used to express the relation that a quantity is tending to a specified value.

While this is used primarily as part of the statement of a mathematical limit, it exists as a construct on

its own to allow one to capture mathematical statements such as "As x tends to y," and to provide a

building block to construct more general kinds of limits.

The tendsto element takes the attributes type to set the direction from which the limiting value is

approached.

Content MathML

<apply><tendsto type="above"/>

<apply><power/><ci>x</ci><cn>2</cn></apply>

<apply><power/><ci>a</ci><cn>2</cn></apply>

</apply>

Sample Presentation

<mrow>

<msup><mi>x</mi><mn>2</mn></msup>

<mo>→</mo>

<msup><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo></msup>

</mrow>

x2 → a2+

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

242 Chapter 4. Content Markup

Content MathML

<apply><tendsto/>

<vector><ci>x</ci><ci>y</ci></vector>

<vector>

<apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>

<apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>

</vector>

</apply>

Sample Presentation

<mfenced><mtable>

<mtr><mtd><mi>x</mi></mtd></mtr>

<mtr><mtd><mi>y</mi></mtd></mtr>

</mtable></mfenced>

<mo>→</mo>

<mfenced><mtable>

<mtr><mtd>

<mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced>

</mtd></mtr>

<mtr><mtd>

<mi>g</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced>

</mtd></mtr>

</mtable></mfenced>(
x
y

)
→

(
f (x,y)
g(x,y)

)

Mapping to Strict Content MathML

The usage of tendsto to qualify a limit is formally defined by writing the expression in Strict Content

MathML via the rule Rewrite: limits condition. The meanings of other more idiomatic uses of tendsto

are not formally defined by this specification. When rewriting these cases to Strict Content MathML,

tendsto should be rewritten to an annotated identifier as shown below.

Rewrite: tendsto

<tendsto/>

Strict Content MathML equivalent:

<semantics>

<ci>tendsto</ci>

<annotation-xml encoding="MathML-Content">

<tendsto/>

</annotation-xml>

</semantics>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 243

4.4.7 Elementary classical functions

4.4.7.1 Common trigonometric functions <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols sin

These operator elements denote the standard trigonometric functions. Since their standard interpreta-

tions are widely known, they are discussed as a group.

Content MathML

<apply><sin/><ci>x</ci></apply>

Sample Presentation

<mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow>

sinx

Content MathML

<apply><sin/>

<apply><plus/>

<apply><cos/><ci>x</ci></apply>

<apply><power/><ci>x</ci><cn>3</cn></apply>

</apply>

</apply>

Sample Presentation

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mrow>

<mo>(</mo>

<mrow><mi>cos</mi><mo>⁡</mo><mi>x</mi></mrow>

<mo>+</mo>

<msup><mi>x</mi><mn>3</mn></msup>

<mo>)</mo>

</mrow>

</mrow>

sin
(
cosx+ x3

)

4.4.7.2 Common inverses of trigonometric functions <arcsin/>, <arccos/>, <arctan/>,

<arcsec/>, <arccsc/>, <arccot/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols arcsin

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

244 Chapter 4. Content Markup

These operator elements denote the inverses of standard trigonometric functions. Differing definitions

are in use so for maximum interoperability applications evaluating such expressions should follow the

definitions in [Abramowitz1977].

Content MathML

<apply><arcsin/><ci>x</ci></apply>

Sample Presentations

<mrow>

<mi>arcsin</mi>

<mo>⁡</mo>

<mi>x</mi>

</mrow>

arcsinx

<mrow>

<msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>

<mo>⁡</mo>

<mi>x</mi>

</mrow>

sin−1 x

4.4.7.3 Common hyperbolic functions <sinh/>, <cosh/>, <tanh/>, <sech/>, <csch/>,

<coth/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols sinh

These operator elements denote the standard hyperbolic functions. Since their standard interpretations

are widely known, they are discussed as a group.

Content MathML

<apply><sinh/><ci>x</ci></apply>

Sample Presentation

<mrow><mi>sinh</mi><mo>⁡</mo><mi>x</mi></mrow>

4.4.7.4 Common inverses of hyperbolic functions <arcsinh/>, <arccosh/>, <arctanh/>,

<arcsech/>, <arccsch/>, <arccoth/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols arcsinh

These operator elements denote the inverses of standard hyperbolic functions. Differing definitions

are in use so for maximum interoperability applications evaluating such expressions should follow the

definitions in [Abramowitz1977].

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 245

Content MathML

<apply><arcsinh/><ci>x</ci></apply>

Sample Presentations

<mrow>

<mi>arcsinh</mi>

<mo>⁡</mo>

<mi>x</mi>

</mrow>

<mrow>

<msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>

<mo>⁡</mo>

<mi>x</mi>

</mrow>

4.4.7.5 Exponential <exp/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols exp

The exp element represents the exponentiation function associated with the inverse of the ln function.

It takes one argument.

Content MathML

<apply><exp/><ci>x</ci></apply>

Sample Presentation

<msup><mi>e</mi><mi>x</mi></msup>

ex

4.4.7.6 Natural Logarithm <ln/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols ln

The ln element represents the natural logarithm function.

Content MathML

<apply><ln/><ci>a</ci></apply>

Sample Presentation

<mrow><mi>ln</mi><mo>⁡</mo><mi>a</mi></mrow>

lna

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

246 Chapter 4. Content Markup

4.4.7.7 Logarithm <log/> , <logbase>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers logbase

OM Symbols log

The log elements represents the logarithm function relative to a given base. When present, the logbase

qualifier specifies the base. Otherwise, the base is assumed to be 10. apply.

Content MathML

<apply><log/>

<logbase><cn>3</cn></logbase>

<ci>x</ci>

</apply>

Sample Presentation

<mrow><msub><mi>log</mi><mn>3</mn></msub><mo>⁡</mo><mi>x</mi></mrow>

log3 x

Content MathML

<apply><log/><ci>x</ci></apply>

Sample Presentation

<mrow><mi>log</mi><mo>⁡</mo><mi>x</mi></mrow>

logx

Mapping to Strict Content MathML

When mapping log to Strict Content, one uses the log symbol denoting the function that returns the

log of its second argument with respect to the base specified by the first argument. When logbase is

present, it determines the base. Otherwise, the default base of 10 must be explicitly provided in Strict

markup. See the following example.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 247

<apply><plus/>

<apply>

<log/>

<logbase><cn>2</cn></logbase>

<ci>x</ci>

</apply>

<apply>

<log/>

<ci>y</ci>

</apply>

</apply>

Strict Content MathML equivalent:

<apply>

<csymbol cd="arith1">plus</csymbol>

<apply>

<csymbol cd="transc1">log</csymbol>

<cn>2</cn>

<ci>x</ci>

</apply>

<apply>

<csymbol cd="transc1">log</csymbol>

<cn>10</cn>

<ci>y</ci>

</apply>

</apply>

4.4.8 Statistics

4.4.8.1 Mean <mean/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols mean, mean

The mean element represents the function returning arithmetic mean or average of a data set or random

variable.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

248 Chapter 4. Content Markup

Content MathML

<apply><mean/>

<cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn>

</apply>

Sample Presentation

<mrow>

<mo>⟨</mo>

<mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>3</mn>

<mo>,</mo><mn>7</mn><mo>,</mo><mn>4</mn>

<mo>⟩</mo>

</mrow>

〈3,4,3,7,4〉

Content MathML

<apply><mean/><ci>X</ci></apply>

Sample Presentation

<mrow><mo>⟨</mo><mi>X</mi><mo>⟩</mo></mrow>

〈X〉
<mover><mi>X</mi><mo>¯</mo></mover>

X

Mapping to Strict Markup

When the mean element is applied to an explicit list of arguments, the translation to Strict Content

markup is direct, using the mean symbol from the s_data1 content dictionary, as described in Rewrite:

element. When it is applied to a distribution, then the mean symbol from the s_dist1 content dictionary

should be used. In the case with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.

4.4.8.2 Standard Deviation <sdev/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols sdev, sdev

The sdev element is used to denote the standard deviation function for a data set or random variable.

Standard deviation is a statistical measure of dispersion given by the square root of the variance.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 249

Content MathML

<apply><sdev/>

<cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

Sample Presentation

<mrow>

<mo>σ</mo>

<mo>⁡</mo>

<mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>

</mrow>

σ(3,4,2,2)

Content MathML

<apply><sdev/>

<ci type="discrete_random_variable">X</ci>

</apply>

Sample Presentation

<mrow><mo>σ</mo><mo>⁡</mo><mfenced><mi>X</mi></mfenced></mrow>

σ(X)

Mapping to Strict Markup

When the sdev element is applied to an explicit list of arguments, the translation to Strict Content

markup is direct, using the sdev symbol from the s_data1 content dictionary, as described in Rewrite:

element. When it is applied to a distribution, then the sdev symbol from the s_dist1 content dictionary

should be used. In the case with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.

4.4.8.3 Variance <variance/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ,DomainQ

OM Symbols variance, variance

The variance element represents the variance of a data set or random variable. Variance is a statistical

measure of dispersion, averaging the squares of the deviations of possible values from their mean.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

250 Chapter 4. Content Markup

Content MathML

<apply><variance/>

<cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

Sample Presentation

<mrow>

<msup>

<mo>σ</mo>

<mn>2</mn>

</msup>

<mo>⁡</mo>

<mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>

</mrow>

σ2 (3,4,2,2)

Content MathML

<apply><variance/>

<ci type="discrete_random_variable"> X</ci>

</apply>

Sample Presentation

<mrow>

<msup><mo>σ</mo><mn>2</mn></msup>

<mo>⁡</mo>

<mfenced><mi>X</mi></mfenced>

</mrow>

σ2 (X)

Mapping to Strict Markup

When the variance element is applied to an explicit list of arguments, the translation to Strict Con-

tent markup is direct, using the variance symbol from the s_data1 content dictionary, as described in

Rewrite: element. When it is applied to a distribution, then the variance symbol from the s_dist1 content

dictionary should be used. In the case with qualifiers use Rewrite: n-ary domainofapplication with the

same caveat.

4.4.8.4 Median <median/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols median

The median element represents an operator returning the median of its arguments. The median is a

number separating the lower half of the sample values from the upper half.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 251

Content MathML

<apply><median/>

<cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

Sample Presentation

<mrow>

<mi>median</mi>

<mo>⁡</mo>

<mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>

</mrow>

median(3,4,2,2)

Mapping to Strict Markup

When the median element is applied to an explicit list of arguments, the translation to Strict Content

markup is direct, using the median symbol from the s_data1 content dictionary, as described in Rewrite:

element.

4.4.8.5 Mode <mode/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols mode

The mode element is used to denote the mode of its arguments. The mode is the value which occurs

with the greatest frequency.

Content MathML

<apply><mode/>

<cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

Sample Presentation

<mrow>

<mi>mode</mi>

<mo>⁡</mo>

<mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>

</mrow>

mode(3,4,2,2)

Mapping to Strict Markup

When the mode element is applied to an explicit list of arguments, the translation to Strict Content

markup is direct, using the mode symbol from the s_data1 content dictionary, as described in Rewrite:

element.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

252 Chapter 4. Content Markup

4.4.8.6 Moment <moment/>, <momentabout>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers degree, momentabout

OM Symbols moment, moment

The moment element is used to denote the ith moment of a set of data set or random variable. The

moment function accepts the degree and momentabout qualifiers. If present, the degree schema

denotes the order of the moment. Otherwise, the moment is assumed to be the first order moment.

When used with moment, the degree schema is expected to contain a single child. If present, the

momentabout schema denotes the point about which the moment is taken. Otherwise, the moment is

assumed to be the moment about zero.

Content MathML

<apply><moment/>

<degree><cn>3</cn></degree>

<momentabout><mean/></momentabout>

<cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>

</apply>

Sample Presentation

<msub>

<mrow>

<mo>⟨</mo>

<msup>

<mfenced><mn>6</mn><mn>4</mn><mn>2</mn><mn>2</mn><mn>5</mn></mfenced>

<mn>3</mn>

</msup>

<mo>⟩</mo>

</mrow>

<mi>mean</mi>

</msub>

〈(6,4,2,2,5)3〉mean

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 253

Content MathML

<apply><moment/>

<degree><cn>3</cn></degree>

<momentabout><ci>p</ci></momentabout>

<ci>X</ci>

</apply>

Sample Presentation

<msub>

<mrow>

<mo>⟨</mo><msup><mi>X</mi><mn>3</mn></msup><mo>⟩</mo>

</mrow>

<mi>p</mi>

</msub>

〈X3〉p

Mapping to Strict Markup

When rewriting to Strict Markup, the moment symbol from the s_data1 content dictionary is used when

the moment element is applied to an explicit list of arguments. When it is applied to a distribution, then

the moment symbol from the s_dist1 content dictionary should be used. Both operators take the degree

as the first argument, the point as the second, followed by the data set or random variable respectively.

<apply><moment/>

<degree><cn>3</cn></degree>

<momentabout><ci>p</ci></momentabout>

<ci>X</ci>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="s_dist1">moment</csymbol>

<cn>3</cn>

<ci>p</ci>

<ci>X</ci>

</apply>

4.4.9 Linear Algebra

4.4.9.1 Vector <vector>

Class nary-constructor

Attributes CommonAtt, DefEncAtt

Qualifiers BvarQ, DomainQ

Content ContExp*

OM Symbol vector

A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent

to a matrix consisting of a single column, and the transpose of a vector as a matrix consisting of a single

row.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

254 Chapter 4. Content Markup

The components of a vectormay be given explicitly as child elements, or specified by rule as described

in Section 4.3.1.1.

Content MathML

<vector>

<apply><plus/><ci>x</ci><ci>y</ci></apply>

<cn>3</cn>

<cn>7</cn>

</vector>

Sample Presentation

<mrow>

<mo>(</mo>

<mtable>

<mtr><mtd><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mtd></mtr>

<mtr><mtd><mn>3</mn></mtd></mtr>

<mtr><mtd><mn>7</mn></mtd></mtr>

</mtable>

<mo>)</mo>

</mrow> ⎛
⎝x+ y

3
7

⎞
⎠

<mfenced>

<mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>

<mn>3</mn>

<mn>7</mn>

</mfenced>

(x+ y,3,7)

4.4.9.2 Matrix <matrix>

Class nary-constructor

Attributes CommonAtt, DefEncAtt

Qualifiers BvarQ, DomainQ

Content ContExp*

OM Symbol matrix

A matrix is regarded as made up of matrix rows, each of which can be thought of as a special type of

vector.

Note that the behavior of the matrix and matrixrow elements is substantially different from the

mtable and mtr presentation elements.

The matrix element is a constructor element, so the entries may be given explicitly as child elements,

or specified by rule as described in Section 4.3.1.1. In the latter case, the entries are specified by

providing a function and a 2-dimensional domain of application. The entries of the matrix correspond

to the values obtained by evaluating the function at the points of the domain.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 255

Content MathML

<matrix>

<bvar><ci type="integer">i</ci></bvar>

<bvar><ci type="integer">j</ci></bvar>

<condition>

<apply><and/>

<apply><in/>

<ci>i</ci>

<interval><ci>1</ci><ci>5</ci></interval>

</apply>

<apply><in/>

<ci>j</ci>

<interval><ci>5</ci><ci>9</ci></interval>

</apply>

</apply>

</condition>

<apply><power/><ci>i</ci><ci>j</ci></apply>

</matrix>

Sample Presentation

<mrow>

<mo>[</mo>

<msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub>

<mo>|</mo>

<mrow>

<msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub>

<mo>=</mo>

<msup><mi>i</mi><mi>j</mi></msup>

</mrow>

<mo>;</mo>

<mrow>

<mrow>

<mi>i</mi>

<mo>∈</mo>

<mfenced open="[" close="]"><mi>1</mi><mi>5</mi></mfenced>

</mrow>

<mo>∧</mo>

<mrow>

<mi>j</mi>

<mo>∈</mo>

<mfenced open="[" close="]"><mi>5</mi><mi>9</mi></mfenced>

</mrow>

</mrow>

<mo>]</mo>

</mrow>

[mi, j
∣∣mi, j = i j; i ∈ [1,5]∧ j ∈ [5,9]]

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

256 Chapter 4. Content Markup

4.4.9.3 Matrix row <matrixrow>

Class nary-constructor

Attributes CommonAtt, DefEncAtt

Qualifiers BvarQ, DomainQ

Content ContExp*

OM Symbol matrixrow

This element is an n-ary constructor used to represent rows of matrices.

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.9.4 Determinant <determinant/>

Class unary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols determinant

This element is used for the unary function which returns the determinant of its argument, which should

be a square matrix.

Content MathML

<apply><determinant/>

<ci type="matrix">A</ci>

</apply>

Sample Presentation

<mrow><mi>det</mi><mo>⁡</mo><mi>A</mi></mrow>

detA

4.4.9.5 Transpose <transpose/>

Class unary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols transpose

This element represents a unary function that signifies the transpose of the given matrix or vector.

Content MathML

<apply><transpose/>

<ci type="matrix">A</ci>

</apply>

Sample Presentation

<msup><mi>A</mi><mi>T</mi></msup>

AT

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 257

4.4.9.6 Selector <selector/>

Class nary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols vector_selector, matrix_selector

The selector element is the operator for indexing into vectors, matrices and lists. It accepts one or

more arguments. The first argument identifies the vector, matrix or list from which the selection is

taking place, and the second and subsequent arguments, if any, indicate the kind of selection taking

place.

When selector is used with a single argument, it should be interpreted as giving the sequence of all

elements in the list, vector or matrix given. The ordering of elements in the sequence for a matrix is

understood to be first by column, then by row; so the resulting list is of matrix rows given entry by

entry. That is, for a matrix (ai, j), where the indices denote row and column, respectively, the ordering

would be a1,1, a1,2, ... a2,1, a2,2 ... etc.

