
Reference number
ISO/IEC 9075-3:1999(E)

© ISO/IEC 1999

INTERNATIONAL
STANDARD

ISO/IEC
9075-3

Second edition
1999-12-01

Information technology — Database
languages — SQL —

Part 3:
Call-Level Interface (SQL/CLI)

Technologies de l'information — Langages de base de données — SQL —

Partie 3: Interface de niveau d'appel (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

i-2 © ISO/IEC 1999 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999(E)

© ISO/IEC 1999 – All rights reserved i-3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E)

Contents Page

Foreword . ix

Introduction . xi

1 Scope . 1

2 Normative references . 3

3 Definitions, notations, and conventions . 5
3.1 Definitions . 5
3.1.1 Definitions provided in Part 3 . 5
3.2 Notations . 5
3.3 Conventions . 5
3.3.1 Specification of routine definitions . 5
3.3.2 Relationships to other parts of ISO/IEC 9075 . 6
3.3.2.1 Clause, Subclause, and Table relationships . 6
3.4 Object identifier for Database Language SQL . 13

4 Concepts . 15
4.1 Introduction to SQL/CLI . 15
4.2 Return codes . 18
4.3 Diagnostics areas in SQL/CLI . 19
4.3.1 Setting of ROW_NUMBER and COLUMN_NUMBER fields . 22
4.4 Miscellaneous characteristics . 22
4.4.1 Handles . 22
4.4.2 Null terminated strings . 23
4.4.3 Null pointers . 23
4.4.4 Environment attributes . 23
4.4.5 Connection attributes . 24
4.4.6 Statement attributes . 24
4.4.7 CLI descriptor areas . 25
4.4.8 Obtaining diagnostics during multi-row fetch . 26
4.5 Client-server operation . 26

ii Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

5 Call-Level Interface specifications . 27
5.1 <CLI routine> . 27
5.2 <CLI routine> invocation . 34
5.3 Implicit set connection . 37
5.4 Implicit cursor . 38
5.5 Implicit DESCRIBE USING clause . 40
5.6 Implicit EXECUTE USING and OPEN USING clauses . 46
5.7 Implicit CALL USING clause . 52
5.8 Implicit FETCH USING clause . 56
5.9 Character string retrieval . 62
5.10 Binary large object string retrieval . 63
5.11 Deferred parameter check . 64
5.12 CLI-specific status codes . 65
5.13 Description of CLI item descriptor areas . 67
5.14 Other tables associated with CLI . 77
5.15 Data type correspondences . 100

6 SQL/CLI routines . 109
6.1 AllocConnect . 109
6.2 AllocEnv . 110
6.3 AllocHandle . 111
6.4 AllocStmt . 114
6.5 BindCol . 115
6.6 BindParameter . 117
6.7 Cancel . 122
6.8 CloseCursor . 124
6.9 ColAttribute . 125
6.10 ColumnPrivileges . 127
6.11 Columns . 133
6.12 Connect . 143
6.13 CopyDesc . 147
6.14 DataSources . 148
6.15 DescribeCol . 150
6.16 Disconnect . 152
6.17 EndTran . 154
6.18 Error . 159
6.19 ExecDirect . 161
6.20 Execute . 164
6.21 Fetch . 166
6.22 FetchScroll . 169
6.23 ForeignKeys . 173
6.24 FreeConnect . 186
6.25 FreeEnv . 187
6.26 FreeHandle . 188
6.27 FreeStmt . 191
6.28 GetConnectAttr . 193

Contents iii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

6.29 GetCursorName . 195
6.30 GetData . 196
6.31 GetDescField . 203
6.32 GetDescRec . 205
6.33 GetDiagField . 207
6.34 GetDiagRec . 216
6.35 GetEnvAttr . 218
6.36 GetFeatureInfo . 220
6.37 GetFunctions . 223
6.38 GetInfo . 224
6.39 GetLength . 232
6.40 GetParamData . 234
6.41 GetPosition . 240
6.42 GetSessionInfo . 242
6.43 GetStmtAttr . 244
6.44 GetSubString . 247
6.45 GetTypeInfo . 249
6.46 MoreResults . 253
6.47 NextResult . 254
6.48 NumResultCols . 255
6.49 ParamData . 256
6.50 Prepare . 262
6.51 PrimaryKeys . 264
6.52 PutData . 269
6.53 RowCount . 272
6.54 SetConnectAttr . 273
6.55 SetCursorName . 275
6.56 SetDescField . 277
6.57 SetDescRec . 282
6.58 SetEnvAttr . 284
6.59 SetStmtAttr . 286
6.60 SpecialColumns . 290
6.61 StartTran . 297
6.62 TablePrivileges . 299
6.63 Tables . 304

7 Definition Schema . 311
7.1 SQL_IMPLEMENTATION_INFO base table . 311
7.2 SQL_SIZING base table . 313
7.3 SQL_LANGUAGES base table . 315

8 Conformance . 317
8.1 Conformance to SQL/CLI . 317
8.2 Claims of conformance . 317

iv Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

8.3 Extensions and options . 318

Annex A Typical header files . 319
A.1 C header file SQLCLI.H . 319
A.2 COBOL library item SQLCLI . 333

Annex B Sample C programs . 343
B.1 Create table, insert, select . 343
B.2 Interactive Query . 346
B.3 Providing long dynamic arguments at Execute time . 350

Annex C Implementation-defined elements . 355

Annex D Implementation-dependent elements . 369

Annex E Incompatibilities with ISO/IEC 9075-3:1995 . 375

Annex F Deprecated features . 377

Annex G SQL feature and package taxonomy . 379

Index . 381

Contents v

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

TABLES

Tables Page

1 Clause, Subclause, and Table relationships . 6
2 Fields in SQL/CLI diagnostics areas . 20
3 Supported calling conventions of SQL/CLI routines by language . 30
4 Abbreviated SQL/CLI generic names . 30
5 SQLSTATE class and subclass values for SQL/CLI-specific conditions 65
6 Fields in SQL/CLI row and parameter descriptor areas . 72
7 Codes used for implementation data types in SQL/CLI . 74
8 Codes used for application data types in SQL/CLI . 75
9 Codes associated with datetime data types in SQL/CLI . 76
10 Codes associated with <interval qualifier> in SQL/CLI . 76
11 Codes associated with <parameter mode> in SQL/CLI . 76
12 Codes used for diagnostic fields . 77
13 Codes used for handle types . 78
14 Codes used for transaction termination . 78
15 Codes used for environment attributes . 79
16 Codes used for connection attributes . 79
17 Codes used for statement attributes . 79
18 Codes used for FreeStmt options . 80
19 Data types of attributes . 80
20 Codes used for descriptor fields . 81
21 Ability to set SQL/CLI descriptor fields . 83
22 Ability to retrieve SQL/CLI descriptor fields . 85
23 SQL/CLI descriptor field default values . 87
24 Codes used for fetch orientation . 89
25 Multi-row fetch status codes . 89
26 Miscellaneous codes used in CLI . 90
27 Codes used to identify SQL/CLI routines . 90
28 Codes and data types for implementation information . 92
29 Codes and data types for session implementation information . 94
30 Values for ALTER TABLE with GetInfo . 94
31 Values for FETCH DIRECTION with GetInfo . 95
32 Values for GETDATA EXTENSIONS with GetInfo . 95
33 Values for OUTER JOIN CAPABILITIES with GetInfo . 95
34 Values for SCROLL CONCURRENCY with GetInfo . 95
35 Values for TRANSACTION ISOLATION OPTION with GetInfo and StartTran 95
36 Values for TRANSACTION ACCESS MODE with StartTran . 96
37 Codes used for concise data types . 96
38 Codes used with concise datetime data types in SQL/CLI . 97

vi Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

39 Codes used with concise interval data types in SQL/CLI . 97
40 Concise codes used with datetime data types in SQL/CLI . 98
41 Concise codes used with interval data types in SQL/CLI . 98
42 Special parameter values . 99
43 Column types and scopes used with SpecialColumns . 99
44 Data type correspondences for Ada . 100
45 Data type correspondences for C . 102
46 Data type correspondences for COBOL . 103
47 Data type correspondences for Fortran . 105
48 Data type correspondences for MUMPS . 106
49 Data type correspondences for Pascal . 107
50 Data type correspondences for PL/I . 108
51 SQL/CLI feature taxonomy . 379

Contents vii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other interna-
tional organizations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circu-
lated to national bodies for voting. Publication as an International Standard requires approval by
at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9075-3 was prepared by Joint Technical Committee ISO/IEC JTC
1, Information technology, Subcommittee SC 32, Data management and interchange.

This second edition of this part of ISO/IEC 9075 cancels and replaces the first edition, ISO/IEC
9075-3:1995.

ISO/IEC 9075 comprises the following parts, under the general title Information technology —
Database languages — SQL:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 5: Host Language Bindings (SQL/Bindings)

Annexes A, B, C, D, E, F, and G of this part of ISO/IEC 9075 are for information only.

Foreword ix

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

Introduction

The organization of this part of ISO/IEC 9075 is as follows:

1) Clause 1, ‘‘Scope’’, specifies the scope of this part of ISO/IEC 9075.

2) Clause 2, ‘‘Normative references’’, identifies additional standards that, through reference in this
part of ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

3) Clause 3, ‘‘Definitions, notations, and conventions’’, defines the notations and conventions used
in this part of ISO/IEC 9075.

4) Clause 4, ‘‘Concepts’’, presents concepts used in the definition of the Call-Level Interface.

5) Clause 5, ‘‘Call-Level Interface specifications’’, defines facilities for using SQL through a Call-
Level Interface.

6) Clause 6, ‘‘SQL/CLI routines’’, defines each of the routines that comprise the Call-Level
Interface.

7) Clause 7, ‘‘Definition Schema’’, specifies extensions to the Definition Schema required for
support of the Call-Level Interface.

8) Clause 8, ‘‘Conformance’’, defines the criteria for conformance to this part of ISO/IEC 9075.

9) Annex A, ‘‘Typical header files’’, is an informative Annex. It provides examples of typical
definition files for application programs using the SQL Call-Level Interface.

10) Annex B, ‘‘Sample C programs’’, is an informative Annex. It provides examples of using the SQL
Call-Level Interface from the C programming language.

11) Annex C, ‘‘Implementation-defined elements’’, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-defined.

12) Annex D, ‘‘Implementation-dependent elements’’, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-dependent.

13) Annex E, ‘‘Incompatibilities with ISO/IEC 9075-3:1995’’, is an informative Annex. It identifies
incompatibilities with ISO/IEC 9075-3:1995.

14) Annex F, ‘‘Deprecated features’’, is an informative Annex. It lists features that the responsible
Technical Committee intends will not appear in a future revised version of ISO/IEC 9075.

15) Annex G, ‘‘SQL feature and package taxonomy’’, is an informative Annex. It contains a taxon-
omy of features of the SQL language that are specified in this part of ISO/IEC 9075.

Introduction xi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

In the text of this part of ISO/IEC 9075, Clauses begin a new odd-numbered page, and in Clause 5,
‘‘Call-Level Interface specifications’’, through Clause 8, ‘‘Conformance’’, Subclauses begin a new
page. Any resulting blank space is not significant.

xii Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9075-3:1999 (E)

Information technology — Database languages — SQL —
Part 3: Call-Level Interface (SQL/CLI)

1 Scope

This part of ISO/IEC 9075 defines the structures and procedures that may be used to execute state-
ments of the database language SQL from within an application written in a standard programming
language in such a way that procedures used are independent of the SQL statements to be executed.

Scope 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

2 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

2 Normative references

The following standards contain provisions that, through reference in this text, constitute provisions
of this part of ISO/IEC 9075. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this part of ISO/IEC 9075
are encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 1539:1991, Information technology — Programming languages — FORTRAN.

ISO 1989:1985, Programming languages — COBOL.

ISO 6160:1979, Programming languages — PL/I.

ISO/IEC 7185:1990, Information technology — Programming languages — Pascal.

ISO/IEC 8652:1995, Information technology — Programming languages — Ada.

ISO/IEC 9075-1:1999, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

ISO/IEC 9075-2:1999, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation).

ISO/IEC 9075-4:1999, Information technology — Database languages — SQL — Part 4:
Persistent Stored Modules (SQL/PSM).

ISO/IEC 9075-5:1999, Information technology — Database languages — SQL — Part 5: Host
Language Bindings (SQL/Bindings).

ISO/IEC 9899:1990, Programming languages — C.

ISO/IEC 10206:1991, Information technology — Programming languages — Extended Pascal.

ISO/IEC 11756:1992, Information technology—Programming languages—MUMPS.

Normative references 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

4 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

3 Definitions, notations, and conventions

3.1 Definitions

3.1.1 Definitions provided in Part 3

Insert this paragraph For the purposes of this part of ISO/IEC 9075, the definitions given in ISO/IEC
9075-1, ISO/IEC 9075-2, and ISO/IEC 9075-5 and the following definitions apply.

a) handle: A CLI object returned by an SQL/CLI implementation when a CLI resource is allocated
and used by an SQL/CLI application to reference that CLI resource.

b) inner table: The second operand of a left outer join or the first operand of a right outer join.

c) pseudo-column: A column in a table that is not part of the descriptor for that table. An
example of such a pseudo-column is an implementation-defined row identifier.

3.2 Notations

Insert this paragraph The syntax notation used in this part of ISO/IEC 9075 is an extended version
of BNF (‘‘Backus Normal Form’’ or ‘‘Backus Naur Form’’). This version of BNF is fully described in
Subclause 6.1, "Notation", of ISO/IEC 9075-1.

3.3 Conventions

Insert this paragraph Except as otherwise specified in this part of ISO/IEC 9075, the conventions
used in this part of ISO/IEC 9075 are identical to those described in ISO/IEC 9075-1 and ISO/IEC
9075-2.

3.3.1 Specification of routine definitions

The routines in this part of ISO/IEC 9075 are specified in terms of:

— Function: A short statement of the purpose of the routine.

— Definition: The name of the routine and the names, modes, and data types of its parameters.

— General Rules: A specification of the run-time effect of the routine. Where more than one
General Rule is used to specify the effect of a routine, the required effect is that which would be
obtained by beginning with the first General Rule and applying the Rules in numeric sequence
until a Rule is applied that specifies or implies a change in sequence or termination of the
application of the Rules. Unless otherwise specified or implied by a specific Rule that is applied,
application of General Rules terminates when the last in the sequence has been applied.

Definitions, notations, and conventions 5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
3.3 Conventions

3.3.2 Relationships to other parts of ISO/IEC 9075

3.3.2.1 Clause, Subclause, and Table relationships

Table 1—Clause, Subclause, and Table relationships

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Clause 1, ‘‘Scope’’ Clause 1, "Scope" ISO/IEC 9075-2

Clause 2, ‘‘Normative references’’ Clause 2, "Normative references" ISO/IEC 9075-2

Clause 3, ‘‘Definitions, notations, and
conventions’’

Clause 3, "Definitions, notations, and
conventions"

ISO/IEC 9075-2

Subclause 3.1, ‘‘Definitions’’ Subclause 3.1, "Definitions" ISO/IEC 9075-2

Subclause 3.1.1, ‘‘Definitions provided
in Part 3’’

Subclause 3.1.5, "Definitions provided
in Part 2"

ISO/IEC 9075-2

Subclause 3.2, ‘‘Notations’’ Subclause 3.2, "Notation" ISO/IEC 9075-2

Subclause 3.3, ‘‘Conventions’’ Subclause 3.3, "Conventions" ISO/IEC 9075-2

Subclause 3.3.1, ‘‘Specification of rou-
tine definitions’’

(none) (none)

Subclause 3.3.2, ‘‘Relationships to other
parts of ISO/IEC 9075’’

(none) (none)

Subclause 3.3.2.1, ‘‘Clause, Subclause,
and Table relationships’’

(none) (none)