When two arguments are given, and the first is a vector or list, the second argument specifies the index

of an entry in the list or vector. If the first argument is a matrix then the second argument specifies the

index of a matrix row.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix,

the second and third arguments specify the row and column indices of the selected element.

Content MathML

<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>

Sample Presentation

<msub><mi>V</mi><mn>1</mn></msub>

V1

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

258 Chapter 4. Content Markup

Content MathML

<apply><eq/>

<apply><selector/>

<matrix>

<matrixrow><cn>1</cn><cn>2</cn></matrixrow>

<matrixrow><cn>3</cn><cn>4</cn></matrixrow>

</matrix>

<cn>1</cn>

</apply>

<matrix>

<matrixrow><cn>1</cn><cn>2</cn></matrixrow>

</matrix>

</apply>

Sample Presentation

<mrow>

<msub>

<mrow>

<mo>(</mo>

<mtable>

<mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr>

<mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr>

</mtable>

<mo>)</mo>

</mrow>

<mn>1</mn>

</msub>

<mo>=</mo>

<mrow>

<mo>(</mo>

<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable>

<mo>)</mo>

</mrow>

</mrow> (
1 2
3 4

)
1

=
(
1 2

)

4.4.9.7 Vector product <vectorproduct/>

Class binary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols vectorproduct

This element represents the vector product. It takes two three-dimensional vector arguments and repre-

sents as value a three-dimensional vector.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 259

Content MathML

<apply><eq/>

<apply><vectorproduct/>

<ci type="vector"> A </ci>

<ci type="vector"> B </ci>

</apply>

<apply><times/>

<ci>a</ci>

<ci>b</ci>

<apply><sin/><ci>θ</ci></apply>

<ci type="vector"> N </ci>

</apply>

</apply>

Sample Presentation

<mrow>

<mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow>

<mo>=</mo>

<mrow>

<mi>a</mi>

<mo>⁢</mo>

<mi>b</mi>

<mo>⁢</mo>

<mrow><mi>sin</mi><mo>⁡</mo><mi>θ</mi></mrow>

<mo>⁢</mo>

<mi>N</mi>

</mrow>

</mrow>

A×B = absinθN

4.4.9.8 Scalar product <scalarproduct/>

Class binary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols scalarproduct

This element represents the scalar product function. It takes two vector arguments and returns a scalar

value.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

260 Chapter 4. Content Markup

Content MathML

<apply><eq/>

<apply><scalarproduct/>

<ci type="vector">A</ci>

<ci type="vector">B</ci>

</apply>

<apply><times/>

<ci>a</ci>

<ci>b</ci>

<apply><cos/><ci>θ</ci></apply>

</apply>

</apply>

Sample Presentation

<mrow>

<mrow><mi>A</mi><mo>.</mo><mi>B</mi></mrow>

<mo>=</mo>

<mrow>

<mi>a</mi>

<mo>⁢</mo>

<mi>b</mi>

<mo>⁢</mo>

<mrow><mi>cos</mi><mo>⁡</mo><mi>θ</mi></mrow>

</mrow>

</mrow>

A.B = abcosθ

4.4.9.9 Outer product <outerproduct/>

Class binary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols outerproduct

This element represents the outer product function. It takes two vector arguments and returns as value

a matrix.

Content MathML

<apply><outerproduct/>

<ci type="vector">A</ci>

<ci type="vector">B</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊗</mo><mi>B</mi></mrow>

A⊗B

4.4.10 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 261

4.4.10.1 integers <integers/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols Z

This element represents the set of integers, positive, negative and zero.

Content MathML

<apply><in/>

<cn type="integer"> 42 </cn>

<integers/>

</apply>

Sample Presentation

<mrow><mn>42</mn><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow>

42 ∈ Z

4.4.10.2 reals <reals/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols R

This element represents the set of real numbers.

Content MathML

<apply><in/>

<cn type="real"> 44.997</cn>

<reals/>

</apply>

Sample Presentation

<mrow>

<mn>44.997</mn><mo>∈</mo><mi mathvariant="double-struck">R</mi>

</mrow>

44.997 ∈ R

4.4.10.3 Rational Numbers <rationals/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols Q

This element represents the set of rational numbers.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

262 Chapter 4. Content Markup

Content MathML

<apply><in/>

<cn type="rational"> 22 <sep/>7</cn>

<rationals/>

</apply>

Sample Presentation

<mrow>

<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

<mo>∈</mo>

<mi mathvariant="double-struck">Q</mi>

</mrow>

22/7 ∈Q

4.4.10.4 Natural Numbers <naturalnumbers/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols N

This element represents the set of natural numbers (including zero).

Content MathML

<apply><in/>

<cn type="integer">1729</cn>

<naturalnumbers/>

</apply>

Sample Presentation

<mrow>

<mn>1729</mn><mo>∈</mo><mi mathvariant="double-struck">N</mi>

</mrow>

1729 ∈ N

4.4.10.5 complexes <complexes/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols C

This element represents the set of complex numbers.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 263

Content MathML

<apply><in/>

<cn type="complex-cartesian">17<sep/>29</cn>

<complexes/>

</apply>

Sample Presentation

<mrow>

<mrow><mn>17</mn><mo>+</mo><mn>29</mn><mo>⁢</mo><mi>i</mi></mrow>

<mo>∈</mo>

<mi mathvariant="double-struck">C</mi>

</mrow>

17+29i ∈ C

4.4.10.6 primes <primes/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols P

This element represents the set of positive prime numbers.

Content MathML

<apply><in/>

<cn type="integer">17</cn>

<primes/>

</apply>

Sample Presentation

<mrow><mn>17</mn><mo>∈</mo><mi mathvariant="double-struck">P</mi></mrow>

17 ∈ P

4.4.10.7 Exponential e <exponentiale/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols e

This element represents the base of the natural logarithm, approximately 2.718.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

264 Chapter 4. Content Markup

Content MathML

<apply><eq/>

<apply><ln/><exponentiale/></apply>

<cn>1</cn>

</apply>

Sample Presentation

<mrow>

<mrow><mi>ln</mi><mo>⁡</mo><mi>e</mi></mrow>

<mo>=</mo>

<mn>1</mn>

</mrow>

lne = 1

4.4.10.8 Imaginary i <imaginaryi/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols i

This element represents the mathematical constant which is the square root of -1, commonly written i

Content MathML

<apply><eq/>

<apply><power/><imaginaryi/><cn>2</cn></apply>

<cn>-1</cn>

</apply>

Sample Presentation

<mrow><msup><mi>i</mi><mn>2</mn></msup><mo>=</mo><mn>-1</mn></mrow>

i2 =−1

4.4.10.9 Not A Number <notanumber/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols NaN

This element represents the notion of not-a-number, i.e. the result of an ill-posed floating computation.

See [IEEE754].

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 265

Content MathML

<apply><eq/>

<apply><divide/><cn>0</cn><cn>0</cn></apply>

<notanumber/>

</apply>

Sample Presentation

<mrow>

<mrow><mn>0</mn><mo>/</mo><mn>0</mn></mrow>

<mo>=</mo>

<mi>NaN</mi>

</mrow>

0/0 = NaN

4.4.10.10 True <true/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols true

This element represents the Boolean value true, i.e. the logical constant for truth.

Content MathML

<apply><eq/>

<apply><or/>

<true/>

<ci type="boolean">P</ci>

</apply>

<true/>

</apply>

Sample Presentation

<mrow>

<mrow><mi>true</mi><mo>∨</mo><mi>P</mi></mrow>

<mo>=</mo>

<mi>true</mi>

</mrow>

true∨P = true

4.4.10.11 False <false/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols false

This element represents the Boolean value false, i.e. the logical constant for falsehood.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

266 Chapter 4. Content Markup

Content MathML

<apply><eq/>

<apply><and/>

<false/>

<ci type="boolean">P</ci>

</apply>

<false/>

</apply>

Sample Presentation

<mrow>

<mrow><mi>false</mi><mo>∧</mo><mi>P</mi></mrow>

<mo>=</mo>

<mi>false</mi>

</mrow>

false∧P = false

4.4.10.12 Empty Set <emptyset/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols emptyset, emptyset

This element is used to represent the empty set, that is the set which contains no members.

Content MathML

<apply><neq/>

<integers/>

<emptyset/>

</apply>

Sample Presentation

<mrow>

<mi mathvariant="double-struck">Z</mi><mo>≠</mo><mi>∅</mi>

</mrow>

Z �=∅

Mapping to Strict Markup

In some situations, it may be clear from context that emptyset corresponds to the emptyset However, as

there is no method other than annotation for an author to explicitly indicate this, it is always acceptable

to translate to the emptyset symbol from the set1 CD.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.4. Content MathML for Specific Operators and Constants 267

4.4.10.13 pi <pi/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols pi

This element represents pi, approximately 3.142, which is the ratio of the circumference of a circle to

its diameter.

Content MathML

<apply><approx/>

<pi/>

<cn type="rational">22<sep/>7</cn>

</apply>

Sample Presentation

<mrow>

<mi>π</mi>

<mo>≃</mo>

<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

</mrow>

π � 22/7

4.4.10.14 Euler gamma <eulergamma/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols gamma

This element denotes the gamma constant, approximately 0.5772.

Content MathML

<apply><approx/>

<eulergamma/>

<cn>0.5772156649</cn>

</apply>

Sample Presentation

<mrow><mi>γ</mi><mo>≃</mo><mn>0.5772156649</mn></mrow>

γ � 0.5772156649

4.4.10.15 infinity <infinity/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols infinity

This element represents the notion of infinity.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

268 Chapter 4. Content Markup

Content MathML

<infinity/>

Sample Presentation

<mi>∞</mi>

∞

4.5 Deprecated Content Elements

4.5.1 Declare <declare>
Attributes CommonAtt, type, scope, occurrence, definitionURL, encoding

type Attribute defines the MathML element type of the identifier declared.

scope Attribute defines the scope of application of the declaration.

nargs Attribute number of arguments for function declarations.

occurrence Attribute values "prefix" | "infix" | "function-model"

definitionURL Attribute URI pointing to detailed semantics of the function.

encoding Attribute syntax of the detailed semantics of the function.

Content ContExp, ContExp?

MathML2 provided the declare element to bind properties like types to symbols and variables and to

define abbreviations for structure sharing. This element is deprecated in MathML 3. Structure sharing

can obtained via the share element (see Section 4.2.7 for details).

4.5.2 Relation <reln>

Content ContExp*

MathML1 provided the reln element to construct an equation or relation. This usage was deprecated

in MathML 2.0 in favor of the more generally usable apply.

4.5.3 Relation <fn>

Content ContExp

MathML1 provided the fn element to extend the collection of known mathematical functions. This

usage was deprecated in MathML 2.0 in favor of the more generally applicable csymbol.

4.6 The Strict Content MathML Transformation

MathML 3 assigns semantics to content markup by defining a mapping to Strict Content MathML.

Strict MathML, in turn, is in one-to-one correspondence with OpenMath, and the subset of OpenMath

expressions obtained from content MathML expressions in this fashion all have well-defined seman-

tics via the standard OpenMath Content Dictionary set. Consequently, the mapping of arbitrary content

MathML expressions to equivalent Strict Content MathML plays a key role in underpinning the mean-

ing of content MathML.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.6. The Strict Content MathML Transformation 269

The mapping of arbitrary content MathML into Strict content MathML is defined algorithmically. The

algorithm is described below as a collection of rewrite rules applying to specific non-Strict construc-

tions. The individual rewrite transformations have been described in detail in context above. The goal

of this section is to outline the complete algorithm in one place.

The algorithm is a sequence of nine steps. Each step is applied repeatedly to rewrite the input until no

further application is possible. Note that in many programming languages, such as XSLT, the natural

implementation is as a recursive algorithm, rather than the multi-pass implementation suggested by

the description below. The translation to XSL is straightforward and produces the same eventual Strict

Content MathML. However, because the overall structure of the multi-pass algorithm is clearer, that is

the formulation given here.

To transform an arbitrary content MathML expression into Strict Content MathML, apply each of the

following rules in turn to the input expression until all instances of the target constructs have been

eliminated:

1. Rewrite non-strict bind and elminate deprecated elements: Change the outer bind tags in

binding expressions to apply if they have qualifiers or multiple children. This simplifies the

algorithm by allowing the subsequent rules to be applied to non-strict binding expressions

without case distinction. Note that the later rules will change the apply elements introduced

in this step back to bind elements. Also in this step, deprecated reln elements are rewritten

to apply, and fn elements are replaced by the child expressions they enclose.

2. Apply special case rules for idiomatic uses of qualifiers:

(a) Rewrite derivatives with rules Rewrite: diff, Rewrite: nthdiff, and Rewrite: partiald-

iffdegree to explicate the binding status of the variables involved.

(b) Rewrite integrals with the rules Rewrite: int, Rewrite: defint and Rewrite: defint limits

to disambiguate the status of bound and free variables and of the orientation of the

range of integration if it is given as a lowlimit/uplimit pair.

(c) Rewrite limits as described in Rewrite: tendsto and Rewrite: limits condition.

(d) Rewrite sums and products as described in Section 4.4.6.1 and Section 4.4.6.2.

(e) Rewrite roots as described in Section 4.4.2.11.

(f) Rewrite logarithms as described in Section 4.4.7.7.

(g) Rewrite moments as described in Section 4.4.8.6.

3. Rewrite Qualifiers to domainofapplication : These rules rewrite all apply constructions

using bvar and qualifiers to those using only the general domainofapplication qualifier.

(a) Intervals: Rewrite qualifiers given as interval and lowlimit/uplimit to intervals

of integers via Rewrite: interval qualifier.

(b) Multiple conditions: Rewrite multiple condition qualifiers to a single one by taking

their conjunction. The resulting compound condition is then rewritten to

domainofapplication according to rule Rewrite: condition.

(c) Multiple domainofapplications: Rewrite multiple domainofapplication quali-

fiers to a single one by taking the intersection of the specified domains.

4. Normalize Container Markup:

(a) Rewrite sets and lists by the rule Rewrite: n-ary setlist domainofapplication.

(b) Rewrite interval, vectors, matrices, and matrix rows as described in Section 4.4.1.1,

Section 4.4.9.1, Section 4.4.9.2 and Section 4.4.9.3. Note any qualifiers will have been

rewritten to domainofapplication and will be further rewritten in Step 6.

(c) Rewrite lambda expressions by the rules Rewrite: lambda and Rewrite: lambda do-

mainofapplication

(d) Rewrite piecewise functions as described in Section 4.4.1.9.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

270 Chapter 4. Content Markup

5. Apply Special Case Rules for Operators using domainofapplication Qualifiers: This step

deals with the special cases for the operators introduced in Section 4.4. There are different

classes of special cases to be taken into account:

(a) Rewrite min, max, mean and similar n-ary/unary operators by the rules Rewrite: n-ary

unary set, Rewrite: n-ary unary domainofapplication and Rewrite: n-ary unary single.

(b) Rewrite the quantifiers forall and exists used with domainofapplication to ex-

pressions using implication and conjunction by the rule Rewrite: quantifier.

(c) Rewrite integrals used with a domainofapplication element (with or without a

bvar) according to the rules Rewrite: int and Rewrite: defint.

(d) Rewrite sums and products used with a domainofapplication element (with or with-

out a bvar) as described in Section 4.4.6.1 and Section 4.4.6.2.

6. Eliminate domainofapplication : At this stage, any apply has at most one

domainofapplication child and special cases have been addressed. As

domainofapplication is not Strict Content MathML, it is rewritten

(a) into an application of a restricted function via the rule Rewrite: restriction if the apply

does not contain a bvar child.

(b) into an application of the predicate_on_list symbol via the rules Rewrite: n-ary relations

and Rewrite: n-ary relations bvar if used with a relation.

(c) into a construction with the apply_to_list symbol via the general rule Rewrite: n-ary

domainofapplication for general n-ary operators.

(d) into a construction using the suchthat symbol from the set1 content dictionary in an

apply with bound variables via the Rewrite: apply bvar domainofapplication rule.

7. Rewrite non-strict token elements:

(a) Rewrite numbers represented as cn elements where the type attribute is one of

"e-notation", "rational", "complex-cartesian", "complex-polar",

"constant" as strict cn via rules Rewrite: cn sep, Rewrite: cn based_integer and

Rewrite: cn constant.

(b) Rewrite any ci, csymbol or cn containing presentation MathML to semantics ele-

ments with rules Rewrite: cn presentation mathml and Rewrite: ci presentation mathml

and the analogous rule for csymbol.

8. Rewrite operators: Rewrite any remaining operator defined in Section 4.4 to a csymbol

referencing the symbol identified in the syntax table by the rule Rewrite: element. As noted

in the descriptions of each operator element, some require special case rules to determine the

proper choice of symbol. Some cases of particular note are:

(a) The order of the arguments for the selector operator must be rewritten, and the sym-

bol depends on the type of the arguments.

(b) The choice of symbol for the minus operator depends on the number of the arguments.

(c) The choice of symbol for some set operators depends on the values of the type of the

arguments.

(d) The choice of symbol for some statistical operators depends on the values of the types

of the arguments.

9. Rewrite non-strict attributes:

(a) Rewrite the type attribute: At this point, all elements that accept the type, other than

ci and csymbol, should have been rewritten into Strict Content Markup equivalents

without type attributes, where type information is reflected in the choice of operator

symbol. Now rewrite remaining ci and csymbol elements with a type attribute to a

strict expression with semantics according to rules Rewrite: ci type annotation and

Rewrite: csymbol type annotation.

(b) Rewrite definitionURL and encoding attributes: If the definitionURL and

encoding attributes on a csymbol element can be interpreted as a reference to a con-

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

4.6. The Strict Content MathML Transformation 271

tent dictionary (see Section 4.2.3.2 for details), then rewrite to reference the content

dictionary by the cd attribute instead.

(c) Rewrite attributes: Rewrite any element with attributes that are not allowed in strict

markup to a semantics construction with the element without these attributes as the

first child and the attributes in annotation elements by rule Rewrite: attributes.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 5

Mixing Markup Languages for Mathematical Expressions

MathML markup can be combined with other markup languages, and these mixing constructions are

realized by the semantic annotation elements. The semantic annotation elements provide an important

tool for making associations between alternate representations of an expression, and for associating se-

mantic properties and other attributions with a MathML expression. These elements allow presentation

markup and content markup to be combined in several different ways. One method, known as mixed

markup, is to intersperse content and presentation elements in what is essentially a single tree. Another

method, known as parallel markup, is to provide both explicit presentation markup and content markup

in a pair of markup expressions, combined by a single semantics element.

5.1 Annotation Framework

An important concern of MathML is to represent associations between presentation and content markup

forms for an expression. Representing associations between MathML expressions and data of other

kinds is also important in many contexts. For this reason, MathML provides a general framework for

annotation. A MathML expression may be decorated with a sequence of pairs made up of a symbol

that indicates the kind of annotation, known as the annotation key, and associated data, known as the

annotation value.

5.1.1 Annotation elements

The semantics, annotation, and annotation-xml elements are used together to represent annota-

tions in MathML. The semantics element provides the container for a expression and its annotations.

The annotation element is the container for text annotations, and the annotation-xml element is

used for structured annotations. The semantics element contains the expression being annotated as its

first child, followed by a sequence of zero or more annotation and/or annotation-xml elements.

<semantics>

<mrow>

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mfenced><mi>x</mi></mfenced>

</mrow>

<mo>+</mo>

<mn>5</mn>

</mrow>

<annotation encoding="application/x-tex">

272

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.1. Annotation Framework 273

\sin x + 5

</annotation>

<annotation-xml encoding="application/openmath+xml">

<OMA xmlns="http://www.openmath.org/OpenMath">

<OMS cd="arith1" name="plus"/>

<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>

<OMI>5</OMI>

</OMA>

</annotation-xml>

</semantics>

Note that this example makes use of the namespace extensibility that is only available in the XML

syntax of MathML. If this example is included in an HTML document then it would be considered

invalid and the OpenMath elements would be parsed as elements un the MathML namespace. See

Section 5.2.3.3 for details.

The semantics element is considered to be both a presentation element and a content element, and

may be used in either context. All MathML processors should process the semantics element, even if

they only process one of these two subsets of MathML.

5.1.2 Annotation keys

An annotation key specifies the relationship between an expression and an annotation. Many kinds

of relationships are possible. Examples include alternate representations, specification or clarification

of semantics, type information, rendering hints, and private data intended for specific processors. The

annotation key is the primary means by which a processor determines whether or not to process an

annotation.

The logical relationship between an expression and an annotation can have a significant impact on

the proper processing of the expression. For example, a particular annotation form, called semantic

attributions, cannot be ignored without altering the meaning of the annotated expression, at least in

some processing contexts. On the other hand, alternate representations do not alter the meaning of

an expression, but may alter the presentation of the expression as they are frequently used to provide

rendering hints. Still other annotations carry private data or metadata that are useful in a specific context,

but do not alter either the semantics or the presentation of the expression.

In MathML 3, annotation keys are defined as symbols in Content Dictionaries, and are specified us-

ing of the cd and name attributes on the annotation and annotation-xml elements. For backward

compatibility with MathML 2, an annotation key may also be referenced using the definitionURL

attribute as an alternative to the cd and name attributes. Further details on referencing symbols in Con-

tent Dictionaries are discussed in Section 4.2.3. The symbol definition in a Content Dictionary for an

annotation key may have a role property. Two particular roles are relevant for annotations: a role of

"attribution" identifies a generic annotation that can be ignored without altering the meaning of the

annotated term, and a role of "semantic-attribution" indicates that the annotation is a semantic

annotation, that is, the annotation cannot be ignored without potentially altering the meaning of the

expression.

MathML 3 provides two predefined annotation keys for the most common kinds of annotations: alternate-

representation and contentequiv defined in the mathmlkeys content dictionary. The alternate-representation

annotation key specifies that the annotation value provides an alternate representation for an expression

in some other markup language, and the contentequiv annotation key specifies that the annotation value

provides a semantically equivalent alternative for the annotated expression. Further details about the

use of these keys is given in the sections below.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

274 Chapter 5. Mixing Markup Languages for Mathematical Expressions

The default annotation key is alternate-representation when no annotation key is explicitly specified on

an annotation or annotation-xml element.

Typically, annotation keys specify only the logical nature of the relationship between an expression and

an annotation. The data format for an annotation is indicated with the encoding attribute. In MathML

2, the encoding attribute was the primary information that a processor could use to determine whether

or not it could understand an annotation. For backward compatibility, processors are encouraged to

examine both the annotation key and encoding attribute. In particular, MathML 2 specified the prede-

fined encoding values MathML, MathML-Content, and MathML-Presentation. The MathML encoding

value is used to indicate an annotation-xml element contains a MathML expression. The use of the

other values is more specific, as discussed in following sections.

While the predefined alternate-representation and contentequiv keys cover many common use cases,

user communities are encouraged to define and standardize additional content dictionaries as neces-

sary. Annotation keys in user-defined, public Content Dictionaries are preferred over private encod-

ing attribute value conventions, since content dictionaries are more expressive, more open and more

maintainable than private encoding values. However, for backward compatibility with MathML 2, the

encoding attribute may also be used.

5.1.3 Alternate representations

Alternate representation annotations are most often used to provide renderings for an expression, or to

provide an equivalent representation in another markup language. In general, alternate representation

annotations do not alter the meaning of the annotated expression, but may alter its presentation.

A particularly important case is the use of a presentation MathML expression to indicate a preferred

rendering for a content MathML expression. This case may be represented by labeling the annotation

with the application/mathml-presentation+xml value for the encoding attribute. For backward

compatibility with MathML 2.0, this case can also be represented with the equivalent

MathML-Presentation value for the encoding attribute. Note that when a presentation MathML

annotation is present in a semantics element, it may be used as the default rendering of the semantics

element, instead of the default rendering of the first child.

In the example below, the semantics element binds together various alternate representations for a

content MathML expression. The presentation MathML annotation may be used as the default render-

ing, while the other annotations give representations in other markup languages. Since no attribution

keys are explicitly specified, the default annotation key alternate-representation applies to each of the

annotations.

<semantics>

<apply>

<plus/>

<apply><sin/><ci>x</ci></apply>

<cn>5</cn>

</apply>

<annotation-xml encoding="MathML-Presentation">

<mrow>

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mfenced open="(" close=")"><mi>x</mi></mfenced>

</mrow>

<mo>+</mo>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.1. Annotation Framework 275

<mn>5</mn>

</mrow>

</annotation-xml>

<annotation encoding="application/x-maple">

sin(x) + 5

</annotation>

<annotation encoding="application/vnd.wolfram.mathematica">

Sin[x] + 5

</annotation>

<annotation encoding="application/x-tex">

\sin x + 5

</annotation>

<annotation-xml encoding="application/openmath+xml">

<OMA xmlns="http://www.openmath.org/OpenMath">

<OMA>

<OMS cd="arith1" name="plus"/>

<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>

<OMI>5</OMI>

</OMA>

</OMA>

</annotation-xml>

</semantics>

Note that this example makes use of the namespace extensibility that is only available in the XML

syntax of MathML. If this example is included in an HTML document then it would be considered

invalid and the OpenMath elements would be parsed as elements un the MathML namespace. See

Section 5.2.3.3 for details.

5.1.4 Content equivalents

Content equivalent annotations provide additional computational information about an expression. An-

notations with the contentequiv key cannot be ignored without potentially changing the behavior of an

expression.

An important case arises when a content MathML annotation is used to disambiguate the meaning of

a presentation MathML expression. This case may be represented by labeling the annotation with the

application/mathml-content+xml value for the encoding attribute. In MathML 2, this type of

annotation was represented with the equivalent MathML-Content value for the encoding attribute, so

processors are urged to support this usage for backward compatibility. A content MathML annotation,

whether in MathML 2 or 3, may be used for other purposes as well, such as for other kinds of semantic

assertions. Consequently, in MathML 3, the contentequiv annotation key should be used to make an

explicit assertion that the annotation provides a definitive content markup equivalent for an expression.

In the example below, an ambiguous presentation MathML expression is annotated with a

MathML-Content annotation clarifying its precise meaning.

<semantics>

<mrow>

<mrow>

<mi>a</mi>

<mfenced open="(" close=")">

<mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

276 Chapter 5. Mixing Markup Languages for Mathematical Expressions

</mfenced>

</mrow>

</mrow>

<annotation-xml cd="mathmlkeys" name="contentequiv"

encoding="MathML-Content">

<apply>

<ci>a</ci>

<apply><plus/><ci>x</ci><cn>5</cn></apply>

</apply>

</annotation-xml>

</semantics>

5.1.5 Annotation references

In the usual case, each annotation element includes either character data content (in the case of

annotation) or XML markup data (in the case of annotation-xml) that represents the annotation

value. There is no restriction on the type of annotation that may appear within a semantics element.

For example, an annotation could provide a TEX encoding, a linear input form for a computer algebra

system, a rendered image, or detailed mathematical type information.

In some cases the alternative children of a semantics element are not an essential part of the behavior

of the annotated expression, but may be useful to specialized processors. To enable the availability

of several annotation formats in a more efficient manner, a semantics element may contain empty

annotation and annotation-xml elements that provide encoding and src attributes to specify an

external location for the annotation value associated with the annotation. This type of annotation is

known as an annotation reference.

<semantics>

<mfrac><mi>a</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac>

<annotation encoding="image/png" src="333/formula56.png"/>

<annotation encoding="application/x-maple" src="333/formula56.ms"/>

</semantics>

Processing agents that anticipate that consumers of exported markup may not be able to retrieve the

external entity referenced by such annotations should request the content of the external entity at the

indicated location and replace the annotation with its expanded form.

An annotation reference follows the same rules as for other annotations to determine the annotation key

that specifies the relationship between the annotated object and the annotation value.

5.2 Elements for Semantic Annotations

This section explains the semantic mapping elements semantics, annotation, and

annotation-xml. These elements associate alternate representations for a presentation or content ex-

pression, or associate semantic or other attributions that may modify the meaning of the annotated

expression.

5.2.1 The <semantics> element

5.2.1.1 Description

The semantics element is the container element that associates annotations with a MathML expres-

sion. The semantics element has as its first child the expression to be annotated. Any MathML

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.2. Elements for Semantic Annotations 277

expression may appear as the first child of the semantics element. Subsequent annotation and

annotation-xml children enclose the annotations. An annotation represented in XML is enclosed in

an annotation-xml element. An annotation represented in character data is enclosed in an

annotation element.

As noted above, the semantics element is considered to be both a presentation element and a content

element, since it can act as either, depending on its content. Consequently, all MathML processors

should process the semantics element, even if they process only presentation markup or only content

markup.

The default rendering of a semantics element is the default rendering of its first child. A renderer may

use the information contained in the annotations to customize its rendering of the annotated element.

<semantics>

<mrow>

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mfenced><mi>x</mi></mfenced>

</mrow>

<mo>+</mo>

<mn>5</mn>

</mrow>

<annotation-xml cd="mathmlkeys" name="contentequiv" encoding="MathML-Content">

<apply>

<plus/>

<apply><sin/><ci>x</ci></apply>

<cn>5</cn>

</apply>

</annotation-xml>

<annotation encoding="application/x-tex">

\sin x + 5

</annotation>

</semantics>

5.2.1.2 Attributes

Name values default

definitionURL URI none

The location of an external source for semantic information

encoding string none

The encoding of the external semantic information

The semantics element takes the definitionURL and encoding attributes, which reference an ex-

ternal source for some or all of the semantic information for the annotated element, as modified by the

annotation. The use of these attributes on the semantics element is deprecated in MathML3.

5.2.2 The <annotation> element

5.2.2.1 Description

The annotation element is the container element for a semantic annotation whose representation is

parsed character data in a non-XML format. The annotation element should contain the character

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

278 Chapter 5. Mixing Markup Languages for Mathematical Expressions

data for the annotation, and should not contain XML markup elements. If the annotation contains one

of the XML reserved characters &, < then these characters must be encoded using an entity reference or

(in the XML syntax) an XML CDATA section.

5.2.2.2 Attributes

Name values default

definitionURL URI none

The location of the annotation key symbol

encoding string none

The encoding of the semantic information in the annotation

cd string mathmlkeys

The content dictionary that contains the annotation key symbol

name string alternate-representation

The name of the annotation key symbol

src URI none

The location of an external source for semantic information

Taken together, the cd and name attributes specify the annotation key symbol, which identifies the

relationship between the annotated element and the annotation, as described in Section 5.1.1. The

definitionURL attribute provides an alternate way to reference the annotation key symbol as a single

attribute. If none of these attributes are present, the annotation key symbol is the symbol alternate-

representation from the mathmlkeys content dictionary.

The encoding attribute describes the content type of the annotation. The value of the encoding at-

tribute may contain a media type that identifies the data format for the encoding data. For data formats

that do not have an associated media type, implementors may choose a self-describing character string

to identify their content type.

The src attribute provides a mechanism to attach external entities as annotations on MathML expres-

sions.

<annotation encoding="image/png" src="333/formula56.png"/>

The annotation element is a semantic mapping element that may only be used as a child of the

semantics element. While there is no default rendering for the annotation element, a renderer may

use the information contained in an annotation to customize its rendering of the annotated element.

5.2.3 The <annotation-xml> element

5.2.3.1 Description

The annotation-xml element is the container element for a semantic annotation whose representation

is structured markup. The annotation-xml element should contain the markup elements, attributes,

and character data for the annotation.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.2. Elements for Semantic Annotations 279

5.2.3.2 Attributes

Name values default

definitionURL URI none

The location of the annotation key symbol

encoding string none

The encoding of the semantic information in the annotation

cd string mathmlkeys

The content dictionary that contains the annotation key symbol

name string alternate-representation

The name of the annotation key symbol

src URI none

The location of an external source for semantic information

Taken together, the cd and name attributes specify the annotation key symbol, which identifies the

relationship between the annotated element and the annotation, as described in Section 5.1.1. The

definitionURL attribute provides an alternate way to reference the annotation key symbol as a single

attribute. If none of these attributes are present, the annotation key symbol is the symbol alternate-

representation from the mathmlkeys content dictionary.

The encoding attribute describes the content type of the annotation. The value of the encoding at-

tribute may contain a media type that identifies the data format for the encoding data. For data formats

that do not have an associated media type, implementors may choose a self-describing character string

to identify their content type. In particular, as described above and in Section 6.2.4, MathML specifies

MathML, MathML-Presentation, and MathML-Content as predefined values for the encoding at-

tribute. Finally, The src attribute provides a mechanism to attach external XML entities as annotations

on MathML expressions.

<annotation-xml cd="mathmlkeys" name="contentequiv" encoding="MathML-Content">

<apply>

<plus/>

<apply><sin/><ci>x</ci></apply>

<cn>5</cn>

</apply>

</annotation-xml>

<annotation-xml encoding="application/openmath+xml">

<OMA xmlns="http://www.openmath.org/OpenMath">

<OMS cd="arith1" name="plus"/>

<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>

<OMI>5</OMI>

</OMA>

</annotation-xml>

When the MathML is being parsed as XML and the annotation value is represented in an XML dialect

other than MathML, the namespace for the XML markup for the annotation should be identified by

means of namespace attributes and/or namespace prefixes on the annotation value. For instance:

<annotation-xml encoding="application/xhtml+xml">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>E</title></head>

<body>

<p>The base of the natural logarithms, approximately 2.71828.</p>

</body>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

280 Chapter 5. Mixing Markup Languages for Mathematical Expressions

</html>

</annotation-xml>

The annotation-xml element is a semantic mapping element that may only be used as a child of the

semantics element. While there is no default rendering for the annotation-xml element, a renderer

may use the information contained in an annotation to customize its rendering of the annotated element.

5.2.3.3 Using annotation-xml in HTML documents

Note that the Namespace extensibility used in the above examples may not be available if the MathML

is not being treated as an XML document. In particular HTML parsers treat xmlns attributes as ordinary

attributes, so the OpenMath example would be classified as invalid by an HTML validator. The Open-

Math elements would still be parsed as children of the annotation-xml element, however they would

be placed in the MathML namespace. The above examples are not rendered in the HTML version of

this specification, to ensure that that document is a valid HTML5 document.

The details of the HTML parser handling of annotation-xml is specified in [HTML5] and summa-

rized in Section 6.4.3, however the main differences from the behavior of an XML parser that affect

MathML annotations are that the HTML parser does not treat xmlns attributes, nor : in element names

as special and has built-in rules determining whether the three ‘known’ namespaces, HTML, SVG or

MathML are used.

• If the annotation-xml has an encoding attribute that is (ignoring case differences)

"text/html" or "annotation/xhtml+xml" then the content is parsed as HTML and

placed (initially) in the HTML namespace.

• Otherwise it is parsed as foreign content and parsed in a more XML-like manner (like

MathML itself in HTML) in which /> signifies an empty element. Content will be placed

in the MathML namespace.If any recognised HTML element appears in this foreign content

annotation the HTML parser will effectively termnate the math expression, closing all open

elements until the math element is closed, and then process the nested HTML as if it were

not inside the math context. Any following MathML elements will then not render correctly

as they are not in a math context, or in the MathML namespace.

These issues mean that the following example is valid whether parsed by an XML or HTML parser:

<math>

<semantics>

<mi>a</mi>

<annotation-xml encoding="text/html">

xxx

</annotation-xml>

</semantics>

<mo>+</mo>

<mi>b</mi>

</math>

However the if the encoding attribute is omitted then the expression is only valid if parsed as XML:

<math>

<semantics>

<mi>a</mi>

<annotation-xml>

xxx

</annotation-xml>

</semantics>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.3. Combining Presentation and Content Markup 281

<mo>+</mo>

<mi>b</mi>

</math>

If the above is parsed by an HTML parser it produces a result equivalent to the following invalid input,

where the span element has caused all MathML elements to be prematurely closed. The remaining

MathML elements following the span are no longer contained within <math> so will be parsed as

unknown HTML elements and render incorrectly.