Subclause 3.4, ‘‘Object identifier for
Database Language SQL’’

none none

Clause 4, ‘‘Concepts’’ Clause 4, "Concepts" ISO/IEC 9075-2

Subclause 4.1, ‘‘Introduction to
SQL/CLI’’

none none

Subclause 4.2, ‘‘Return codes’’ none none

Subclause 4.3, ‘‘Diagnostics areas in
SQL/CLI’’

none none

Subclause 4.3.1, ‘‘Setting of ROW_
NUMBER and COLUMN_NUMBER
fields’’

none none

Subclause 4.4, ‘‘Miscellaneous charac-
teristics’’

none none

Subclause 4.4.1, ‘‘Handles’’ none none

Subclause 4.4.2, ‘‘Null terminated
strings’’

none none

Subclause 4.4.3, ‘‘Null pointers’’ none none

Subclause 4.4.4, ‘‘Environment at-
tributes’’

none none

6 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Subclause 4.4.5, ‘‘Connection at-
tributes’’

none none

Subclause 4.4.6, ‘‘Statement attributes’’ none none

Subclause 4.4.7, ‘‘CLI descriptor areas’’ none none

Subclause 4.4.8, ‘‘Obtaining diagnostics
during multi-row fetch’’

none none

Subclause 4.5, ‘‘Client-server operation’’ Subclause 4.36, "Client-server opera-
tion"

ISO/IEC 9075-2

Clause 5, ‘‘Call-Level Interface specifi-
cations’’

none none

Subclause 5.1, ‘‘<CLI routine>’’ none none

Subclause 5.2, ‘‘<CLI routine> invoca-
tion’’

none none

Subclause 5.3, ‘‘Implicit set connection’’ none none

Subclause 5.4, ‘‘Implicit cursor’’ none none

Subclause 5.5, ‘‘Implicit DESCRIBE
USING clause’’

none none

Subclause 5.6, ‘‘Implicit EXECUTE
USING and OPEN USING clauses’’

none none

Subclause 5.7, ‘‘Implicit CALL USING
clause’’

none none

Subclause 5.8, ‘‘Implicit FETCH
USING clause’’

none none

Subclause 5.9, ‘‘Character string re-
trieval’’

none none

Subclause 5.10, ‘‘Binary large object
string retrieval’’

none none

Subclause 5.11, ‘‘Deferred parameter
check’’

none none

Subclause 5.12, ‘‘CLI-specific status
codes’’

none none

Subclause 5.13, ‘‘Description of CLI
item descriptor areas’’

none none

Subclause 5.14, ‘‘Other tables associ-
ated with CLI’’

none none

Subclause 5.15, ‘‘Data type correspon-
dences’’

Subclause 13.6, "Data type correspon-
dences"

ISO/IEC 9075-2

Clause 6, ‘‘SQL/CLI routines’’ none none

Subclause 6.1, ‘‘AllocConnect’’ none none

Definitions, notations, and conventions 7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Subclause 6.2, ‘‘AllocEnv’’ none none

Subclause 6.3, ‘‘AllocHandle’’ none none

Subclause 6.4, ‘‘AllocStmt’’ none none

Subclause 6.5, ‘‘BindCol’’ none none

Subclause 6.6, ‘‘BindParameter’’ none none

Subclause 6.7, ‘‘Cancel’’ none none

Subclause 6.8, ‘‘CloseCursor’’ none none

Subclause 6.9, ‘‘ColAttribute’’ none none

Subclause 6.10, ‘‘ColumnPrivileges’’ none none

Subclause 6.11, ‘‘Columns’’ none none

Subclause 6.12, ‘‘Connect’’ none none

Subclause 6.13, ‘‘CopyDesc’’ none none

Subclause 6.14, ‘‘DataSources’’ none none

Subclause 6.15, ‘‘DescribeCol’’ none none

Subclause 6.16, ‘‘Disconnect’’ none none

Subclause 6.17, ‘‘EndTran’’ none none

Subclause 6.18, ‘‘Error’’ none none

Subclause 6.19, ‘‘ExecDirect’’ none none

Subclause 6.20, ‘‘Execute’’ none none

Subclause 6.21, ‘‘Fetch’’ none none

Subclause 6.22, ‘‘FetchScroll’’ none none

Subclause 6.23, ‘‘ForeignKeys’’ none none

Subclause 6.24, ‘‘FreeConnect’’ none none

Subclause 6.25, ‘‘FreeEnv’’ none none

Subclause 6.26, ‘‘FreeHandle’’ none none

Subclause 6.27, ‘‘FreeStmt’’ none none

Subclause 6.28, ‘‘GetConnectAttr’’ none none

Subclause 6.29, ‘‘GetCursorName’’ none none

Subclause 6.30, ‘‘GetData’’ none none

Subclause 6.31, ‘‘GetDescField’’ none none

Subclause 6.32, ‘‘GetDescRec’’ none none

Subclause 6.33, ‘‘GetDiagField’’ none none

Subclause 6.34, ‘‘GetDiagRec’’ none none

8 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Subclause 6.35, ‘‘GetEnvAttr’’ none none

Subclause 6.36, ‘‘GetFeatureInfo’’ none none

Subclause 6.37, ‘‘GetFunctions’’ none none

Subclause 6.38, ‘‘GetInfo’’ none none

Subclause 6.39, ‘‘GetLength’’ none none

Subclause 6.40, ‘‘GetParamData’’ none none

Subclause 6.41, ‘‘GetPosition’’ none none

Subclause 6.42, ‘‘GetSessionInfo’’ none none

Subclause 6.43, ‘‘GetStmtAttr’’ none none

Subclause 6.44, ‘‘GetSubString’’ none none

Subclause 6.45, ‘‘GetTypeInfo’’ none none

Subclause 6.46, ‘‘MoreResults’’ none none

Subclause 6.47, ‘‘NextResult’’ none none

Subclause 6.48, ‘‘NumResultCols’’ none none

Subclause 6.49, ‘‘ParamData’’ none none

Subclause 6.50, ‘‘Prepare’’ none none

Subclause 6.51, ‘‘PrimaryKeys’’ none none

Subclause 6.52, ‘‘PutData’’ none none

Subclause 6.53, ‘‘RowCount’’ none none

Subclause 6.54, ‘‘SetConnectAttr’’ none none

Subclause 6.55, ‘‘SetCursorName’’ none none

Subclause 6.56, ‘‘SetDescField’’ none none

Subclause 6.57, ‘‘SetDescRec’’ none none

Subclause 6.58, ‘‘SetEnvAttr’’ none none

Subclause 6.59, ‘‘SetStmtAttr’’ none none

Subclause 6.60, ‘‘SpecialColumns’’ none none

Subclause 6.61, ‘‘StartTran’’ none none

Subclause 6.62, ‘‘TablePrivileges’’ none none

Subclause 6.63, ‘‘Tables’’ none none

Clause 7, ‘‘Definition Schema’’ Clause 21, "Definition Schema" ISO/IEC 9075-2

Subclause 7.1, ‘‘SQL_IMPLEMENTATION_
INFO base table’’

Subclause 21.36, "SQL_IMPLEMENTATION_
INFO base table"

ISO/IEC 9075-2

Subclause 7.2, ‘‘SQL_SIZING base
table’’

Subclause 21.38, "SQL_SIZING base
table"

ISO/IEC 9075-2

Definitions, notations, and conventions 9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Subclause 7.3, ‘‘SQL_LANGUAGES
base table’’

Subclause 21.37, "SQL_LANGUAGES
base table"

ISO/IEC 9075-2

Clause 8, ‘‘Conformance’’ Clause 8, "Conformance" ISO/IEC 9075-1

Subclause 8.1, ‘‘Conformance to
SQL/CLI’’

none none

Subclause 8.2, ‘‘Claims of conformance’’ Subclause 8.1.5, "Claims of confor-
mance"

ISO/IEC 9075-1

Subclause 8.3, ‘‘Extensions and options’’ none none

Annex A, ‘‘Typical header files’’ none none

Subclause A.1, ‘‘C header file
SQLCLI.H’’

none none

Subclause A.2, ‘‘COBOL library item
SQLCLI’’

none none

Annex B, ‘‘Sample C programs’’ none none

Subclause B.1, ‘‘Create table, insert,
select’’

none none

Subclause B.2, ‘‘Interactive Query’’ none none

Subclause B.3, ‘‘Providing long dynamic
arguments at Execute time’’

none none

Annex C, ‘‘Implementation-defined
elements’’