<math xmlns="http://www.w3.org/1998/Math/MathML">

<semantics>

<mi>a</mi>

<annotation-xml>

</annotation-xml>

</semantics>

</math>

xxx

<mo xmlns="http://www.w3.org/1999/xhtml">+</mo>

<mi xmlns="http://www.w3.org/1999/xhtml">b</mi>

Note here that the HTML span element has caused all open MathML elements to be prematurely

closed, resulting in the following MathML elements being treated as unknown HTML elements as they

are no longer descendents of math. See Section 6.4.3 for more details of the parsing of MathML in

HTML.

Any use of elements in other vocabularies (such as the OpenMath examples above) is considered in-

valid in HTML. If validity is not a strict requirement it is possible to use such elements but they will

be parsed as elements on the MathML namespace. Documents SHOULD NOT use namespace pre-

fixes and element names containing colon (:) as the element nodes produced by the HTML parser

with have local names containing a colon, which can not be constructed by a namespace aware XML

parser. Rather than use such foreign annotations, when using an HTML parser it is better to encode

the annotation using the existing vocabulary. For example as shown in Chapter 4 OpenMath may be

encoded faithfuly as Strict Content MathML. Similarly RDF annotations could be encoded using RDFa

in text/html annotation or (say) N3 notation in annotation rather than using RDF/XML encoding

in an annotation-xml element.

5.3 Combining Presentation and Content Markup

Presentation markup encodes the notational structure of an expression. Content markup encodes the

functional structure of an expression. In certain cases, a particular application of MathML may require

a combination of both presentation and content markup. This section describes specific constraints that

govern the use of presentation markup within content markup, and vice versa.

5.3.1 Presentation Markup in Content Markup

Presentation markup may be embedded within content markup so long as the resulting expression re-

tains an unambiguous function application structure. Specifically, presentation markup may only appear

in content markup in three ways:

1. within ci and cn token elements

2. within the csymbol element

3. within the semantics element

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

282 Chapter 5. Mixing Markup Languages for Mathematical Expressions

Any other presentation markup occurring within content markup is a MathML error. More detailed

discussion of these three cases follows:

Presentation markup within token elements. The token elements ci and cn are permitted to contain

any sequence of MathML characters (defined in Chapter 7) and/or presentation elements.

Contiguous blocks of MathML characters in ci or cn elements are treated as if wrapped in

mi or mn elements, as appropriate, and the resulting collection of presentation elements is

rendered as if wrapped in an implicit mrow element.

Presentation markup within the csymbol element. The csymbol element may contain either MathML

characters interspersed with presentation markup, or content markup. It is a MathML er-

ror for a csymbol element to contain both presentation and content elements. When the

csymbol element contains character data and presentation markup, the same rendering rules

that apply to the token elements ci and cn should be used.

Presentation markup within the semantics element. One of the main purposes of the semantics

element is to provide a mechanism for incorporating arbitrary MathML expressions into con-

tent markup in a semantically meaningful way. In particular, any valid presentation expres-

sion can be embedded in a content expression by placing it as the first child of a semantics

element. The meaning of this wrapped expression should be indicated by one or more anno-

tation elements also contained in the semantics element.

5.3.2 Content Markup in Presentation Markup

Content markup may be embedded within presentation markup so long as the resulting expression has

an unambiguous rendering. That is, it must be possible, in principle, to produce a presentation markup

fragment for each content markup fragment that appears in the combined expression. The replacement

of each content markup fragment by its corresponding presentation markup should produce a well-

formed presentation markup expression. A presentation engine should then be able to process this

presentation expression without reference to the content markup bits included in the original expression.

In general, this constraint means that each embedded content expression must be well-formed, as a

content expression, and must be able to stand alone outside the context of any containing content

markup element. As a result, the following content elements may not appear as an immediate child

of a presentation element: annotation, annotation-xml, bvar, condition, degree, logbase,

lowlimit, uplimit.

In addition, within presentation markup, content markup may not appear within presentation token

elements.

5.4 Parallel Markup

Some applications are able to use both presentation and content information. Parallel markup is a

way to combine two or more markup trees for the same mathematical expression. Parallel markup is

achieved with the semantics element. Parallel markup for an expression may appear on its own, or as

part of a larger content or presentation tree.

5.4.1 Top-level Parallel Markup

In many cases, the goal is to provide presentation markup and content markup for a mathematical

expression as a whole. A single semantics element may be used to pair two markup trees, where

one child element provides the presentation markup, and the other child element provides the content

markup.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.4. Parallel Markup 283

The following example encodes the Boolean arithmetic expression (a+b)(c+d) in this way.

<semantics>

<mrow>

<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>

<mo>⁢</mo>

<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

</mrow>

<annotation-xml encoding="MathML-Content">

<apply><and/>

<apply><xor/><ci>a</ci> <ci>b</ci></apply>

<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>

</annotation-xml>

</semantics>

Note that the above markup annotates the presentation markup as the first child element, with the

content markup as part of the annotation-xml element. An equivalent form could be given that an-

notates the content markup as the first child element, with the presentation markup as part of the

annotation-xml element.

5.4.2 Parallel Markup via Cross-References

To accommodate applications that must process sub-expressions of large objects, MathML supports

cross-references between the branches of a semantics element to identify corresponding sub-structures.

These cross-references are established by the use of the id and xref attributes within a semantics

element. This application of the id and xref attributes within a semantics element should be viewed

as best practice to enable a recipient to select arbitrary sub-expressions in each alternative branch of a

semantics element. The id and xref attributes may be placed on MathML elements of any type.

The following example demonstrates cross-references for the Boolean arithmetic expression (a+b)(c+d).

<semantics>

<mrow id="E">

<mrow id="E.1">

<mo id="E.1.1">(</mo>

<mi id="E.1.2">a</mi>

<mo id="E.1.3">+</mo>

<mi id="E.1.4">b</mi>

<mo id="E.1.5">)</mo>

</mrow>

<mo id="E.2">⁢</mo>

<mrow id="E.3">

<mo id="E.3.1">(</mo>

<mi id="E.3.2">c</mi>

<mo id="E.3.3">+</mo>

<mi id="E.3.4">d</mi>

<mo id="E.3.5">)</mo>

</mrow>

</mrow>

<annotation-xml encoding="MathML-Content">

<apply xref="E">

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

284 Chapter 5. Mixing Markup Languages for Mathematical Expressions

<and xref="E.2"/>

<apply xref="E.1">

<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>

<apply xref="E.3">

<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>

</apply>

</annotation-xml>

</semantics>

An id attribute and associated xref attributes that appear within the same semantics element estab-

lish the cross-references between corresponding sub-expressions.

For parallel markup, all of the id attributes referenced by any xref attribute should be in the same

branch of an enclosing semantics element. This constraint guarantees that the cross-references do

not create unintentional cycles. This restriction does not exclude the use of id attributes within other

branches of the enclosing semantics element. It does, however, exclude references to these other id

attributes originating from the same semantics element.

There is no restriction on which branch of the semantics element may contain the destination id

attributes. It is up to the application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For

example, a presentation tree may contain elements, such as parentheses, that have no correspondents

in the content tree. It is therefore often useful to put the id attributes on the branch with the finest-

grained node structure. Then all of the other branches will have xref attributes to some subset of the

id attributes.

In absence of other criteria, the first branch of the semantics element is a sensible choice to contain

the id attributes. Applications that add or remove annotations will then not have to re-assign these

attributes as the annotations change.

In general, the use of id and xref attributes allows a full correspondence between sub-expressions to

be given in text that is at most a constant factor larger than the original. The direction of the references

should not be taken to imply that sub-expression selection is intended to be permitted only on one child

of the semantics element. It is equally feasible to select a subtree in any branch and to recover the

corresponding subtrees of the other branches.

Parallel markup with cross-references may be used in any XML-encoded branch of the semantic an-

notations, as shown by the following example where the Boolean expression of the previous section is

annotated with OpenMath markup that includes cross-references:

<semantics>

<mrow id="EE">

<mrow id="EE.1">

<mo id="EE.1.1">(</mo>

<mi id="EE.1.2">a</mi>

<mo id="EE.1.3">+</mo>

<mi id="EE.1.4">b</mi>

<mo id="EE.1.5">)</mo>

</mrow>

<mo id="EE.2">⁢</mo>

<mrow id="EE.3">

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

5.4. Parallel Markup 285

<mo id="EE.3.1">(</mo>

<mi id="EE.3.2">c</mi>

<mo id="EE.3.3">+</mo>

<mi id="EE.3.4">d</mi>

<mo id="EE.3.5">)</mo>

</mrow>

</mrow>

<annotation-xml encoding="MathML-Content">

<apply xref="EE">

<and xref="EE.2"/>

<apply xref="EE.1">

<xor xref="EE.1.3"/><ci xref="EE.1.2">a</ci><ci xref="EE.1.4">b</ci>

</apply>

<apply xref="EE.3">

<xor xref="EE.3.3"/><ci xref="EE.3.2">c</ci><ci xref="EE.3.4">d</ci>

</apply>

</apply>

</annotation-xml>

<annotation-xml encoding="application/openmath+xml">

<om:OMA xmlns:om="http://www.openmath.org/OpenMath" href="EE">

<om:OMS name="and" cd="logic1" href="EE.2"/>

<om:OMA href="EE.1">

<om:OMS name="xor" cd="logic1" href="EE.1.3"/>

<om:OMV name="a" href="EE.1.2"/>

<om:OMV name="b" href="EE.1.4"/>

</om:OMA>

<om:OMA href="EE.3">

<om:OMS name="xor" cd="logic1" href="EE.3.3"/>

<om:OMV name="c" href="EE.3.2"/>

<om:OMV name="d" href="EE.3.4"/>

</om:OMA>

</om:OMA>

</annotation-xml>

</semantics>

Here OMA, OMS and OMV are elements defined in the OpenMath standard for representing application,

symbol, and variable, respectively. The references from the OpenMath annotation are given by the

href attributes. As noted above, the use of namespaces other than MathML, SVG or HTML within

annotation-xml is not considered valid in the HTML syntax. Use of colons and namespace-prefixed

element names should be avoided as the HTML parser will generate nodes with local name om:OMA

(for example), and such nodes can not be constructed by a namespace-aware XML parser.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 6

Interactions with the Host Environment

6.1 Introduction
To be effective, MathML must work well with a wide variety of renderers, processors, translators and

editors. This chapter raises some of the interface issues involved in generating and rendering MathML.

Since MathML exists primarily to encode mathematics in Web documents, perhaps the most important

interface issues relate to embedding MathML in [HTML5], and [XHTML], and in any newer HTML

when it appears.

There are three kinds of interface issues that arise in embedding MathML in other XML documents.

First, MathML markup must be recognized as valid embedded XML content, and not as an error. This

issue could be seen primarily as a question of managing namespaces in XML [Namespaces].

Second, in the case of HTML/XHTML, MathML rendering must be integrated with browser software.

Some browsers already implement MathML rendering natively, and one can expect more browsers

will do so in the future. At the same time, other browsers have developed infrastructure to facilitate

the rendering of MathML and other embedded XML content by third-party software or other built-

in technology. Examples of this built-in technology are the sophisticated CSS rendering engines now

available, and the powerful implementations of JavaScript/ECMAScript that are becoming common.

Using these browser-specific mechanisms generally requires additional interface markup of some sort

to activate them. In the case of CSS, there is a special restricted form of MathML3 [MathMLforCSS]

that is tailored for use with CSS rendering engines that support CSS 2.1 [CSS21]. This restricted profile

of MathML3 does not offer the full expressiveness of MathML3, but it provides a portable simpler form

that can be rendered acceptably on the screen by modern CSS engines.

Third, other tools for generating and processing MathML must be able to communicate. A number

of MathML tools have been or are being developed, including editors, translators, computer algebra

systems, and other scientific software. However, since MathML expressions tend to be lengthy, and

prone to error when entered by hand, special emphasis must be made to ensure that MathML can easily

be generated by user-friendly conversion and authoring tools, and that these tools work together in a

dependable, platform-independent, and vendor-independent way.

This chapter applies to both content and presentation markup, and describes a particular processing

model for the semantics, annotation and annotation-xml elements described in Section 5.1.

6.2 Invoking MathML Processors
6.2.1 Recognizing MathML in XML

Within an XML document supporting namespaces [XML], [Namespaces], the preferred method to

recognize MathML markup is by the identification of the math element in the MathML namespace by

the use of the MathML namespace URI http://www.w3.org/1998/Math/MathML.

286

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6.2. Invoking MathML Processors 287

The MathML namespace URI is the recommended method to embed MathML within [XHTML] doc-

uments. However, some user-agents may require supplementary information to be available to allow

them to invoke specific extensions to process the MathML markup.

Markup-language specifications that wish to embed MathML may require special conditions to recog-

nize MathML markup that are independent of this recommendation. The conditions should be similar

to those expressed in this recommendation, and the local names of the MathML elements should remain

the same as those defined in this recommendation.

6.2.2 Recognizing MathML in HTML

HTML does not allow arbitrary namespaces, but has built in knowledge of the MathML namespace. The

math element and its descendants will be placed in the http://www.w3.org/1998/Math/MathML

namespace by the HTML parser, and will appear to applications as if the input had been XHTML with

the namespace declared as in the previous section. See Section 6.4.3 for detailed rules of the HTML

parser’s handling of MathML.

6.2.3 Resource Types for MathML Documents

Although rendering MathML expressions often takes place in a Web browser, other MathML processing

functions take place more naturally in other applications. Particularly common tasks include opening

a MathML expression in an equation editor or computer algebra system. It is important therefore to

specify the encoding names by which MathML fragments should be identified.

Outside of those environments where XML namespaces are recognized, media types [RFC2045],

[RFC2046] should be used if possible to ensure the invocation of a MathML processor. For those

environments where media types are not appropriate, such as clipboard formats on some platforms, the

encoding names described in the next section should be used.

6.2.4 Names of MathML Encodings

MathML contains two distinct vocabularies: one for encoding visual presentation, defined in Chapter 3,

and one for encoding computational structure, defined in Chapter 4. Some MathML applications may

import and export only one of these two vocabularies, while others may produce and consume each in a

different way, and still others may process both without any distinction between the two. The following

encoding names may be used to distinguish between content and presentation MathML markup when

needed.

• MathML-Presentation: The instance contains presentation MathML markup only.

– Media Type: application/mathml-presentation+xml

– Windows Clipboard Flavor: MathML Presentation

– Universal Type Identifier: public.mathml.presentation

• MathML-Content : The instance contains content MathML markup only.

– Media Type: application/mathml-content+xml

– Windows Clipboard Flavor: MathML Content

– Universal Type Identifier: public.mathml.content

• MathML (generic): The instance may contain presentation MathML markup, content MathML

markup, or a mixture of the two.

– File name extension: .mml

– Media Type: application/mathml+xml

– Windows Clipboard Flavor: MathML

– Universal Type Identifier: public.mathml

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

288 Chapter 6. Interactions with the Host Environment

See Appendix B for more details about each of these encoding names.

MathML 2 specified the predefined encoding values MathML, MathML-Content, and

MathML-Presentation for the encoding attribute on the annotation-xml element. These values

may be used as an alternative to the media type for backward compatibility. See Section 5.1.3 and

Section 5.1.4 for details. Moreover, MathML 1.0 suggested the media-type text/mathml, which has

been superseded by [RFC3023].

6.3 Transferring MathML

MathML expressions are often exchanged between applications using the familiar copy-and-paste or

drag-and-drop paradigms and are often stored in files or exchanged over the HTTP protocol. This

section provides recommended ways to process MathML during these transfers.

The transfers of MathML fragments described in this section occur between the contexts of two appli-

cations by making the MathML data available in several flavors, often called media types, clipboard

formats, or data flavors. These flavors are typically ordered by preference by the producing applica-

tion, and are typically examined in preference order by the consuming application. The copy-and-paste

paradigm allows an application to place content in a central clipboard, with one data stream per clip-

board format ; a consuming application negotiates by choosing to read the data of the format it prefers.

The drag-and-drop paradigm allows an application to offer content by declaring the available formats;

a potential recipient accepts or rejects a drop based on the list of available formats, and the drop action

allows the receiving application to request the delivery of the data in one of the indicated formats. An

HTTP GET transfer, as in [HTTP11], allows a client to submit a list of acceptable media types; the

server then delivers the data using the one of the indicated media types. An HTTP POST transfer, as

in [HTTP11], allows a client to submit data labelled with a media type that is acceptable to the server

application.

Current desktop platforms offer copy-and-paste and drag-and-drop transfers using similar architectures,

but with varying naming schemes depending on the platform. HTTP transfers are all based on media

types. This section specifies what transfer types applications should provide, how they should be named,

and how they should handle the special semantics, annotation, and annotation-xml elements.

To summarize the three negotiation mechanisms, the following paragraphs will describe transfer fla-

vors, each with a name (a character string) and content (a stream of binary data), which are offered,

accepted, and/or exported.

6.3.1 Basic Transfer Flavor Names and Contents

The names listed in Section 6.2.4 are the exact strings that should be used to identify the transfer flavors

that correspond to the MathML encodings. On operating systems that allow such, an application should

register their support for these flavor names (e.g. on Windows, a call to RegisterClipboardFormat, or,

on the Macintosh platform, declaration of support for the universal type identifier in the application

descriptor).

When transferring MathML, an application MUST ensure the content of the data transfer is a well-

formed XML instance of a MathML document type. Specifically:

1. The instance MAY begin with an XML declaration, e.g. <?xml version="1.0">

2. The instance MUST contain exactly one root math element.

3. The instance MUST declare the MathML namespace on the root math element.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6.3. Transferring MathML 289

4. The instance MAY use a schemaLocation attribute on the math element to indicate the

location of the MathML schema that describes the MathML document type to which the

instance conforms. The presence of the schemaLocation attribute does not require a con-

sumer of the MathML instance to obtain or use the referenced schema.

5. The instance SHOULD use numeric character references (e.g. α) rather than char-

acter entity names (e.g. α) for greater interoperability.

6. The instance MUST specify the character encoding, if it uses an encoding other than UTF-8,

either in the XML declaration, or by the use of a byte-order mark (BOM) for UTF-16-

encoded data.

6.3.2 Recommended Behaviors when Transferring

An application that transfers MathML markup SHOULD adhere to the following conventions:

1. An application that supports pure presentation markup and/or pure content markup SHOULD

offer as many of these flavors as it has available.

2. An application that only exports one MathML flavor SHOULD name it MathML if it is unable

to determine a more specific flavor.

3. If an application is able to determine a more specific flavor, it SHOULD offer both the gener-

ic and specific transfer flavors, but it SHOULD only deliver the specific flavor if it knows

that the recipient supports it. For an HTTP GET transfer, for example, the specific transfer

types for content and presentation markup should only be returned if they are included in the

the HTTP Accept header sent by the client.

4. An application that exports the two specific transfer flavors SHOULD export both the content

and presentation transfer flavors, as well as the generic flavor, which SHOULD combine the

other two flavors using a top-level MathML semantics element (see Section 5.4.1).

5. When an application exports a MathML fragment whose only child of the root element is

a semantics element, it SHOULD offer, after the above flavors, a transfer flavor for each

annotation or annotation-xml element, provided the transfer flavor can be recognized

and named based on the encoding attribute value, and provided the annotation key is (the

default) alternate-representation. The transfer content for each annotation should contain the

character data in the specified encoding (for an annotation element), or a well-formed

XML fragment (for an annotation-xml element), or the data that results by requesting the

URL given by the src attribute (for an annotation reference).

6. As a final fallback, an application MAY export a version of the data in a plain-text fla-

vor (such as text/plain, CF_UNICODETEXT, UnicodeText, or NSStringPboardType).

When an application has multiple versions of an expression available, it may choose the ver-

sion to export as text at its discretion. Since some older MathML processors expect MathML

instances transferred as plain text to begin with a math element, the text version SHOULD

generally omit the XML declaration, DOCTYPE declaration, and other XML prolog ma-

terial that would appear before the math element. The Unicode text version of the data

SHOULD always be the last flavor exported, following the principle that exported flavors

should be ordered with the most specific flavor first and the least specific flavor last.

6.3.3 Discussion

To determine whether a MathML instance is pure content markup or pure presentation markup, the

math, semantics, annotation and annotation-xml elements should be regarded as belonging to

both the presentation and content markup vocabularies. The math element is treated in this way be-

cause it is required as the root element in any MathML transfer. The semantics element and its child

annotation elements comprise an arbitrary annotation mechanism within MathML, and are not tied to

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

290 Chapter 6. Interactions with the Host Environment

either presentation or content markup. Consequently, an application that consumes MathML should

always process these four elements, even if it only implements one of the two vocabularies.

It is worth noting that the above recommendations allow agents that produce MathML to provide binary

data for the clipboard, for example in an image or other application-specific format. The sole method

to do so is to reference the binary data using the src attribute of an annotation, since XML character

data does not allow for the transfer of arbitrary byte-stream data.

While the above recommendations are intended to improve interoperability between MathML-aware

applications that use these transfer paradigms, it should be noted that they do not guarantee interoper-

ability. For example, references to external resources (e.g. stylesheets, etc.) in MathML data can cause

interoperability problems if the consumer of the data is unable to locate them, as can happen when

cutting and pasting HTML or other data types. An application that makes use of references to external

resources is encouraged to make users aware of potential problems and provide alternate ways to obtain

the referenced resources. In general, consumers of MathML data that contains references they cannot

resolve or do not understand should ignore the external references.

6.3.4 Examples

6.3.4.1 Example 1

An e-Learning application has a database of quiz questions, some of which contain MathML. The

MathML comes from multiple sources, and the e-Learning application merely passes the data on for

display, but does not have sophisticated MathML analysis capabilities. Consequently, the application

is not aware whether a given MathML instance is pure presentation or pure content markup, nor does

it know whether the instance is valid with respect to a particular version of the MathML schema. It

therefore places the following data formats on the clipboard:

Flavor Name Flavor Content

MathML $...$

Unicode Text $...$

6.3.4.2 Example 2

An equation editor on the Windows platform is able to generate pure presentation markup, valid with

respect to MathML 3. Consequently, it exports the following flavors:

Flavor Name Flavor Content

MathML Presentation $...$

Tiff (a rendering sample)

Unicode Text $...$

6.3.4.3 Example 3

A schema-based content management system on the Mac OS X platform contains multiple MathML

representations of a collection of mathematical expressions, including mixed markup from authors,

pure content markup for interfacing to symbolic computation engines, and pure presentation markup

for print publication. Due to the system’s use of schemata, markup is stored with a namespace prefix.

The system therefore can transfer the following data:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6.3. Transferring MathML 291

Flavor Name Flavor Content

public.mathml.presentation <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<mrow>

...

<mrow>

</math>

public.mathml.content <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<apply>

...

<apply>

</math>

public.mathml <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<mrow>

<apply>

... content markup within presentation markup ...

</apply>

...

</mrow>

</math>

public.plain-text.tex x \over x-1

public.plain-text <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<mrow>

...

<mrow>

</math>

6.3.4.4 Example 4

A similar content management system is web-based and delivers MathML representations of mathe-

matical expressions. The system is able to produce MathML-Presentation, MathML-Content, TeX and

pictures in TIFF format. In web-pages being browsed, it could produce a MathML fragment such as

the following:

<math xmlns="http://www.w3.org/1998/Math/MathML">

<semantics>

<mrow>...</mrow>

<annotation-xml encoding="MathML-Content">...</annotation-xml>

<annotation encoding="TeX">{1 \over x}</annotation>

<annotation encoding="image/tiff" src="formula3848.tiff"/>

</semantics>

</math>

A web-browser on the Windows platform that receives such a fragment and tries to export it as part of

a drag-and-drop action, can offer the following flavors:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

292 Chapter 6. Interactions with the Host Environment

Flavor Name Flavor Content

MathML Presentation <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<mrow>

...

<mrow>

</math>

MathML Content <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<apply>

...

<apply>

</math>

MathML <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<mrow>

<apply>

... content markup within presentation markup ...

</apply>

...

</mrow>

</math>

TeX x \over x-1

CF_TIFF (the content of the picture file, requested from formula3848.tiff)

CF_UNICODETEXT <math xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">

<mrow>

...

<mrow>

</math>

6.4 Combining MathML and Other Formats

MathML is usually used in combination with other markup languages. The most typical case is perhaps

the use of MathML within a document-level markup language, such as HTML or DocBook. It is also

common that other object-level markup languages are also included in a compound document format,

such as MathML and SVG in HTML5. Other common use cases include mixing other markup within

MathML. For example, an authoring tool might insert an element representing a cursor position or other

state information within MathML markup, so that an author can pick up editing where it was broken

off.

Most document markup languages have some concept of an inline equation, (or graphic, object, etc.) so

there is a typically a natural way to incorporate MathML instances into the content model. However, in

the other direction, embedding of markup within MathML is not so clear cut, since in many MathML

elements, the role of child elements is defined by position. For example, the first child of an apply

must be an operator, and the second child of an mfrac is the denominator. The proper behavior when

foreign markup appears in such contexts is problematic. Even when such behavior can be defined in a

particular context, it presents an implementation challenge for generic MathML processors.

For this reason, the default MathML schema does not allow foreign markup elements to be included

within MathML instances.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6.4. Combining MathML and Other Formats 293

In the standard schema, elements from other namespaces are not allowed, but attributes from other

namespaces are permitted. MathML processors that encounter unknown XML markup should behave

as follows:

1. An attribute from a non-MathML namespace should be silently ignored.

2. An element from a non-MathML namespace should be treated as an error, except in an

annotation-xml element. If the element is a child of a presentation element, it should be

handled as described in Section 3.3.5. If the element is a child of a content element, it should

be handled as described in Section 4.2.9.

For example, if the second child of an mfrac element is an unknown element, the fraction should be

rendered with a denominator that indicates the error.

When designing a compound document format in which MathML is included in a larger document type,

the designer may extend the content model of MathML to allow additional elements. For example, a

common extension is to extend the MathML schema such that elements from non-MathML namespaces

are allowed in token elements, but not in other elements. MathML processors that encounter unknown

markup should behave as follows:

1. An unrecognized XML attribute should be silently ignored.

2. An unrecognized element in a MathML token element should be silently ignored.

3. An element from a non-MathML namespace should be treated as an error, except in an

annotation-xml element. If the element is a child of a presentation element, it should be

handled as described in Section 3.3.5. If the element is a child of a content element, it should

be handled as described in Section 4.2.9.

Extending the schema in this way is easily achieved using the Relax NG schema described in Ap-

pendix A, it may be as simple as including the MathML schema whilst overriding the content model of

mtext:

default namespace m = "http://www.w3.org/1998/Math/MathML"

include "mathml3.rnc" {

mtext = element mtext {mtext.attributes, (token.content|anyElement)*}

}

The definition given here would allow any well formed XML that is not in the MathML namespace

as a child of mtext. In practice this may be too lax. For example, an XHTML+MathML Schema may

just want to allow inline XHTML elements as additional children of mtext. This may be achieved

by replacing anyElement by a suitable production from the schema for the host document type, see

Section 6.4.1.

Considerations about mixing markup vocabularies in compound documents arise when a compound

document type is first designed. But once the document type is fixed, it is not generally practical for

specific software tools to further modify the content model to suit their needs. However, it is still

frequently the case that such tools may need to store additional information within a MathML instance.

Since MathML is most often generated by authoring tools, a particularly common and important case

is where an authoring tool needs to store information about its internal state along with a MathML

expression, so an author can resume editing from a previous state. For example, placeholders may be

used to indicate incomplete parts of an expression, or a insertion point within an expression may need

to be stored.

An application that needs to persist private data within a MathML expression should generally attempt

to do so without altering the underlying content model, even in situations where it is feasible to do so.

To support this requirement, regardless of what may be allowed by the content model of a particular

compound document format, MathML permits the storage of private data via the following strategies:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

294 Chapter 6. Interactions with the Host Environment

1. In a format that permits the use of XML Namespaces, for small amounts of data, attributes

from other namespaces are allowed on all MathML elements.

2. For larger amounts of data, applications may use the semantics element, as described in

Section 5.1.

3. For authoring tools and other applications that need to associate particular actions with pre-

sentation MathML subtrees, e.g. to mark an incomplete expression to be filled in by an

author, the maction element may be used, as described in Section 3.7.1.

6.4.1 Mixing MathML and XHTML

To fully integrate MathML into XHTML, it should be possible not only to embed MathML in XHTML,

but also to embed XHTML in MathML. The schema used for the W3C HTML5 validator extends

mtext to allow all inline (phrasing) HTML elements (including svg) to be used within the content

of mtext. See the example in Section 3.2.2.2. As noted above, MathML fragments using XHTML

elements within mtext will not be valid MathML if extracted from the document and used in isolation.

Editing tools may offer support for removing any HTML markup from within mtext and replacing it

by a text alternative.

In most cases, XHTML elements (headings, paragraphs, lists, etc.) either do not apply in mathematical

contexts, or MathML already provides equivalent or improved functionality specifically tailored to

mathematical content (tables, mathematics style changes, etc.).

Consult the W3C Math Working Group home page for compatibility and implementation suggestions

for current browsers and other MathML-aware tools.

6.4.2 Mixing MathML and non-XML contexts

There may be non-XML vocabularies which require markup for mathematical expressions, where it

makes sense to reference this specification. HTML is an important example discussed in the next sec-

tion, however other examples exist. It is possible to use a TeX-like syntax such as \fracab rather than

explicitly using <mfrac> and <mi">. If a system parses a specified syntax and produces a tree that

may be validated against the MathML schema then it may be viewed as as a MathML application.

Note however that documents using such a system are not valid MathML. Implementations of such a

syntax should, if possible, offer a facility to output any mathematical expressions as MathML in the

XML syntax defined here. Such an application would then be a MathML-output-conformant processor

as described in Section 2.3.1.

6.4.3 Mixing MathML and HTML

An important example of a non-XML based system is defined in [HTML5]. When considering MathML

in HTML there are two separate issues to consider. Firstly the schema is extended to allow HTML in

mtext as described above in the context of XHTML. Secondly an HTML parser is used rather than

an XML parser. The parsing of MathML by an HTML parser is normatively defined in [HTML5]. The

description there is aimed at parser implementers and written in terms of the state transitions of the

parser as it parses each character of the input. The non-normative description below aims to give a

higher level description and examples.

XML parsing is completely regular, any XML document may be parsed without reference to the partic-

ular vocabulary being used. HTML parsing differs in that it is a custom parser for the HTML vocabulary

with specific rules for each element. Similarly to XML though, the HTML parser distinguishes pars-

ing from validation; some input, even if it renders correctly, is classed as a parse error which may be

reported by validators (but typically is not reported by rendering systems).

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6.4. Combining MathML and Other Formats 295

The main differences that affect MathML usage may be summarized as:

• Attribute values in most cases do not need to be quoted: <mfenced open=(close=)>

would parse correctly.

• End tags may in many cases be omitted.

• HTML does not support namespaces other than the three built in ones for HTML, MathML

and SVG, and does not support namespace prefixes. Thus you can not use a prefix form like

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> and while you may

use <math xmlns="http://www.w3.org/1998/Math/MathML">, the namespace decla-

ration is essentially ignored and the input is treated as <math>. In either case the math

element and its descendants are placed in the MathML namespace. As noted in Chapter 5

the lack of namespace support limits some of the possibilities for annotating MathML with

markup from other vocabularies when used in HTML.

• Unlike the XML parser, the HTML parser is defined to accept any input string and produce

a defined result (which may be classified as non-conforming. The extreme example

<math></<><z =5> for example would be flagged as a parse error by validators but would

return a tree corresponding to a math element containing a comment < and an element z with

an attribute that could not be expressed in XML with name =5 and value "".

• Unless inside the token elements <mtext>, <mo>, <mn>, <mi>, <ms>, or inside an

<annotation-xml> with encoding attribute "text/html" or

"annotation/xhtml+xml", the presence of an HTML element will terminate the math

expression by closing all open MathML elements, so that the HTML element is interpreted

as being in the outer HTML context. Any following MathML elements are then not con-

tained in <math> so will be parsed as invalid HTML elements and not rendered as MathML.

See for example the example given in Section 5.2.3.3.

In the interests of compatibility with existing MathML applications authors and editing systems should

use MathML fragments that are well formed XML, even when embedded in an HTML document. Also

as noted above, although applications accepting MathML in HTML documents must accept MathML

making use of these HTML parser features, they should offer a way to export MathML in a portable

XML syntax.

6.4.4 Linking

In MathML 3, an element is designated as a link by the presence of the href attribute. MathML has no

element that corresponds to the HTML/XHTML anchor element a.

MathML allows the href attribute on all elements. However, most user agents have no way to imple-

ment nested links or links on elements with no visible rendering; such links may have no effect.

The list of presentation markup elements that do not ordinarily have a visual rendering, and thus should

not be used as linking elements, is given in the table below.

MathML elements that should not be linking elements

mprescripts none

malignmark maligngroup

For compound document formats that support linking mechanisms, the id attribute should be used to

specify the location for a link into a MathML expression. The id attribute is allowed on all MathML

elements, and its value must be unique within a document, making it ideal for this purpose.

Note that MathML 2 has no direct support for linking; it refers to the W3C Recommendation "XML

Linking Language" [XLink] in defining links in compound document contexts by using an

xlink:href attribute. As mentioned above, MathML 3 adds an href attribute for linking so that

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

296 Chapter 6. Interactions with the Host Environment

xlink:href is no longer needed. However, xlink:href is still allowed because MathML permits

the use of attributes from non-MathML namespaces. It is recommended that new compound document

formats use the MathML 3 href attribute for linking. When user agents encounter MathML elements

with both href and xlink:href attributes, the href attribute should take precedence. To support

backward compatibility, user agents that implement XML Linking in compound documents containing

MathML 2 should continue to support the use of the xlink:href attribute in addition to supporting

the href attribute.

6.4.5 MathML and Graphical Markup

Apart from the introduction of new glyphs, many of the situations where one might be inclined to use an

image amount to displaying labeled diagrams. For example, knot diagrams, Venn diagrams, Dynkin di-

agrams, Feynman diagrams and commutative diagrams all fall into this category. As such, their content

would be better encoded via some combination of structured graphics and MathML markup. However,

at the time of this writing, it is beyond the scope of the W3C Math Activity to define a markup language

to encode such a general concept as ‘labeled diagrams.’ (See http://www.w3.org/Math for current W3C

activity in mathematics and http://www.w3.org/Graphics for the W3C graphics activity.)