Appendix B, "Implementation-defined
elements"

ISO/IEC 9075-2

Annex D, ‘‘Implementation-dependent
elements’’

Appendix C, "Implementation-
dependent elements"

ISO/IEC 9075-2

Annex E, ‘‘Incompatibilities with
ISO/IEC 9075-3:1995’’

Appendix E, "Incompatibilities with
ISO/IEC 9075:1992 and ISO/IEC 9075-
4:1996"

ISO/IEC 9075-2

Annex F, ‘‘Deprecated features’’ Appendix D, "Deprecated features" ISO/IEC 9075-2

Annex G, ‘‘SQL feature and package
taxonomy’’

none none

Table 1, ‘‘Clause, Subclause, and Table
relationships’’

none none

Table 2, ‘‘Fields in SQL/CLI diagnostics
areas’’

none none

Table 3, ‘‘Supported calling conventions
of SQL/CLI routines by language’’

none none

Table 4, ‘‘Abbreviated SQL/CLI generic
names’’

none none

Table 5, ‘‘SQLSTATE class and subclass
values for SQL/CLI-specific conditions’’

none none

10 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Table 6, ‘‘Fields in SQL/CLI row and
parameter descriptor areas’’

none none

Table 7, ‘‘Codes used for implementa-
tion data types in SQL/CLI’’

none none

Table 8, ‘‘Codes used for application
data types in SQL/CLI’’

none none

Table 9, ‘‘Codes associated with date-
time data types in SQL/CLI’’

none none

Table 10, ‘‘Codes associated with <in-
terval qualifier> in SQL/CLI’’

none none

Table 11, ‘‘Codes associated with <pa-
rameter mode> in SQL/CLI’’

none none

Table 12, ‘‘Codes used for diagnostic
fields’’

none none

Table 13, ‘‘Codes used for handle types’’ none none

Table 14, ‘‘Codes used for transaction
termination’’

none none

Table 15, ‘‘Codes used for environment
attributes’’

none none

Table 16, ‘‘Codes used for connection
attributes’’

none none

Table 17, ‘‘Codes used for statement
attributes’’

none none

Table 18, ‘‘Codes used for FreeStmt
options’’

none none

Table 19, ‘‘Data types of attributes’’ none none

Table 20, ‘‘Codes used for descriptor
fields’’

none none

Table 21, ‘‘Ability to set SQL/CLI
descriptor fields’’

none none

Table 22, ‘‘Ability to retrieve SQL/CLI
descriptor fields’’

none none

Table 23, ‘‘SQL/CLI descriptor field
default values’’

none none

Table 24, ‘‘Codes used for fetch orienta-
tion’’

none none

Table 25, ‘‘Multi-row fetch status codes’’ none none

Table 26, ‘‘Miscellaneous codes used in
CLI’’

none none

Definitions, notations, and conventions 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Table 27, ‘‘Codes used to identify
SQL/CLI routines’’

none none

Table 28, ‘‘Codes and data types for
implementation information’’

none none

Table 29, ‘‘Codes and data types for
session implementation information’’

none none

Table 30, ‘‘Values for ALTER TABLE
with GetInfo’’

none none

Table 31, ‘‘Values for FETCH
DIRECTION with GetInfo’’

none none

Table 32, ‘‘Values for GETDATA
EXTENSIONS with GetInfo’’

none none

Table 33, ‘‘Values for OUTER JOIN
CAPABILITIES with GetInfo’’

none none

Table 34, ‘‘Values for SCROLL
CONCURRENCY with GetInfo’’

none none

Table 35, ‘‘Values for TRANSACTION
ISOLATION OPTION with GetInfo and
StartTran’’

none none

Table 36, ‘‘Values for TRANSACTION
ACCESS MODE with StartTran’’

none none

Table 37, ‘‘Codes used for concise data
types’’

none none

Table 38, ‘‘Codes used with concise
datetime data types in SQL/CLI’’

none none

Table 39, ‘‘Codes used with concise
interval data types in SQL/CLI’’

none none

Table 40, ‘‘Concise codes used with
datetime data types in SQL/CLI’’

none none

Table 41, ‘‘Concise codes used with
interval data types in SQL/CLI’’

none none

Table 42, ‘‘Special parameter values’’ none none

Table 43, ‘‘Column types and scopes
used with SpecialColumns’’

none none

Table 44, ‘‘Data type correspondences
for Ada’’

Table 18, "Data type correspondences
for Ada"

ISO/IEC 9075-2

Table 45, ‘‘Data type correspondences
for C’’

Table 19, "Data type correspondences
for C"

ISO/IEC 9075-2

Table 46, ‘‘Data type correspondences
for COBOL’’

Table 20, "Data type correspondences
for COBOL"

ISO/IEC 9075-2

12 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in this
part of ISO/IEC 9075

Corresponding Clause, Subclause,
or Table from another part

Part containing
correspondence

Table 47, ‘‘Data type correspondences
for Fortran’’

Table 21, "Data type correspondences
for Fortran"

ISO/IEC 9075-2

Table 48, ‘‘Data type correspondences
for MUMPS’’

Table 22, "Data type correspondences
for MUMPS"

ISO/IEC 9075-2

Table 49, ‘‘Data type correspondences
for Pascal’’

Table 23, "Data type correspondences
for Pascal"

ISO/IEC 9075-2

Table 50, ‘‘Data type correspondences
for PL/I’’

Table 24, "Data type correspondences
for PL/I"

ISO/IEC 9075-2

Table 51, ‘‘SQL/CLI feature taxonomy’’ Table 32, "SQL/Foundation feature
taxonomy for features outside Core
SQL"

ISO/IEC 9075-2

3.4 Object identifier for Database Language SQL

The object identifier for Database Language SQL is defined in ISO/IEC 9075-1 in Subclause 6.3,
"Object identifier for Database Language SQL", with the following additions:

Format

<Part 3 yes> ::= <Part 3 conformance>

<Part 3 conformance> ::= 3 | sqlcli1999 <left paren> 3 <right paren>

Syntax Rules

None.

Definitions, notations, and conventions 13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

14 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

4 Concepts

4.1 Introduction to SQL/CLI

The Call-Level Interface (SQL/CLI) is a binding style for executing SQL statements. SQL/CLI
comprises routines that:

— Allocate and deallocate resources.

— Control connections to SQL-servers.

— Execute SQL statements using mechanisms similar to dynamic SQL.

— Obtain diagnostic information.

— Control transaction termination.

— Obtain information about the implementation.

A handle is a CLI object returned by an SQL/CLI implementation when a CLI resource is allocated
and used by an SQL/CLI application to reference that CLI resource. The AllocHandle routine
allocates the resources to manage an SQL-environment, an SQL-connection, a CLI descriptor area,
or SQL-statement processing and returns an environment handle, a connection handle, a descriptor
handle, or a statement handle, respectively. An SQL-connection is allocated in the context of an
allocated SQL-environment. A CLI descriptor area and an SQL-statement are allocated in the
context of an allocated SQL-connection. The FreeHandle routine deallocates a specified resource.
The AllocConnect, AllocEnv, and AllocStmt routines can be used to allocate the resources to manage
an SQL-connection, an SQL-environment, and SQL-statement processing, respectively, instead of
using the AllocHandle routine. The FreeConnect, FreeEnv, and FreeStmt routines can be used to
deallocate the specific resource instead of using FreeHandle.

Each allocated SQL-environment has an attribute that determines whether output character strings
are null terminated by the implementation. The application can set the value of this attribute
by using the routine SetEnvAttr and can retrieve the current value of the attribute by using the
routine GetEnvAttr.

The Connect routine establishes an SQL-connection. The Disconnect routine terminates an es-
tablished SQL-connection. Switching between established SQL-connections occurs automatically
whenever the application switches processing to a dormant SQL-connection.