One mechanism for embedding additional graphical content is via the semantics element, as in the

following example:

<semantics>

<apply>

<intersect/>

<ci>A</ci>

<ci>B</ci>

</apply>

<annotation-xml encoding="image/svg+xml">

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 290 180">

<clipPath id="a">

<circle cy="90" cx="100" r="60"/>

</clipPath>

<circle fill="#AAAAAA" cy="90" cx="190"

r="60" style="clip-path:url(#a)"/>

<circle stroke="black" fill="none" cy="90" cx="100" r="60"/>

<circle stroke="black" fill="none" cy="90" cx="190" r="60"/>

</svg>

</annotation-xml>

<annotation-xml encoding="application/xhtml+xml">

<img xmlns="http://www.w3.org/1999/xhtml"

src="intersect.gif" alt="A intersect B"/>

</annotation-xml>

</semantics>

Here, the annotation-xml elements are used to indicate alternative representations of the MathML-

Content depiction of the intersection of two sets. The first one is in the ‘Scalable Vector Graphics’

format [SVG1.1] (see [XHTML-MathML-SVG] for the definition of an XHTML profile integrating

MathML and SVG), the second one uses the XHTML img element embedded as an XHTML frag-

ment. In this situation, a MathML processor can use any of these representations for display, perhaps

producing a graphical format such as the image below.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

6.5. Using CSS with MathML 297

Note that the semantics representation of this example is given in MathML-Content markup, as the

first child of the semantics element. In this regard, it is the representation most analogous to the alt

attribute of the img element in XHTML, and would likely be the best choice for non-visual rendering.

6.5 Using CSS with MathML

When MathML is rendered in an environment that supports CSS [CSS21], controlling mathematics

style properties with a CSS style sheet is desirable, but not as simple as it might first appear, because

the formatting of MathML layout schemata is quite different from the CSS visual formatting model

and many of the style parameters that affect mathematics layout have no direct textual analogs. Even in

cases where there are analogous properties, the sensible values for these properties may not correspond.

Because of this difference, applications that support MathML natively may choose to restrict the CSS

properties applicable to MathML layout schemata to those properties that do not affect layout.

Generally speaking, the model for CSS interaction with the math style attributes runs as follows. A

CSS style sheet might provide a style rule such as:

math *.[mathsize="small"] {

font-size: 80%

}

This rule sets the CSS font-size property for all children of the math element that have the mathsize

attribute set to small. A MathML renderer would then query the style engine for the CSS environ-

ment, and use the values returned as input to its own layout algorithms. MathML does not specify the

mechanism by which style information is inherited from the environment. However, some suggested

rendering rules for the interaction between properties of the ambient style environment and MathML-

specific rendering rules are discussed in Section 3.2.2, and more generally throughout Chapter 3.

It should be stressed, however, that some caution is required in writing CSS stylesheets for MathML.

Because changing typographic properties of mathematics symbols can change the meaning of an equa-

tion, stylesheets should be written in a way such that changes to document-wide typographic styles do

not affect embedded MathML expressions.

Another pitfall to be avoided is using CSS to provide typographic style information necessary to the

proper understanding of an expression. Expressions dependent on CSS for meaning will not be portable

to non-CSS environments such as computer algebra systems. By using the logical values of the new

MathML 3.0 mathematics style attributes as selectors for CSS rules, it can be assured that style infor-

mation necessary to the sense of an expression is encoded directly in the MathML.

MathML 3.0 does not specify how a user agent should process style information, because there are

many non-CSS MathML environments, and because different users agents and renderers have widely

varying degrees of access to CSS information.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

298 Chapter 6. Interactions with the Host Environment

6.5.1 Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML ele-

ments. Since rendering properties can also be changed by attributes on an element, or be changed au-

tomatically by the renderer, it is necessary to specify the order in which changes requested by various

sources should occur. The order is defined by [CSS21] cascading order taking into account precedence

of non-CSS presentational hints.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Chapter 7

Characters, Entities and Fonts

7.1 Introduction

Notation and symbols have proved very important for mathematics. Mathematics has grown in part

because its notation continually changes toward being succinct and suggestive. Many new signs have

been developed for use in mathematical notation, and many have been adopted that were originally

introduced elsewhere.The result is that mathematics makes use of a very large collection of symbols.

It is difficult to write mathematics fluently if these characters are not available for use. It is difficult to

read mathematics if corresponding glyphs are not available for presentation on specific display devices.

The W3C Math Working Group therefore took on the job of specifying part of the mechanism need-

ed to proceed from notation to final presentation, and has collaborated with the Unicode Technical

Committee (UTC) and the STIX Fonts Project in undertaking specification of the rest.

This chapter contains discussion of characters for use within MathML, recommendations for their use,

and warnings concerning the correct form of the corresponding code points given in the Universal

Multiple-Octet Coded Character Set (UCS) [ISO10646] as codified in Unicode [Unicode]. For sim-

plicity we refer to this character set by the short name Unicode. Unless otherwise stated, the mappings

discussed in this chapter and elsewhere in the MathML 3.0 recommendation are based on Unicode 5.2.

Conformant MathML processors (see Section 2.3) are free to use characters defined in Unicode 5.2 or

later.

While a long process of review and adoption by UTC and ISO/IEC of the characters of special interest

to mathematics and MathML is now complete, more characters may be added in the future. For the

latest character tables and font information, see the [Entities] and the Unicode Home Page, notably

Unicode Work in Progress and Unicode Technical Report #25 “Unicode Support for Mathematics”.

A MathML token element (see Section 3.2, Section 4.2.1, Section 4.2.2, Section 4.2.3) takes as content

a sequence of MathML characters or mglyph elements. The latter are used to represent characters that

do not have a Unicode encoding, as described in Section 3.2.1.2. The need for mglyph should be rare

because Unicode 3.1 provided approximately one thousand alphabetic characters for mathematics, and

Unicode 3.2 added over 900 more special mathematical symbols.

7.2 Unicode Character Data

Any character allowed by XML may be used in MathML. More precisely, the legal Unicode characters

have the hexadecimal code numbers 09 (tab = U+0009), 0A (line feed = U+000A), 0D (carriage re-

turn = U+000D), 20-D7FF (U+0020..U+D7FF), E000-FFFD (U+E000..U+FFFD), and 10000-10FFFF

(U+10000..U+10FFFF). The exclusions above code number D7FF are of the blocks used in surrogate

299

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

300 Chapter 7. Characters, Entities and Fonts

pairs, and the two characters guaranteed not to be Unicode characters at all. U+FFFE is excluded to

allow determination of byte order in certain encodings.

There are essentially three different ways of encoding character data in an XML document.

• Using characters directly: For example, the ’é’ (character U+00E9 [LATIN SMALL LET-

TER E WITH ACUTE]) may have been inserted. This option is only useful if the character

encoding specified for the XML document includes the character intended. Note that if the

document is, for example, encoded in Latin-1 (ISO-8859-1) then only the characters in that

encoding are available directly; for instance character U+00E9 (eacute) is, but character

U+03B1 (alpha) is not.

• Using numeric XML character references: For example, ’é’ may be represented as é

(decimal) or é (hex), or é (decimal) or é. Note that the numbers in the

character references always refer to the Unicode encoding (and not to the character encoding

used in the XML file). By using character references it is always possible to access the entire

Unicode range.

• Using entity references: The MathML DTD defines internal entities that expand to character

data. Thus for example the entity reference é may be used rather than the character

reference é. An XML fragment that uses an entity reference which is not defined in a

DTD is not well-formed; therefore it will be rejected by an XML parser. For this reason ev-

ery fragment using entity references must use a DOCTYPE declaration which specifies the

MathML DTD, or a DTD that at least declares any entity reference used in the MathML in-

stance. The need to use a DOCTYPE complicates inclusion of MathML in some documents.

However, entity references can be useful for small illustrative examples.

7.3 Entity Declarations

Earlier versions of this MathML specification included detailed listings of the entity definitions to

be used with the MathML DTD. These entity definitions are of more general use, and have now been

separated into an ancillary document, XML Entity Definitions for Characters [Entities]. The tables there

list the entity names and the corresponding Unicode character references. That document describes

several entity sets; not all of them are used in the MathML DTD. The MathML DTD references the

combined HTML MathML entity set defined in [Entities].

7.4 Special Characters Not in Unicode

For special purposes, one may need a symbol which does not have a Unicode representation. In these

cases one may use the mglyph element for direct access to a glyph as an image, or (in some systems)

from a font that uses a non-Unicode encoding. All MathML token elements accept characters in their

content and also accept an mglyph there. Beware, however, that use of mglyph to access a font is

deprecated and the mechanism may not work in all systems. The mglyph element should always supply

a useful alternative representation in its alt attribute.

7.5 Mathematical Alphanumeric Symbols

In mathematical and scientific writing, single letters often denote variables and constants in a given

context. The increasing complexity of science has led to the use of certain common alphabet and font

variations to provide enough special symbols of this letter-like type. These denotations are generally

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

7.5. Mathematical Alphanumeric Symbols 301

not letters that may be used to make up words with recognized meanings, but individual carriers of

semantics themselves. Writing a string of such symbols is usually interpreted in terms of some com-

position law, for instance, multiplication. Many letter-like symbols may be quickly interpreted as of a

certain mathematical type by specialists in a given area: for instance, bold symbols, whether based on

Latin or Greek letters, as vectors in physics or engineering, or Fraktur symbols as Lie algebras in part

of pure mathematics.

The additional Mathematical Alphanumeric Symbols provided in Unicode 3.1 have code points in the

range U+1D400 to U+1D7FF in Plane 1, that is, in the first plane with Unicode values higher than 216.

This plane of characters is also known as the Secondary Multilingual Plane (SMP), in contrast to the

Basic Multilingual Plane (BMP) which was originally the entire extent of Unicode. Support for Plane 1

characters in currently deployed software is not always reliable, but it should be possible in multilingual

operating systems, since Plane 2 has many Chinese characters that must be displayable in East Asian

locales.

As discussed in Section 3.2.2, MathML offers an alternative mechanism to specify mathematical al-

phanumeric characters. This alternative mechanism spans the gap between the specification of the

mathematical alphanumeric symbols as Unicode code points, and the deployment of software and fonts

that support them. Namely, one uses the mathvariant attribute on a token element such as mi to

indicate that the character data in the token element selects a mathematical alphanumeric symbol.

In principle, any mathvariant value may be used with any character data to define a specific symbolic

token. In practice, only certain combinations of character data and mathvariant values will be visual-

ly distinguished by a given renderer. In this section we explain the correspondence between certain

characters in Plane 0 that, when modified by the mathvariant attribute, are considered equivalent to

mathematical alphanumeric symbol characters.

The mathematical alphanumeric symbol characters in Plane 1 include alphabets for Latin upper-case

and lower-case letters, including dotless i and j, Greek upper-case and lower-case letters, Greek sym-

bols (also known as variants), including upper-case and lower-case digamma, and Latin digits. These

alphabets provide Plane 1 Unicode code points that differ from corresponding Plane 0 characters only

by a variation in font that carries mathematical semantics when used in a formula.

The mathvariant attribute uses exactly this correspondence to provide an alternate markup encoding

that selects these Plane 1 characters. For example, the Mathematical Italic alphabet runs from U+1D434

("A") to U+1D467 ("z"). Thus, a typical example of an identifier for a variable, marked up as

<mi>a</mi>

and rendered in a mathematical italic font (as described in Section 3.2.3) could equivalently be marked

up as

<mi>𝑎<!--MATHEMATICAL ITALIC SMALL A--></mi>

which invokes the Mathematical Italic lower-case a explicitly.

An important use of the mathematical alphanumeric symbols in Plane 1 is for identifiers normally

printed in special mathematical fonts, such as Fraktur, Greek, Boldface, or Script. As another example,

the Mathematical Fraktur alphabet runs from U+1D504 ("A") to U+1D537 ("z"). Thus, an identifier for

a variable that uses Fraktur characters could be marked up as

<mi>𝔄<!--BLACK-LETTER CAPITAL A--></mi>

An alternative, equivalent markup for this example is to use the common upper-case A, modified by

using the mathvariant attribute:

<mi mathvariant="fraktur">A</mi>

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

302 Chapter 7. Characters, Entities and Fonts

A MathML processor must treat a mathematical alphanumeric character (when it appears) as identi-

cal to the corresponding combination of the unstyled character and mathvariant attribute value. It is

important to note that the mathvariant attribute specifies a semantic class of characters, each of which

has a specific appearance that should be protected from document-wide style changes, so the intended

meaning of the character may be preserved. The use of a mathematical alphanumeric character is also

intended to preserve this specific appearance, and so these characters are also not to be affected by

surrounding style changes.

Not all combinations of character data and mathvariant values have assigned Unicode code points. For

example, sans-serif Greek alphabets are omitted, while bold sans-serif Greek alphabets are included,

and bold digits are included, while bold-italic digits are excluded. A renderer should visually distin-

guish those combinations of character data and mathvariant attribute values that it can subject to the

availability of font characters. It is intended that renderers distinghish at least those combinations that

have equivalent Unicode code points, and renderers are free to ignore those combinations that have no

assigned Unicode code point or for which adequate font support is unavailable.

The exact correspondence between a mathematical alphabetic character and an unstyled character is

complicated by the fact that certain characters that were already present in Unicode in Plane 0 are not

in the ’expected’ sequence in Plane 1. The table below shows the Plane 0 mathematical alphanumeric

symbols, listing for each character its Unicode code point, its Unicode character name, its correspond-

ing unstyled alphabetic character, and the code point in Plane 1 where one might naturally have sought

this character.

Unicode code point Unicode name BMP code Plane-1 code

U+210E PLANCK CONSTANT U+0068 U+1D455

U+212C SCRIPT CAPITAL B U+0042 U+1D49D

U+2130 SCRIPT CAPITAL E U+0045 U+1D4A0

U+2131 SCRIPT CAPITAL F U+0046 U+1D4A1

U+210B SCRIPT CAPITAL H U+0048 U+1D4A3

U+2110 SCRIPT CAPITAL I U+0049 U+1D4A4

U+2112 SCRIPT CAPITAL L U+004C U+1D4A7

U+2133 SCRIPT CAPITAL M U+004D U+1D4A8

U+211B SCRIPT CAPITAL R U+0052 U+1D4AD

U+212F SCRIPT SMALL E U+0065 U+1D4BA

U+210A SCRIPT SMALL G U+0067 U+1D4BC

U+2134 SCRIPT SMALL O U+006F U+1D4C4

U+212D BLACK-LETTER CAPITAL C U+0043 U+1D506

U+210C BLACK-LETTER CAPITAL H U+0048 U+1D50B

U+2111 BLACK-LETTER CAPITAL I U+0049 U+1D50C

U+211C BLACK-LETTER CAPITAL R U+0052 U+1D515

U+2128 BLACK-LETTER CAPITAL Z U+005A U+1D51D

U+2102 DOUBLE-STRUCK CAPITAL C U+0043 U+1D53A

U+210D DOUBLE-STRUCK CAPITAL H U+0048 U+1D53F

U+2115 DOUBLE-STRUCK CAPITAL N U+004E U+1D545

U+2119 DOUBLE-STRUCK CAPITAL P U+0050 U+1D547

U+211A DOUBLE-STRUCK CAPITAL Q U+0051 U+1D548

U+211D DOUBLE-STRUCK CAPITAL R U+0052 U+1D549

U+2124 DOUBLE-STRUCK CAPITAL Z U+005A U+1D551

Mathematical Alphanumeric Symbol characters should not be used for styled prose. For example,

Mathematical Fraktur A must not be used to just select a blackletter font for an uppercase A as it would

create problems for searching, restyling (e.g. for accessibility), and many other kinds of processing.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

7.6. Non-Marking Characters 303

7.6 Non-Marking Characters

Some characters, although important for the quality of print or alternative rendering, do not have glyph

marks that correspond directly to them. They are called here non-marking characters. Their roles are

discussed in Chapter 3 and Chapter 4.

In MathML, control of page composition, such as line-breaking, is effected by the use of the proper

attributes on the mo and mspace elements.

The characters below are not simple spacers. They are especially important new additions to the UCS

because they provide textual clues which can increase the quality of print rendering, permit correct

audio rendering, and allow the unique recovery of mathematical semantics from text which is visually

ambiguous.

Unicode code point Unicode name Description

U+2061 FUNCTION APPLICATION character showing function application in pre-

sentation tagging (Section 3.2.5)

U+2062 INVISIBLE TIMES marks multiplication when it is understood with-

out a mark (Section 3.2.5)

U+2063 INVISIBLE SEPARATOR used as a separator, e.g., in indices (Sec-

tion 3.2.5)

U+2064 INVISIBLE PLUS marks addition, especially in constructs such as

1 1
2

(Section 3.2.5)

7.7 Anomalous Mathematical Characters

Some characters which occur fairly often in mathematical texts, and have special significance there,

are frequently confused with other similar characters in the UCS. In some cases, common keyboard

characters have become entrenched as alternatives to the more appropriate mathematical characters.

In others, characters have legitimate uses in both formulas and text, but conflicting rendering and font

conventions. All these characters are called here anomalous characters.

7.7.1 Keyboard Characters

Typical Latin-1-based keyboards contain several characters that are visually similar to important math-

ematical characters. Consequently, these characters are frequently substituted, intentionally or uninten-

tionally, for their more correct mathematical counterparts.

7.7.1.1 Minus

The most common ordinary text character which enjoys a special mathematical use is U+002D [HYPHEN-

MINUS]. As its Unicode name suggests, it is used as a hyphen in prose contexts, and as a minus or

negative sign in formulas. For text use, there is a specific code point U+2010 [HYPHEN] which is

intended for prose contexts, and which should render as a hyphen or short dash. For mathematical

use, there is another code point U+2212 [MINUS SIGN] which is intended for mathematical formulas,

and which should render as a longer minus or negative sign. MathML renderers should treat U+002D

[HYPHEN-MINUS] as equivalent to U+2212 [MINUS SIGN] in formula contexts such as mo, and as

equivalent to U+2010 [HYPHEN] in text contexts such as mtext.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

304 Chapter 7. Characters, Entities and Fonts

7.7.1.2 Apostrophes, Quotes and Primes

On a typical European keyboard there is a key available which is viewed as an apostrophe or a single

quotation mark (an upright or right quotation mark). Thus one key is doing double duty for prose

input to enter U+0027 [APOSTROPHE] and U+2019 [RIGHT SINGLE QUOTATION MARK]. In

mathematical contexts it is also commonly used for the prime, which should be U+2032 [PRIME].

Unicode recognizes the overloading of this symbol and remarks that it can also signify the units of

minutes or feet. In the unstructured printed text of normal prose the characters are placed next to

one another. The U+0027 [APOSTROPHE] and U+2019 [RIGHT SINGLE QUOTATION MARK]

are marked with glyphs that are small and raised with respect to the center line of the text. The fonts

used provide small raised glyphs in the appropriate places indexed by the Unicode codes. The U+2032

[PRIME] of mathematics is similarly treated in fuller Unicode fonts.

MathML renderers are encouraged to treat U+0027 [APOSTROPHE] as U+2032 [PRIME] when ap-

propriate in formula contexts.

A final remark is that a ‘prime’ is often used in transliteration of the Cyrillic character U+044C

[CYRILLIC SMALL LETTER SOFT SIGN]. This different use of primes is not part of considera-

tions for mathematical formulas.

7.7.1.3 Other Keyboard Substitutions

While the minus and prime characters are the most common and important keyboard characters with

more precise mathematical counterparts, there are a number of other keyboard character substitutions

that are sometime used. For example some may expect

<mo>’’</mo>

to be treated as U+2033 [DOUBLE PRIME], and analogous substitutions could perhaps be made

for U+2034 [TRIPLE PRIME] and U+2057 [QUADRUPLE PRIME]. Similarly, sometimes U+007C

[VERTICAL LINE] is used for U+2223 [DIVIDES]. MathML regards these as application-specific

authoring conventions, and recommends that authoring tools generate markup using the more precise

mathematical characters for better interoperability.

7.7.2 Pseudo-scripts

There are a number of characters in the UCS that traditionally have been taken to have a natural ‘script’

aspect. The visual presentation of these characters is similar to a script, that is, raised from the baseline,

and smaller than the base font size. The degree symbol and prime characters are examples. For use in

text, such characters occur in sequence with the identifier they follow, and are typically rendered using

the same font. These characters are called pseudo-scripts here.

In almost all mathematical contexts, pseudo-script characters should be associated with a base expres-

sion using explicit script markup in MathML. For example, the preferred encoding of ‘x prime’ is

<msup><mi>x</mi><mo>′<!--PRIME--></mo></msup>

and not

<mi>x’</mi>

or any other variants not using an explicit script construct. Note, however, that within text contexts such

as mtext, pseudo-scripts may be used in sequence with other character data.

There are two reasons why explicit markup is preferable in mathematical contexts. First, a problem

arises with typesetting, when pseudo-scripts are used with subscripted identifiers. Traditionally, sub-

scripting of x’ would be rendered stacked under the prime. This is easily accomplished with script

markup, for example:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

7.7. Anomalous Mathematical Characters 305

<mrow><msubsup><mi>x</mi><mn>0</mn><mo>′<!--PRIME--></mo></msubsup></mrow>

By contrast,

<mrow><msub><mi>x’</mi><mn>0</mn></msub></mrow>

will render with staggered scripts.

Note this means that a renderer of MathML will have to treat pseudo-scripts differently from most other

character codes it finds in a superscript position; in most fonts, the glyphs for pseudo-scripts are already

shrunk and raised from the baseline.

The second reason that explicit script markup is preferrable to juxtaposition of characters is that it

generally better reflects the intended mathematical structure. For example,

<msup>

<mrow><mo>(</mo><mrow><mi>f</mi><mo>+</mo><mi>g</mi></mrow><mo>)</mo></mrow>

<mo>′<!-PRIME-></mo>

</msup>

accurately reflects that the prime here is operating on an entire expression, and does not suggest that

the prime is acting on the final right parenthesis.

However, the data model for all MathML token elements is Unicode text, so one cannot rule out the

possibility of valid MathML markup containing constructions such as

<mrow><mi>x’</mi></mrow>

and

<mrow><mi>x</mi><mo>’</mo></mrow>

While the first form may, in some rare situations, legitmately be used to distinguish a multi-character

identifer named x’ from the derivative of a function x, such forms should generally be avoided. Author-

ing and validation tools are encouraged to generate the recommended script markup:

<mrow><msup><mi>x</mi><mo>′<!--PRIME--></mo></msup></mrow>

The U+2032 [PRIME] character is perhaps the most common pseudo-script, but there are many others,

as listed below:

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

306 Chapter 7. Characters, Entities and Fonts

Pseudo-script Characters

U+0022 QUOTATION MARK

U+0027 APOSTROPHE

U+002A ASTERISK

U+0060 GRAVE ACCENT

U+00AA FEMININE ORDINAL INDICATOR

U+00B0 DEGREE SIGN

U+00B2 SUPERSCRIPT TWO

U+00B3 SUPERSCRIPT THREE

U+00B4 ACUTE ACCENT

U+00B9 SUPERSCRIPT ONE

U+00BA MASCULINE ORDINAL INDICATOR

U+2018 LEFT SINGLE QUOTATION MARK

U+2019 RIGHT SINGLE QUOTATION MARK

U+201A SINGLE LOW-9 QUOTATION MARK

U+201B SINGLE HIGH-REVERSED-9 QUOTATION MARK

U+201C LEFT DOUBLE QUOTATION MARK

U+201D RIGHT DOUBLE QUOTATION MARK

U+201E DOUBLE LOW-9 QUOTATION MARK

U+201F DOUBLE HIGH-REVERSED-9 QUOTATION MARK

U+2032 PRIME

U+2033 DOUBLE PRIME

U+2034 TRIPLE PRIME

U+2035 REVERSED PRIME

U+2036 REVERSED DOUBLE PRIME

U+2037 REVERSED TRIPLE PRIME

U+2057 QUADRUPLE PRIME

In addition, the characters in the Unicode Superscript and Subscript block (beginning at U+2070)

should be treated as pseudo-scripts when they appear in mathematical formulas.

Note that several of these characters are common on keyboards, including U+002A [ASTERISK],

U+00B0 [DEGREE SIGN], U+2033 [DOUBLE PRIME], and U+2035 [REVERSED PRIME] also

known as a back prime.

7.7.3 Combining Characters

In the UCS there are many combining characters that are intended to be used for the many accents of

numerous different natural languages. Some of them may seem to provide markup needed for mathe-

matical accents. They should not be used in mathematical markup. Superscript, subscript, underscript,

and overscript constructions as just discussed above should be used for this purpose. Of course, com-

bining characters may be used in multi-character identifiers as they are needed, or in text contexts.

There is one more case where combining characters turn up naturally in mathematical markup. Some

relations have associated negations, such as U+226F [NOT GREATER-THAN] for the negation of

U+003E [GREATER-THAN SIGN]. The glyph for U+226F [NOT GREATER-THAN] is usually just

that for U+003E [GREATER-THAN SIGN] with a slash through it. Thus it could also be expressed by

U+003E-0338 making use of the combining slash U+0338 [COMBINING LONG SOLIDUS OVER-

LAY]. That is true of 25 other characters in common enough mathematical use to merit their own Uni-

code code points. In the other direction there are 31 character entity names listed in [Entities] which

are to be expressed using U+0338 [COMBINING LONG SOLIDUS OVERLAY].

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

7.7. Anomalous Mathematical Characters 307

In a similar way there are mathematical characters which have negations given by a vertical bar overlay

U+20D2 [COMBINING LONG VERTICAL LINE OVERLAY]. Some are available in pre-composed

forms, and some named character entities are given explicitly as combinations. In addition there are ex-

amples using U+0333 [COMBINING DOUBLE LOW LINE] and U+20E5 [COMBINING REVERSE

SOLIDUS OVERLAY], and variants specified by use of the U+FE00 [VARIATION SELECTOR-1].

For fuller listing of these cases see the listings in [Entities].

The general rule is that a base character followed by a string of combining characters should be treated

just as though it were the pre-composed character that results from the combination, if such a character

exists.

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

Appendix A

Parsing MathML

A.1 Use of MathML as Well-Formed XML

A MathML document must be a well-formed XML document using elements in the MathML names-

pace as defined by this specification, however it is not required that the document refer to any specific

Document Type Definition (DTD) or schema that specifies MathML. It is sometimes advantageous not

to specify such a language definition as these files are large, often much larger than the MathML ex-

pression and unless they have been previously cached by the MathML application, the time taken to

fetch the DTD or schema may have an appreciable effect on the processing of the MathML document.

Note that if no DTD is specified with a DOCTYPE declaration, that entity references (for example

to refer to MathML characters by name) may not be used. The document should be encoded in an

encoding (for example UTF-8) in which all needed characters may be encoded as character data, or

characters may be referenced using numeric character references, for example ∫ rather than

∫

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is

the responsibility of the processing application to treat the white space characters occurring outside of

token elements as not significant.

However, in many circumstances, especially while producing or editing MathML, it is useful to use a

language definition to constrain the editing process or to check the correctness of generated files. The

following section, Section A.2, discusses the RelaxNG Schema for MathML3 [RELAX-NG], which

forms a normative part of the specification. Following that, Section A.4, and Section A.3 discuss al-

ternative languages definition using the document type definitions (DTD) and the W3C XML schema

language, [XMLSchemas], both of which are derived from the normative RelaxNG schema automat-

ically. One should note that the schema definitions of the language is currently stricter than the DTD

version. That is, a schema validating processor will declare invalid documents that are declared valid

by a (DTD) validating XML parser. This is partly due to the fact that the XML schema language may

express additional constraints not expressable in the DTD, and partly due to the fact that for reasons

of compatibility with earlier releases, the DTD is intentionally forgiving in some places and does not

enforce constraints that are specified in the text of this specification.

A.2 Using the RelaxNG Schema for MathML3

MathML documents should be validated using the RelaxNG Schema for MathML, either in the XML

encoding (http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rng) or in compact notation

(http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc) which is also shown below.

In contrast to DTDs there is no in-document method to associate a RelaxNG schema with a document.

308

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 309

We provide five RelaxNG schema for MathML3 in five parts:

• The grammar for full MathML

• The grammar for elements common to Content and Presentation

• The grammar for Presentation MathML

• The grammar for Strict Content MathML

• The grammar for Content MathML3

A.2.1 Full MathML

The RelaxNG schema for full MathML builds on the schema describing the various parts of the lan-

guage which are given in the following sections. It can be found at http://www.w3.org/Math/

RelaxNG/mathml3/mathml3.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML

application for describing mathematical notation and capturing

both its structure and content.

#

Copyright 1998-2010 W3C (MIT, ERCIM, Keio)

#

Use and distribution of this code are permitted under the terms

W3C Software Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

Content MathML

include "mathml3-content.rnc"

Presentation MathML

include "mathml3-presentation.rnc"

math and semantics common to both Content and Presentation

include "mathml3-common.rnc"

A.2.2 Elements Common to Presentation and Content MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML

application for describing mathematical notation and capturing

both its structure and content.

#

Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)

#

Use and distribution of this code are permitted under the terms

W3C Software Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

310 Appendix A. Parsing MathML

default namespace m = "http://www.w3.org/1998/Math/MathML"

namespace local = ""

start = math

math = element {math} {math.attributes,MathExpression*}

MathExpression = semantics

NonMathMLAtt = attribute {(* - (local:*|m:*)}) {xsd:string}

CommonDeprecatedAtt = attribute {other} {text}?

CommonAtt = attribute {id} {xsd:ID}?,

attribute {xref} {text}?,

attribute {class} {xsd:NMTOKENS}?,

attribute {style} {xsd:string}?,

attribute {href} {xsd:anyURI}?,

CommonDeprecatedAtt,

NonMathMLAtt*

math.attributes = CommonAtt,

attribute {display} {"block" | "inline"}?,

attribute {maxwidth} {length}?,

attribute {overflow} {"linebreak" | "scroll" | "elide" |

"truncate" | "scale"}?,

attribute {altimg} {xsd:anyURI}?,

attribute {altimg}-width {length}?,

attribute {altimg}-height {length}?,

attribute {altimg}-valign {length | "top" | "middle" |

"bottom"}?,

attribute {alttext} {text}?,

attribute {cdgroup} {xsd:anyURI}?,

math.deprecatedattributes

the mathml3-presentation schema adds additional attributes

to the math element, all those valid on mstyle

math.deprecatedattributes = attribute {mode} {xsd:string}?,

attribute {macros} {xsd:string}?

name = attribute {name} {xsd:NCName}

cd = attribute {cd} {xsd:NCName}

src = attribute {src} {xsd:anyURI}?

annotation = element {annotation} {annotation.attributes,text}

annotation-xml.model = (MathExpression|anyElement)*

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 311

anyElement = element (* - m:*) {(attribute * {text}|text| anyElement)*}

annotation-xml = element {annotation}-xml {annotation.attributes,

annotation-xml.model}

annotation.attributes = CommonAtt,

cd?,

name?,

DefEncAtt,

src?

DefEncAtt = attribute {encoding} {xsd:string}?,

attribute {definitionURL} {xsd:anyURI}?

semantics = element {semantics} {semantics.attributes,

MathExpression,

(annotation|annotation-xml)*}

semantics.attributes = CommonAtt,DefEncAtt,cd?,name?

length = xsd:string {

pattern = ’\s*((-?[0-9]*([0-9]\.?|\.[0-9])[0-9]*(e[mx]|in|cm|mm|p[xtc]|%)?)|

(negative)?((very){0,2}thi(n|ck)|medium)mathspace)\s*’

}

A.2.3 The Grammar for Presentation MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML

application for describing mathematical notation and capturing

both its structure and content.

#

Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)

#

Use and distribution of this code are permitted under the terms

W3C Software Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

MathExpression |= PresentationExpression

ImpliedMrow = MathExpression*

TableRowExpression = mtr|mlabeledtr

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

312 Appendix A. Parsing MathML

TableCellExpression = mtd

MstackExpression = MathExpression|mscarries|msline|msrow|msgroup

MsrowExpression = MathExpression|none

MultiScriptExpression = (MathExpression|none),(MathExpression|none)

mpadded-length = xsd:string {

pattern = ’\s*([\+\-]?[0-9]*([0-9]\.?|\.[0-9])[0-9]*\s*((%?\s*(height|depth|

width)?)|e[mx]|in|cm|mm|p[xtc]|((negative)?((very){0,2}thi(n|ck)|

medium)mathspace))?)\s*’ }

linestyle = "none" | "solid" | "dashed"

verticalalign =

"top" |

"bottom" |

"center" |

"baseline" |

"axis"

columnalignstyle = "left" | "center" | "right"

notationstyle =

"longdiv" |

"actuarial" |

"radical" |

"box" |

"roundedbox" |

"circle" |

"left" |

"right" |

"top" |

"bottom" |

"updiagonalstrike" |

"downdiagonalstrike" |

"verticalstrike" |

"horizontalstrike" |

"madruwb"

idref = text

unsigned-integer = xsd:unsignedLong

integer = xsd:integer

number = xsd:decimal

character = xsd:string {

pattern = ’\s*\S\s*’}

color = xsd:string {

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 313

pattern = ’\s*((#[0-9a-fA-F]{3}([0-9a-fA-F]{3})?)|[aA][qQ][uU][aA]|

[bB][lL][aA][cC][kK]|[bB][lL][uU][eE]|[fF][uU][cC][hH][sS][iI][aA]|

[gG][rR][aA][yY]|[gG][rR][eE][eE][nN]|[lL][iI][mM][eE]|

[mM][aA][rR][oO][oO][nN]|[nN][aA][vV][yY]|[oO][lL][iI][vV][eE]|

[pP][uU][rR][pP][lL][eE]|[rR][eE][dD]|[sS][iI][lL][vV][eE][rR]|

[tT][eE][aA][lL]|[wW][hH][iI][tT][eE]|[yY][eE][lL][lL][oO][wW])\s*’}

group-alignment = "left" | "center" | "right" | "decimalpoint"

group-alignment-list = list {group-alignment+}

group-alignment-list-list = xsd:string {

pattern = ’(\s*\{\s*(left|center|right|decimalpoint)(\s+(left|center|right|

decimalpoint))*\})*\s*’ }

positive-integer = xsd:positiveInteger

TokenExpression = mi|mn|mo|mtext|mspace|ms

token.content = mglyph|malignmark|text

mi = element {mi} {mi.attributes, token.content*}

mi.attributes =

CommonAtt,

CommonPresAtt,

TokenAtt

mn = element {mn} {mn.attributes, token.content*}

mn.attributes =

CommonAtt,

CommonPresAtt,

TokenAtt

mo = element {mo} {mo.attributes, token.content*}

mo.attributes =

CommonAtt,

CommonPresAtt,

TokenAtt,

attribute {form} {"prefix" | "infix" | "postfix"}?,

attribute {fence} {"true" | "false"}?,

attribute {separator} {"true" | "false"}?,

attribute {lspace} {length}?,

attribute {rspace} {length}?,

attribute {stretchy} {"true" | "false"}?,

attribute {symmetric} {"true" | "false"}?,

attribute {maxsize} {length | "infinity"}?,

attribute {minsize} {length}?,

attribute {largeop} {"true" | "false"}?,

attribute {movablelimits} {"true" | "false"}?,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

314 Appendix A. Parsing MathML

attribute {accent} {"true" | "false"}?,

attribute {linebreak} {"auto" | "newline" | "nobreak" | "goodbreak" |

"badbreak"}?,

attribute {lineleading} {length}?,

attribute {linebreakstyle} {"before" | "after" | "duplicate" |

"infixlinebreakstyle"}?,

attribute {linebreakmultchar} {text}?,

attribute {indentalign} {"left" | "center" | "right" | "auto" | "id"}?,

attribute {indentshift} {length}?,

attribute {indenttarget} {idref}?,

attribute {indentalignfirst} {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,

attribute {indentshiftfirst} {length | "indentshift"}?,

attribute {indentalignlast} {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,

attribute {indentshiftlast} {length | "indentshift"}?

mtext = element {mtext} {mtext.attributes, token.content*}

mtext.attributes =

CommonAtt,

CommonPresAtt,

TokenAtt

mspace = element {mspace} {mspace.attributes, empty}

mspace.attributes =

CommonAtt,

CommonPresAtt,

TokenAtt,

attribute {width} {length}?,

attribute {height} {length}?,

attribute {depth} {length}?,

attribute {linebreak} {"auto" | "newline" | "nobreak" | "goodbreak" |

"badbreak" | "indentingnewline"}?,

attribute {indentalign} {"left" | "center" | "right" | "auto" | "id"}?,

attribute {indentshift} {length}?,

attribute {indenttarget} {idref}?,

attribute {indentalignfirst} {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,

attribute {indentshiftfirst} {length | "indentshift"}?,

attribute {indentalignlast} {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,

attribute {indentshiftlast} {length | "indentshift"}?

ms = element {ms} {ms.attributes, token.content*}

ms.attributes =

CommonAtt,

CommonPresAtt,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 315

TokenAtt,

attribute {lquote} {text}?,

attribute {rquote} {text}?

mglyph = element {mglyph} {mglyph.attributes,mglyph.deprecatedattributes,

empty}

mglyph.attributes =

CommonAtt, CommonPresAtt,

attribute {src} {xsd:anyURI}?,

attribute {width} {length}?,

attribute {height} {length}?,

attribute {valign} {length}?,

attribute {alt} {text}?

mglyph.deprecatedattributes =

attribute {index} {integer}?,

attribute {mathvariant} {"normal" | "bold" | "italic" | "bold-italic" |

"double-struck" | "bold-fraktur" | "script" | "bold-script" |

"fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |

"sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |

"looped" | "stretched"}?,

attribute {mathsize} {"small" | "normal" | "big" | length}?,

DeprecatedTokenAtt

msline = element {msline} {msline.attributes,empty}

msline.attributes =

CommonAtt, CommonPresAtt,

attribute {position} {integer}?,

attribute {length} {unsigned-integer}?,

attribute {leftoverhang} {length}?,

attribute {rightoverhang} {length}?,

attribute {mslinethickness} {length | "thin" | "medium" | "thick"}?

none = element {none} {none.attributes,empty}

none.attributes =

CommonAtt,

CommonPresAtt

mprescripts = element {mprescripts} {mprescripts.attributes,empty}

mprescripts.attributes =

CommonAtt,

CommonPresAtt

CommonPresAtt =

attribute {mathcolor} {color}?,

attribute {mathbackground} {color | "transparent"}?