The ExecDirect routine is used for a one-time execution of an SQL-statement. The Prepare routine
is used to prepare an SQL-statement for subsequent execution using the Execute routine. In each
case, the executed SQL-statement can contain dynamic parameters.

The interface for a description of dynamic parameters, dynamic parameter values, the resultant
columns of a <dynamic select statement> or <dynamic single row select statement>, and the tar-
get specifications for the resultant columns is a CLI descriptor area. A CLI descriptor area for
each type of interface is automatically allocated when an SQL-statement is allocated. The applica-
tion may allocate additional CLI descriptor areas and nominate them for use as the interface for
the description of dynamic parameter values or the description of target specifications by using the

Concepts 15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
4.1 Introduction to SQL/CLI

routine SetStmtAttr. The application can determine the handle value of the CLI descriptor area cur-
rently being used for a specific interface by using the routine GetStmtAttr. The GetDescField and
GetDescRec routines enable information to be retrieved from a CLI descriptor area. The CopyDesc
routine enables the contents of a CLI descriptor area to be copied to another CLI descriptor area.

When a <dynamic select statement> or <dynamic single row select statement> is prepared or
executed immediately, a description of the resultant columns is automatically provided in the
applicable CLI implementation descriptor area. In this case, the application may additionally
retrieve information by using the DescribeCol and/or the ColAttribute routine to obtain a description
of a single resultant column and by using the NumResultCols routine to obtain a count of the
number of resultant columns. The application sets values in the CLI application descriptor area
for the description of the corresponding target specifications either explicitly using the routines
SetDescField and SetDescRec or implicitly using the routine BindCol.

When an SQL-statement is prepared or executed immediately, a description of the dynamic param-
eters is automatically provided in the applicable CLI implementation descriptor area if this facility
is supported by the current SQL-connection. An attribute associated with the allocated SQL-
connection indicates whether this facility is supported. The value of the attribute may be retrieved
using the routine GetConnectAttr. Regardless of whether automatic description is supported, all
dynamic input and input/output parameters must be defined in the CLI application descriptor area
before SQL-statement execution. This can be done either explicitly using the routines SetDescField
and SetDescRec or implicitly using the routine BindParameter. The value of a dynamic input or
input/output parameter may be established before SQL-statement execution (immediate parameter
value) or may be provided during SQL-statement execution (deferred parameter value). Its de-
scription in the CLI descriptor area determines which method is in use. The ParamData routine is
used to cycle through and process deferred input and input/output parameter values. The PutData
routine is used to provide the deferred values. The PutData routine also enables the values of
character string input and input/output parameters to be provided in pieces.

Before a <call statement> is prepared or executed immediately, the application may choose whether
or not to bind any dynamic output parameters in the CLI application descriptor area. This can be
done either explicitly using the routines SetDescField and SetDescRec or implicitly using the rou-
tine BindParameter. After execution of the statement, values of unbound output and input/output
parameters can be individually retrieved using the GetParamData routine. The GetParamData rou-
tine also enables the retrieval of the values of character and binary string output and input/output
parameters to be accomplished piece by piece.

When a <dynamic select statement> or <dynamic single row select statement> is executed, a
cursor is implicitly declared and opened. The cursor name can be supplied by the application
by using the routine SetCursorName. If a cursor name is not supplied by the application, an
implementation-dependent cursor name is generated. The cursor name can be retrieved by using
the GetCursorName routine.

The Fetch and FetchScroll routines are used to position an open cursor on a row and to retrieve
the values of bound columns for that row. A bound column is one whose target specification in
the specified CLI descriptor area defines a location for the target value. The Fetch routine always
positions the open cursor on the next row, whereas the FetchScroll routine may be used to position
the open cursor on any of its rows. The value of the CURSOR SCROLLABLE statement attribute
must be SCROLLABLE at the time that the cursor is implicitly declared in order to use FetchScroll
with a FetchOrientation other than NEXT. The application can set the value of this attribute by
using the SetStmtAttr routine and can retrieve the current value of the attribute by using the
GetStmtAttr routine. The Fetch and FetchScroll routines can also retrieve multiple rows in a single
call; the set of rows thus retrieved is called a rowset. This is accomplished by setting the ARRAY_
SIZE field of the applicable CLI application row descriptor to the desired number of rows. Note that
the single row fetch is just a special case of multi-row fetch, where the rowset size is one.

16 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
4.1 Introduction to SQL/CLI

Values for unbound columns can be individually retrieved by using the GetData routine. The
GetData routine also enables the retrieval of the values of character and binary string columns to
be accomplished piece by piece. The current row of a cursor can be deleted or updated by executing
a <preparable dynamic delete statement: positioned> or a <preparable dynamic update statement:
positioned>, respectively, for that cursor under a different allocated SQL-statement to the one under
which the cursor was opened. The CloseCursor routine enables a cursor to be closed.

Result sets can be returned to the application as a result of issuing an Execute or ExecDirect
routine against a statement handle whose current statement is a <call statement>. Such result sets
are described and processed in the same way as outlined above for the result sets produced by the
execution of a <dynamic select statement>. Multiple result sets may result from the execution of a
single <call statement>. These result sets are returned as an ordered set of result sets that can be
processed one at a time or in parallel. To process the result sets one at a time, once the processing of
a given result set is complete, the MoreResults routine is used to determine whether there are any
additional result sets and, if there are, to position the cursor before the first row in the next result
set. To process the result sets in parallel, the NextResult routine is used to determine whether
there are any additional result sets and, if there are, to position a cursor before the first row in the
next result set.

Special routines, called catalog routines are available to return result sets from the information
schemas. These routines are:

— ColumnPrivileges: Returns a list of the privileges held on the columns whose names adhere
to the requested pattern(s) within a single specified table. Most of this information can also
be obtained by using the ExecDirect routine to issue an appropriate query on the COLUMN_
PRIVILEGES view of the Information Schema.

— Columns: Returns the column names and attributes for all columns that adhere to the re-
quested pattern(s). Most of this information can also be obtained by using the ExecDirect
routine to issue an appropriate query on the COLUMNS view of the Information Schema.

— ForeignKeys: Returns either the primary key of a single specified table together with the foreign
keys in all other tables that reference that primary key or the foreign keys of a single specified
table together with all the primary and unique keys in all other tables that reference those
foreign keys. Most of this information can also be obtained by using the ExecDirect routine
to issue an appropriate query on the TABLE_CONSTRAINTS view and the REFERENTIAL_
CONSTRAINTS view of the Information Schema.

— PrimaryKeys: Returns a list of the columns that constitute the primary key of a single specified
table. Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the TABLE_CONSTRAINTS view and the KEY_COLUMN_USAGE view
of the Information Schema.

— SpecialColumns: Returns a list of the columns which can uniquely identify any row within a
single specified table. Most of this information can also be obtained by using the ExecDirect
routine to issue an appropriate query on the COLUMNS view of the Information Schema.

— Tables: Returns information about the tables that adhere to the requested pattern(s) and
type(s). Most of this information can also be obtained by using the ExecDirect routine to issue
an appropriate query on the TABLES view of the Information Schema.

— TablePrivileges: Returns a list of the privileges held on tables that adhere to the requested
pattern(s). Most of this information can also be obtained by using the ExecDirect routine to
issue an appropriate query on the TABLE_PRIVILEGES view of the Information Schema.

Concepts 17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
4.1 Introduction to SQL/CLI

These special routines are only available for a small portion of the metadata that is available in the
Information Schema. Other metadata (for example, that about SQL-invoked routines, triggers, and
user-defined types) must be obtained by issuing appropriate queries on the views of the Information
Schema.

The GetPosition, GetLength, and GetSubString routines can be used with their own independent
statement handle to access a string value at the server that is represented by a Large Object locator
in order to do any of the following:

— The GetPosition routine may be used determine whether a given substring exists within that
string and, if it does, to obtain an integer value that indicates the starting position of that
substring.

— The GetLength routine may be used to obtain an integer value that contains the length of the
string.

— The GetSubString routine may be used to retrieve a portion of a string, or alternatively, to
create a new Large Object value at the server which is a portion of the string and to return a
Large Object locator that represents that value.

The Error, GetDiagField, and GetDiagRec routines obtain diagnostic information about the most
recent routine operating on a particular resource. The Error routine always retrieves information
from the next status record, whereas the GetDiagField and GetDiagRec routines may be used to
retrieve information from any status record.

Information on the number of rows affected by the last executed SQL-statement can be obtained by
using the RowCount or GetDiagField routine.

An SQL-transaction is terminated by using the EndTran routine. An SQL-transaction is implicitly
initiated whenever a CLI routine is invoked that requires the context of an SQL-transaction and
no SQL-transaction is active. An SQL-transaction is explicitly started and its characteristics set by
using the StartTran routine.
NOTE 1 – Neither a <start transaction statement>, a <commit statement>, a <rollback statement>, nor a
<release savepoint statement> may be executed using the ExecDirect or Execute routines.

The Cancel routine is used to cancel the execution of a concurrently executing SQL/CLI routine
or to terminate the processing of deferred parameter values and the execution of the associated
SQL-statement.

The GetFeatureInfo, GetFunctions, GetInfo, GetSessionInfo, and GetTypeInfo routines are used to
obtain information about the implementation. The DataSources routine returns a list of names that
identify SQL-servers to which the application may be able to connect and returns a description of
each such SQL-server.

4.2 Return codes

The execution of a CLI routine causes one or more conditions to be raised. The status of the ex-
ecution is indicated by a code that is returned either as the result of a CLI routine that is a CLI
function or as the value of the ReturnCode argument of a CLI routine that is a CLI procedure.

The values and meanings of the return codes are as follows. If more than one return code is possi-
ble, then the one appearing later in the list is the one returned.

— A value of 0 (zero) indicates Success. The CLI routine executed successfully.

18 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
4.2 Return codes

— A value of 1 (one) indicates Success with information. The CLI routine executed successfully
but a completion condition was raised: warning.

— A value of 100 indicates No data found. The CLI routine executed successfully but a comple-
tion condition was raised: no data.

— A value of 99 indicates Data needed. The CLI routine did not complete its execution because
additional data is needed. An exception condition was raised: CLI-specific condition — dynamic
parameter value needed.

— A value of �1 indicates Error. The CLI routine did not execute successfully. An exception con-
dition other than CLI-specific condition — invalid handle or CLI-specific condition — dynamic
parameter value needed was raised.

— A value of �2 indicates Invalid handle. The CLI routine did not execute successfully because
an exception condition was raised: CLI-specific condition — invalid handle.

After the execution of a CLI routine, the values of all output arguments not explicitly defined by
this part of ISO/IEC 9075 are implementation-dependent.

In addition to providing the return code, for all CLI routines other than Error, GetDiagField,
and GetDiagRec, the implementation records information about completion conditions and about
exception conditions other than CLI-specific condition — invalid handle in the diagnostics area
associated with the resource being utilized.

The resource being utilized by a routine is the resource identified by its input handle. In the case
of CopyDesc, which has two input handles, the resource being utilized is deemed to be the one
identified by TargetDescHandle.

4.3 Diagnostics areas in SQL/CLI

Each diagnostics area comprises header fields that contain general information relating to the
routine that was executed and zero or more status records containing information about individual
conditions that occurred during the execution of the CLI routine. A condition that causes a status
record to be generated is referred to as a status condition.

At the beginning of the execution of any CLI routine other than Error, GetDiagField, and
GetDiagRec, the diagnostics area for the resource being utilized is emptied. If the execution of
such a routine does not result in the exception condition CLI-specific condition — invalid handle or
the exception condition CLI-specific condition — dynamic parameter value needed, then:

— Header information is generated in the diagnostics area.

— If the routine’s return code indicates Success, then no status records are generated.

— If the routine’s return code indicates Success with information or Error, then one or more
status records are generated.

— If the routine’s return code indicates No data found, then no status record is generated corre-
sponding to SQLSTATE value ’02000’ but there may be status records generated corresponding
to SQLSTATE value ’02nnn’, where ’nnn’ is an implementation-defined subclass value.

Concepts 19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
4.3 Diagnostics areas in SQL/CLI

When Fetch or FetchScroll is called to fetch a rowset and there are exceptions or warnings gener-
ated when fetching one or more rows, then the corresponding records in the diagnostics area have
the ROW_NUMBER field set to the appropriate row number in the rowset. If a status record does
not correspond to any row in the rowset, or the record is generated as a result of calling a routine
other than Fetch or FetchScroll, the ROW_NUMBER field is set to zero. The COLUMN_NUMBER
field of the diagnostic record contains the column number (if any) to which this diagnostic applies.
If the diagnostic record does not apply to any column, then COLUMN_NUMBER is set to zero.

Status records in the diagnostics area are ordered by ROW_NUMBER. If multiple status records are
generated for the same ROW_NUMBER value, then the order in which status records are placed in
a diagnostics area is implementation-dependent except that:

— For the purpose of choosing the first status record, status records corresponding to transaction
rollback have precedence over status records corresponding to other exceptions, which in turn
have precedence over status records corresponding to the completion condition no data, which in
turn have precedence over status records corresponding to the completion condition warning.

— Apart from any status records corresponding to an implementation-specified no data, any status
record corresponding to an implementation-specified condition that duplicates, in whole or in
part, a condition defined in this part of ISO/IEC 9075 shall not be the first status record.

The routines GetDiagField and GetDiagRec retrieve information from a diagnostics area. The ap-
plication identifies which diagnostics area is to be accessed by providing the handle of the relevant
resource as an input argument. The routines return a result code but do not modify the identified
diagnostics area.

The Error routine also retrieves information from a diagnostics area. The Error routine retrieves
the status records in the identified diagnostics area one at a time but does not permit already pro-
cessed status records to be retrieved. Error returns a result code but does not modify the identified
diagnostics area.

The RowCount routine retrieves the ROW_COUNT field from the diagnostics area for the spec-
ified statement handle. RowCount returns a result code and may cause exception or completion
conditions to be raised which cause status records to be generated.

A CLI diagnostics area comprises the fields specified in Table 2, ‘‘Fields in SQL/CLI diagnostics
areas’’.

Table 2—Fields in SQL/CLI diagnostics areas

Field Data type

Header fields

DYNAMIC_FUNCTION CHARACTER VARYING (L1)

DYNAMIC_FUNCTION_CODE INTEGER

MORE INTEGER

NUMBER INTEGER

RETURNCODE SMALLINT

ROW_COUNT INTEGER

Where L is an implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less
than 254.

20 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
4.3 Diagnostics areas in SQL/CLI

Table 2—Fields in SQL/CLI diagnostics areas (Cont.)

Field Data type

Header fields

TRANSACTIONS_COMMITTED INTEGER

TRANSACTIONS_ROLLED_
BACK

INTEGER

TRANSACTION_ACTIVE INTEGER

Implementation-defined header
field

Implementation-defined

Fields in status records

CATALOG_NAME CHARACTER VARYING (L)

CLASS_ORIGIN CHARACTER VARYING (L1)

COLUMN_NAME CHARACTER VARYING (L)

COLUMN_NUMBER INTEGER

CONDITION_IDENTIFIER CHARACTER VARYING (L)

CONDITION_NUMBER INTEGER

CONNECTION_NAME CHARACTER VARYING (L)

CONSTRAINT_CATALOG CHARACTER VARYING (L)

CONSTRAINT_NAME CHARACTER VARYING (L)

CONSTRAINT_SCHEMA CHARACTER VARYING (L)

CURSOR_NAME CHARACTER VARYING (L)

MESSAGE_LENGTH INTEGER

MESSAGE_OCTET_LENGTH INTEGER

MESSAGE_TEXT CHARACTER VARYING (L1)

NATIVE_CODE INTEGER

PARAMETER_MODE CHARACTER VARYING (L)

PARAMETER_NAME CHARACTER VARYING (L)

PARAMETER_ORDINAL_
POSITION

INTEGER

ROUTINE_CATALOG CHARACTER VARYING (L)

ROUTINE_NAME CHARACTER VARYING (L)

ROUTINE_SCHEMA CHARACTER VARYING (L)

ROW_NUMBER INTEGER

SCHEMA_NAME CHARACTER VARYING (L)

SERVER_NAME CHARACTER VARYING (L)

Where L is an implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less
than 254.