TokenAtt =

attribute {mathvariant} {"normal" | "bold" | "italic" | "bold-italic" |

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

316 Appendix A. Parsing MathML

"double-struck" | "bold-fraktur" | "script" | "bold-script" |

"fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |

"sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |

"looped" | "stretched"}?,

attribute {mathsize} {"small" | "normal" | "big" | length}?,

attribute {dir} {"ltr" | "rtl"}?,

DeprecatedTokenAtt

DeprecatedTokenAtt =

attribute {fontfamily} {text}?,

attribute {fontweight} {"normal" | "bold"}?,

attribute {fontstyle} {"normal" | "italic"}?,

attribute {fontsize} {length}?,

attribute {color} {color}?,

attribute {background} {color | "transparent"}?

MalignExpression = maligngroup|malignmark

malignmark = element {malignmark} {malignmark.attributes, empty}

malignmark.attributes =

CommonAtt, CommonPresAtt,

attribute {edge} {"left" | "right"}?

maligngroup = element {maligngroup} {maligngroup.attributes, empty}

maligngroup.attributes =

CommonAtt, CommonPresAtt,

attribute {groupalign} {"left" | "center" | "right" | "decimalpoint"}?

PresentationExpression = TokenExpression|MalignExpression|

mrow|mfrac|msqrt|mroot|mstyle|merror|mpadded|

mphantom|

mfenced|menclose|msub|msup|msubsup|munder|mover|

munderover|

mmultiscripts|mtable|mstack|mlongdiv|maction

mrow = element {mrow} {mrow.attributes, MathExpression*}

mrow.attributes =

CommonAtt, CommonPresAtt,

attribute {dir} {"ltr" | "rtl"}?

mfrac = element {mfrac} {mfrac.attributes, MathExpression, MathExpression}

mfrac.attributes =

CommonAtt, CommonPresAtt,

attribute {linethickness} {length | "thin" | "medium" | "thick"}?,

attribute {numalign} {"left" | "center" | "right"}?,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 317

attribute {denomalign} {"left" | "center" | "right"}?,

attribute {bevelled} {"true" | "false"}?

msqrt = element {msqrt} {msqrt.attributes, ImpliedMrow}

msqrt.attributes =

CommonAtt, CommonPresAtt

mroot = element {mroot} {mroot.attributes, MathExpression, MathExpression}

mroot.attributes =

CommonAtt, CommonPresAtt

mstyle = element {mstyle} {mstyle.attributes, ImpliedMrow}

mstyle.attributes =

CommonAtt, CommonPresAtt,

mstyle.specificattributes,

mstyle.generalattributes,

mstyle.deprecatedattributes

mstyle.specificattributes =

attribute {scriptlevel} {integer}?,

attribute {displaystyle} {"true" | "false"}?,

attribute {scriptsizemultiplier} {number}?,

attribute {scriptminsize} {length}?,

attribute {infixlinebreakstyle} {"before" | "after" | "duplicate"}?,

attribute {decimalpoint} {character}?

mstyle.generalattributes =

attribute {accent} {"true" | "false"}?,

attribute {accentunder} {"true" | "false"}?,

attribute {align} {"left" | "right" | "center"}?,

attribute {alignmentscope} {list {("true" | "false") +}}?,

attribute {bevelled} {"true" | "false"}?,

attribute {charalign} {"left" | "center" | "right"}?,

attribute {charspacing} {length | "loose" | "medium" | "tight"}?,

attribute {close} {text}?,

attribute {columnalign} {list {columnalignstyle+} }?,

attribute {columnlines} {list {linestyle +}}?,

attribute {columnspacing} {list {(length) +}}?,

attribute {columnspan} {positive-integer}?,

attribute {columnwidth} {list {("auto" | length | "fit") +}}?,

attribute {crossout} {list {("none" | "updiagonalstrike" |

"downdiagonalstrike" | "verticalstrike" | "horizontalstrike")*}}?,

attribute {denomalign} {"left" | "center" | "right"}?,

attribute {depth} {length}?,

attribute {dir} {"ltr" | "rtl"}?,

attribute {edge} {"left" | "right"}?,

attribute {equalcolumns} {"true" | "false"}?,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

318 Appendix A. Parsing MathML

attribute {equalrows} {"true" | "false"}?,

attribute {fence} {"true" | "false"}?,

attribute {form} {"prefix" | "infix" | "postfix"}?,

attribute {frame} {linestyle}?,

attribute {framespacing} {list {length, length}}?,

attribute {groupalign} {group-alignment-list-list}?,

attribute {height} {length}?,

attribute {indentalign} {"left" | "center" | "right" | "auto" | "id"}?,

attribute {indentalignfirst} {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,

attribute {indentalignlast} {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,

attribute {indentshift} {length}?,

attribute {indentshiftfirst} {length | "indentshift"}?,

attribute {indentshiftlast} {length | "indentshift"}?,

attribute {indenttarget} {idref}?,

attribute {largeop} {"true" | "false"}?,

attribute {leftoverhang} {length}?,

attribute {length} {unsigned-integer}?,

attribute {linebreak} {"auto" | "newline" | "nobreak" | "goodbreak" |

"badbreak"}?,

attribute {linebreakmultchar} {text}?,

attribute {linebreakstyle} {"before" | "after" | "duplicate" |

"infixlinebreakstyle"}?,

attribute {lineleading} {length}?,

attribute {linethickness} {length | "thin" | "medium" | "thick"}?,

attribute {location} {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,

attribute {longdivstyle} {"lefttop" | "stackedrightright" |

"mediumstackedrightright" | "shortstackedrightright" | "righttop" |

"left/\right" | "left)(right" | ":right=right" | "stackedleftleft" |

"stackedleftlinetop"}?,

attribute {lquote} {text}?,

attribute {lspace} {length}?,

attribute {mathsize} {"small" | "normal" | "big" | length}?,

attribute {mathvariant} {"normal" | "bold" | "italic" | "bold-italic" |

"double-struck" | "bold-fraktur" | "script" | "bold-script" |

"fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |

"sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |

"looped" | "stretched"}?,

attribute {maxsize} {length | "infinity"}?,

attribute {minlabelspacing} {length}?,

attribute {minsize} {length}?,

attribute {movablelimits} {"true" | "false"}?,

attribute {mslinethickness} {length | "thin" | "medium" | "thick"}?,

attribute {notation} {text}?,

attribute {numalign} {"left" | "center" | "right"}?,

attribute {open} {text}?,

attribute {position} {integer}?,

attribute {rightoverhang} {length}?,

attribute {rowalign} {list {verticalalign+} }?,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 319

attribute {rowlines} {list {linestyle +}}?,

attribute {rowspacing} {list {(length) +}}?,

attribute {rowspan} {positive-integer}?,

attribute {rquote} {text}?,

attribute {rspace} {length}?,

attribute {selection} {positive-integer}?,

attribute {separator} {"true" | "false"}?,

attribute {separators} {text}?,

attribute {shift} {integer}?,

attribute {side} {"left" | "right" | "leftoverlap" | "rightoverlap"}?,

attribute {stackalign} {"left" | "center" | "right" | "decimalpoint"}?,

attribute {stretchy} {"true" | "false"}?,

attribute {subscriptshift} {length}?,

attribute {superscriptshift} {length}?,

attribute {symmetric} {"true" | "false"}?,

attribute {valign} {length}?,

attribute {width} {length}?

mstyle.deprecatedattributes =

DeprecatedTokenAtt,

attribute {veryverythinmathspace} {length}?,

attribute {verythinmathspace} {length}?,

attribute {thinmathspace} {length}?,

attribute {mediummathspace} {length}?,

attribute {thickmathspace} {length}?,

attribute {verythickmathspace} {length}?,

attribute {veryverythickmathspace} {length}?

math.attributes &= CommonPresAtt

math.attributes &= mstyle.specificattributes

math.attributes &= mstyle.generalattributes

merror = element {merror} {merror.attributes, ImpliedMrow}

merror.attributes =

CommonAtt, CommonPresAtt

mpadded = element {mpadded} {mpadded.attributes, ImpliedMrow}

mpadded.attributes =

CommonAtt, CommonPresAtt,

attribute {height} {mpadded-length}?,

attribute {depth} {mpadded-length}?,

attribute {width} {mpadded-length}?,

attribute {lspace} {mpadded-length}?,

attribute {voffset} {mpadded-length}?

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

320 Appendix A. Parsing MathML

mphantom = element {mphantom} {mphantom.attributes, ImpliedMrow}

mphantom.attributes =

CommonAtt, CommonPresAtt

mfenced = element {mfenced} {mfenced.attributes, MathExpression*}

mfenced.attributes =

CommonAtt, CommonPresAtt,

attribute {open} {text}?,

attribute {close} {text}?,

attribute {separators} {text}?

menclose = element {menclose} {menclose.attributes, ImpliedMrow}

menclose.attributes =

CommonAtt, CommonPresAtt,

attribute {notation} {text}?

msub = element {msub} {msub.attributes, MathExpression, MathExpression}

msub.attributes =

CommonAtt, CommonPresAtt,

attribute {subscriptshift} {length}?

msup = element {msup} {msup.attributes, MathExpression, MathExpression}

msup.attributes =

CommonAtt, CommonPresAtt,

attribute {superscriptshift} {length}?

msubsup = element {msubsup} {msubsup.attributes, MathExpression,

MathExpression, MathExpression}

msubsup.attributes =

CommonAtt, CommonPresAtt,

attribute {subscriptshift} {length}?,

attribute {superscriptshift} {length}?

munder = element {munder} {munder.attributes, MathExpression, MathExpression}

munder.attributes =

CommonAtt, CommonPresAtt,

attribute {accentunder} {"true" | "false"}?,

attribute {align} {"left" | "right" | "center"}?

mover = element {mover} {mover.attributes, MathExpression, MathExpression}

mover.attributes =

CommonAtt, CommonPresAtt,

attribute {accent} {"true" | "false"}?,

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 321

attribute {align} {"left" | "right" | "center"}?

munderover = element {munderover} {munderover.attributes, MathExpression,

MathExpression, MathExpression}

munderover.attributes =

CommonAtt, CommonPresAtt,

attribute {accent} {"true" | "false"}?,

attribute {accentunder} {"true" | "false"}?,

attribute {align} {"left" | "right" | "center"}?

mmultiscripts = element {mmultiscripts} {mmultiscripts.attributes,

MathExpression,MultiScriptExpression*,(mprescripts,

MultiScriptExpression*)?}

mmultiscripts.attributes =

msubsup.attributes

mtable = element {mtable} {mtable.attributes, TableRowExpression*}

mtable.attributes =

CommonAtt, CommonPresAtt,

attribute {align} {xsd:string {

pattern =’\s*(top|bottom|center|baseline|axis)(\s+-?[0-9]+)?\s*’}}?,

attribute {rowalign} {list {verticalalign+} }?,

attribute {columnalign} {list {columnalignstyle+} }?,

attribute {groupalign} {group-alignment-list-list}?,

attribute {alignmentscope} {list {("true" | "false") +}}?,

attribute {columnwidth} {list {("auto" | length | "fit") +}}?,

attribute {width} {"auto" | length}?,

attribute {rowspacing} {list {(length) +}}?,

attribute {columnspacing} {list {(length) +}}?,

attribute {rowlines} {list {linestyle +}}?,

attribute {columnlines} {list {linestyle +}}?,

attribute {frame} {linestyle}?,

attribute {framespacing} {list {length, length}}?,

attribute {equalrows} {"true" | "false"}?,

attribute {equalcolumns} {"true" | "false"}?,

attribute {displaystyle} {"true" | "false"}?,

attribute {side} {"left" | "right" | "leftoverlap" | "rightoverlap"}?,

attribute {minlabelspacing} {length}?

mlabeledtr = element {mlabeledtr} {mlabeledtr.attributes,

TableCellExpression+}

mlabeledtr.attributes =

mtr.attributes

mtr = element {mtr} {mtr.attributes, TableCellExpression*}

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

322 Appendix A. Parsing MathML

mtr.attributes =

CommonAtt, CommonPresAtt,

attribute {rowalign} {"top" | "bottom" | "center" | "baseline" | "axis"}?,

attribute {columnalign} {list {columnalignstyle+} }?,

attribute {groupalign} {group-alignment-list-list}?

mtd = element {mtd} {mtd.attributes, ImpliedMrow}

mtd.attributes =

CommonAtt, CommonPresAtt,

attribute {rowspan} {positive-integer}?,

attribute {columnspan} {positive-integer}?,

attribute {rowalign} {"top" | "bottom" | "center" | "baseline" | "axis"}?,

attribute {columnalign} {columnalignstyle}?,

attribute {groupalign} {group-alignment-list}?

mstack = element {mstack} {mstack.attributes, MstackExpression*}

mstack.attributes =

CommonAtt, CommonPresAtt,

attribute {align} {xsd:string {

pattern =’\s*(top|bottom|center|baseline|axis)(\s+-?[0-9]+)?\s*’}}?,

attribute {stackalign} {"left" | "center" | "right" | "decimalpoint"}?,

attribute {charalign} {"left" | "center" | "right"}?,

attribute {charspacing} {length | "loose" | "medium" | "tight"}?

mlongdiv = element {mlongdiv} {mlongdiv.attributes, MstackExpression,

MstackExpression,MstackExpression+}

mlongdiv.attributes =

msgroup.attributes,

attribute {longdivstyle} {"lefttop" | "stackedrightright" |

"mediumstackedrightright" | "shortstackedrightright" | "righttop" |

"left/\right" | "left)(right" | ":right=right" | "stackedleftleft" |

"stackedleftlinetop"}?

msgroup = element {msgroup} {msgroup.attributes, MstackExpression*}

msgroup.attributes =

CommonAtt, CommonPresAtt,

attribute {position} {integer}?,

attribute {shift} {integer}?

msrow = element {msrow} {msrow.attributes, MsrowExpression*}

msrow.attributes =

CommonAtt, CommonPresAtt,

attribute {position} {integer}?

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

A.2. Using the RelaxNG Schema for MathML3 323

mscarries = element {mscarries} {mscarries.attributes, (MsrowExpression|

mscarry)*}

mscarries.attributes =

CommonAtt, CommonPresAtt,

attribute {position} {integer}?,

attribute {location} {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,

attribute {crossout} {list {("none" | "updiagonalstrike" |

"downdiagonalstrike" | "verticalstrike" | "horizontalstrike")*}}?,

attribute {scriptsizemultiplier} {number}?

mscarry = element {mscarry} {mscarry.attributes, MsrowExpression*}

mscarry.attributes =

CommonAtt, CommonPresAtt,

attribute {location} {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,

attribute {crossout} {list {("none" | "updiagonalstrike" |

"downdiagonalstrike" | "verticalstrike" | "horizontalstrike")*}}?

maction = element {maction} {maction.attributes, MathExpression+}

maction.attributes =

CommonAtt, CommonPresAtt,

attribute {actiontype} {text},

attribute {selection} {positive-integer}?

A.2.4 The Grammar for Strict Content MathML3

The grammar for Strict Content MathML3 can be found at http://www.w3.org/Math/RelaxNG/

mathml3/mathml3-strict-content.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML

application for describing mathematical notation and capturing

both its structure and content.

#

Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)

#

Use and distribution of this code are permitted under the terms

W3C Software Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

ContExp = semantics-contexp | cn | ci | csymbol | apply | bind | share |

cerror | cbytes | cs

cn = element {cn} {cn.attributes,cn.content}

cn.content = text

ISO/IEC 40314:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 40
31

4:2
01

6

https://iecnorm.com/api/?name=b1f67f221c3e9728efa6b4f62cc7373f