(Continued on next page)

Concepts 21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
4.3 Diagnostics areas in SQL/CLI

Table 2—Fields in SQL/CLI diagnostics areas (Cont.)

Field Data type

Fields in status records

SQLSTATE CHARACTER (5)

SPECIFIC_NAME CHARACTER VARYING (L)

SUBCLASS_ORIGIN CHARACTER VARYING (L1)

TABLE_NAME CHARACTER VARYING (L)

TRIGGER_CATALOG CHARACTER VARYING (L)

TRIGGER_NAME CHARACTER VARYING (L)

TRIGGER_SCHEMA CHARACTER VARYING (L)

Implementation-defined status
field

Implementation-defined

Where L is an implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less
than 254.

All diagnostics area fields specified in other parts of ISO/IEC 9075 that are not included in this
table are not applicable to SQL/CLI.

4.3.1 Setting of ROW_NUMBER and COLUMN_NUMBER fields

Unless explicitly set to a different value in this part of ISO/IEX 9075, the ROW_NUMBER and
COLUMN_NUMBER fields in a diagnostic record are always 0 (zero).

4.4 Miscellaneous characteristics

4.4.1 Handles

The AllocHandle routine returns a handle, that uniquely identifies the allocated resource. Although
the data type for a handle parameter is INTEGER, its value has no meaning in any other context
and should not be used as a numeric operand or modified in any way.

In general, if the related resource cannot be allocated, then a handle value of zero is returned.
However, even if a resource has been successfully allocated, processing of that resource can subse-
quently fail due to memory constraints as follows:

— If additional memory is required but is not available, then an exception condition is raised:
CLI-specific condition — memory allocation error.

— If previously allocated memory cannot be accessed, then an exception condition is raised: CLI-
specific condition — memory management error.
NOTE 2 – No diagnostic information is generated in this case.

The validity of a handle in a compilation unit other than the one in which the identified resource
was allocated is implementation-defined.

Specifying (the address of) a valid handle as the output handle of AllocHandle does not have the
effect of reinitializing the identified resource. Instead, a new resource is allocated and a new handle
value overwrites the old one.

22 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
4.4 Miscellaneous characteristics

4.4.2 Null terminated strings

An input character string provided by the application may be terminated by the implementation-
defined null character that terminates C character strings. If this technique is used, the application
may set the associated length argument to either the length of the string excluding the null termi-
nator or to �3, indicating NULL TERMINATED.

If the NULL TERMINATION attribute for the SQL-environment is true , then all output character
strings returned by the implementation are terminated by the implementation-defined null char-
acter that terminates C character strings. If the NULL TERMINATION attribute is false , then
output character strings are not null terminated.

4.4.3 Null pointers

If the standard programming language of the invoking host program supports pointers, then the
host program may provide a zero-valued pointer, referred to as a null pointer, in the following
circumstances:

— In lieu of an output argument that is to receive the length of a returned character string. This
indicates that the application wishes to prohibit the return of this information.

— In lieu of other output arguments where specifically allowed by this part of ISO/IEC 9075. This
indicates that the application wishes to prohibit the return of this information.

— In lieu of input arguments where specifically allowed by this part of ISO/IEC 9075. The seman-
tics of such a specification depend on the context.

If the host program provides a null pointer in any other circumstances, then an exception condition
is raised: CLI-specific condition — invalid use of null pointer.

If the NULL TERMINATION attribute for the SQL-environment is false , then specifying a zero
buffer size for an output argument is equivalent to specifying a null pointer for that output argu-
ment.

4.4.4 Environment attributes

Environment attributes are associated with each allocated SQL-environment and affect the behavior
of CLI functions in that SQL-environment.

The GetEnvAttr routine enables the application to determine the current value of a specific at-
tribute. For attributes that may be set by the user, the SetEnvAttr routine enables the application
to set the value of a specific attribute. Attribute values may be set by the application whenever
there are no SQL-connections allocated within the SQL-environment.

Table 15, ‘‘Codes used for environment attributes’’, and Table 19, ‘‘Data types of attributes’’, in
Subclause 5.14, ‘‘Other tables associated with CLI’’, indicate for each attribute its name, code value,
data type, possible values, and whether the attribute may be set using SetEnvAttr.

The NULL TERMINATION attribute determines whether output character strings are null termi-
nated by the implementation. The attribute is set to true when an SQL-environment is allocated.

Concepts 23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
4.4 Miscellaneous characteristics

4.4.5 Connection attributes

Connection attributes are associated with each allocated SQL-connection and affect the behavior of
CLI functions operating in the context of that allocated SQL-connection.

The GetConnectAttr routine enables the application to determine the current value of a specific
attribute. For attributes that may be set by the user, the SetConnectAttr routine enables the
application to set the value of a specific attribute.

Table 16, ‘‘Codes used for connection attributes’’, and Table 19, ‘‘Data types of attributes’’, in
Subclause 5.14, ‘‘Other tables associated with CLI’’, indicate for each attribute its name, code
value, data type, possible values and whether the attribute may be set using SetConnectAttr.

The POPULATE IPD attribute determines whether the implementation will populate the implemen-
tation parameter descriptor with a descriptor for the <dynamic parameter specification>s when an
SQL-statement is prepared or executed immediately. The attribute is automatically set each time
an SQL-connection is established for the allocated SQL-connection.

The SAVEPOINT NAME and SAVEPOINT NUMBER connection attributes specify the savepoint to
be referenced in an invocation of the EndTran routine that uses the SAVEPOINT NAME COMMIT,
SAVEPOINT NAME RELEASE, or SAVEPOINT NUMBER COMMIT, SAVEPOINT NUMBER
RELEASE CompletionType, respectively. The SAVEPOINT NAME attribute is set to a zero-length
string and the SAVEPOINT NUMBER attribute is set to 0 (zero) when the SQL-connection is
allocated.

4.4.6 Statement attributes

Statement attributes are associated with each allocated SQL-statement and affect the processing of
SQL-statements under that allocated SQL-statement.

The GetStmtAttr routine enables the application to determine the current value of a specific at-
tribute. For attributes that may be set by the user, the SetStmtAttr routine enables the application
to set the value of a specific attribute.

Table 17, ‘‘Codes used for statement attributes’’, and Table 19, ‘‘Data types of attributes’’, in
Subclause 5.14, ‘‘Other tables associated with CLI’’, indicate for each attribute its name, code
value, data type, possible values, and whether the attribute may be set by using SetStmtAttr.

The APD HANDLE attribute is the value of the handle of the current application parameter de-
scriptor for the allocated SQL-statement. The attribute is set to the value of the handle of the
automatically allocated application parameter descriptor when the SQL-statement is allocated.

The ARD HANDLE attribute is the value of the handle of the current application row descriptor for
the allocated SQL-statement. The attribute is set to the value of the handle of the automatically
allocated application row descriptor when the SQL-statement is allocated.

The IPD HANDLE attribute is the value of the handle of the implementation parameter descriptor
associated with the allocated SQL-statement. The attribute is set to the value of the handle of the
automatically allocated implementation parameter descriptor when the SQL-statement is allocated.

The IRD HANDLE attribute is the value of the handle of the implementation row descriptor as-
sociated with the allocated SQL-statement. The attribute is set to the value of the handle of the
automatically allocated implementation row descriptor when the SQL-statement is allocated.

24 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
4.4 Miscellaneous characteristics

The CURSOR SCROLLABLE attribute determines the scrollability implicitly declared when
Execute or ExecDirect are invoked. The attribute is set to NONSCROLLABLE when the state-
ment is allocated. The CURSOR SENSITIVITY attribute determines the sensitivity to changes
of the cursor implicitly declared when Execute or ExecDirect are invoked. The attribute is set to
ASENSITIVE when the statement is allocated.

The CURSOR HOLDABLE attribute determines the holdability of the cursor implicitly declared
when Execute or ExecDirect are invoked. The attribute is set to HOLDABLE or NONHOLDABLE
when the statement is allocated, depending on the values of the CURSOR COMMIT BEHAVIOR
item used by the GetInfo routine.

The statement attribute CURRENT OF POSITION identifies the row in the rowset to which a
positioned update or delete operation applies. This is set to 1 (one) when a statement is initially
allocated. It is reset to 1 (one) whenever Fetch or FetchScroll are successfully executed.

The NEST DESCRIPTOR attribute determines whether nested descriptor items are permitted in
a CLI descriptor. Nested descriptor items are used to describe ROW and ARRAY data types. The
attribute is set to FALSE when the statement is allocated.

4.4.7 CLI descriptor areas

A CLI descriptor area provides an interface for a description of <dynamic parameter specification>s,
<dynamic parameter specification> values, resultant columns of a <dynamic select statement> or
<dynamic single row select statement>, or the <target specification>s for the resultant columns.

Each descriptor area comprises header fields and zero or more item descriptor areas. The header
fields are specified in Table 6, ‘‘Fields in SQL/CLI row and parameter descriptor areas’’. The header
fields include a COUNT fields that indicates the number of item descriptor areas and an ALLOC_
TYPE field that indicated whether the CLI descriptor area was allocated by the user or automati-
cally allocated by the implementation.

The header fields include ARRAY_SIZE, ARRAY_STATUS_POINTER, and ROWS_PROCESSED_
POINTER. These three fields are used to support the fetching of multiple rows with one invocation
of Fetch or FetchScroll.

Each CLI item descriptor area consists of the fields specified in Table 6, ‘‘Fields in SQL/CLI row and
parameter descriptor areas’’, in Subclause 5.13, ‘‘Description of CLI item descriptor areas’’.

The CLI descriptor areas for the four interface types are referred to as an implementation parame-
ter descriptor (IPD), an application parameter descriptor (APD), an implementation row descriptor
(IRD), and an application row descriptor (ARD), respectively.

When an SQL-statement is allocated, a CLI descriptor area of each type is automatically allocated
by the implementation. The ALLOC_TYPE fields for these CLI descriptor areas are set to indicate
AUTOMATIC. CLI descriptor areas allocated by the user have their ALLOC_TYPE fields set to in-
dicate USER, and can only be used as an APD or ARD. The handle values of the IPD, IRD, current
APD, and current ARD are attributes of the allocated SQL-statement. The application can deter-
mine the current values of these attributes by using the routine GetStmtAttr. The current APD and
ARD are initially the automatically-allocated APD and ARD, respectively, but can subsequently be
changed by changing the corresponding attribute value using the routine SetStmtAttr.

The routines GetDescField and GetDescRec enable information to be retrieved from any CLI de-
scriptor area. The routines SetDescField and SetDescRec enable information to be set in any CLI
descriptor area except an IRD. The routine BindCol implicitly sets information in the current ARD.
The routine BindParameter implicitly sets information in the current APD and the current IPD.
The CopyDesc routine enables the contents of any CLI descriptor area to be copied to any CLI
descriptor area except an IRD.

Concepts 25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
4.4 Miscellaneous characteristics

NOTE 3 – Although there is no need to set a DATA_POINTER field in the IPD, to align with the consistency
check that applies in the case of an APD or ARD, setting this field causes the item descriptor area to be
validated.

4.4.8 Obtaining diagnostics during multi-row fetch

When Fetch or FetchScroll is used to fetch a rowset, exceptions or warnings may be raised during
the retrieval of one or more rows in the rowset. The status of each row (that is, information about
whether each row in the rowset was successfully retrieved or not) is available in the array addressed
by the ARRAY_STATUS_POINTER field of the applicable IRD. The cardinality of this array is
the same as the ARRAY_SIZE field of the corresponding ARD; for each row in the rowset, the
corresponding element of this array has one of the following values:

— A value of 0 (zero), indicates Row success, meaning that the row was fetched successfully.

— A value of 6, indicates Row success with information, meaning that the row was fetched
successfully, but a completion condition was raised: warning.

— A value of 3, indicates No row, meaning that there is no row at this position in the rowset.
This condition occurs when a partial rowset is retrieved because the result set ended.

— A value of 5, indicates Row error, meaning that the row was not fetched successfully and an
exception condition was raised.

Each Row success with information or Row Error generates one or more status records in the
diagnostics area. The ROW_NUMBER field for each status record has the value of the row position
within the rowset to which this status record corresponds.

4.5 Client-server operation

New paragraph If the execution of a CLI routine causes the implicit or explicit execution of an <SQL
procedure statement> by an SQL-server, diagnostic information is passed in an implementation-
dependent manner to the SQL-client and then into the appropriate diagnostics area. The effect
on diagnostic information of incompatibilities between the character repertoires supported by the
SQL-client and the SQL-server is implementation-dependent.

26 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

5 Call-Level Interface specifications

5.1 <CLI routine>

Function
Describe SQL/CLI routines in a generic fashion.

Format

<CLI routine> ::=
<CLI routine name>
<CLI parameter list>
[<CLI returns clause>]

<CLI routine name> ::= <CLI name prefix><CLI generic name>

<CLI name prefix> ::=
<CLI by-reference prefix>

| <CLI by-value prefix>

<CLI by-reference prefix> ::= SQLR

<CLI by-value prefix> ::= SQL

<CLI generic name> ::=
AllocConnect

| AllocEnv
| AllocHandle
| AllocStmt
| BindCol
| BindParameter
| Cancel
| CloseCursor
| ColAttribute
| ColumnPrivileges
| Columns
| Connect
| CopyDesc
| DataSources
| DescribeCol
| Disconnect
| EndTran
| Error
| ExecDirect
| Execute
| Fetch
| FetchScroll
| ForeignKeys
| FreeConnect
| FreeEnv
| FreeHandle
| FreeStmt
| GetConnectAttr
| GetCursorName

Call-Level Interface specifications 27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.1 <CLI routine>

| GetData
| GetDescField
| GetDescRec
| GetDiagField
| GetDiagRec
| GetEnvAttr
| GetFeatureInfo
| GetFunctions
| GetInfo
| GetLength
| GetParamData
| GetPosition
| GetSessionInfo
| GetStmtAttr
| GetSubString
| GetTypeInfo
| MoreResults
| NextResult
| NumResultCols
| ParamData
| Prepare
| PrimaryKeys
| PutData
| RowCount
| SetConnectAttr
| SetCursorName
| SetDescField
| SetDescRec
| SetEnvAttr
| SetStmtAttr
| SpecialColumns
| StartTran
| TablePrivileges
| Tables
| <implementation-defined CLI generic name>

<CLI parameter list> ::=
<left paren> <CLI parameter declaration>
[{ <comma> <CLI parameter declaration> }...] <right paren>

<CLI parameter declaration> ::=
<CLI parameter name> <CLI parameter mode> <CLI parameter data type>

<CLI parameter name> ::= !! See the individual CLI routine definitions

<CLI parameter mode> ::=
IN

| OUT
| DEFIN
| DEFOUT
| DEF

<CLI parameter data type> ::=
INTEGER

| SMALLINT
| ANY
| CHARACTER <left paren> <length> <right paren>

<CLI returns clause> ::= RETURNS SMALLINT

<implementation-defined CLI generic name> ::= !! See the Syntax Rules

28 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.1 <CLI routine>

Syntax Rules

1) <CLI routine> is a pre-defined routine written in a standard programming language that is
invoked by a compilation unit of the same standard programming language. Let HL be that
standard programming language. HL shall be one of Ada, C, COBOL, Fortran, MUMPS, Pascal,
or PL/I.

2) <CLI routine> that contains a <CLI returns clause> is called a CLI function. A <CLI routine>
that does not contain a <CLI returns clause> is called a CLI procedure.

3) For each CLI function CF, there is a corresponding CLI procedure CP, with the same <CLI
routine name>. The <CLI parameter list> for CP is the same as the <CLI parameter list> for
CF but with the following additional <CLI parameter declaration>:

ReturnCode OUT SMALLINT

4) HL shall support either the invocation of CF or the invocation of CP. It is implementation-
defined which is supported.

5) Case:

a) If <CLI parameter mode> is IN, then the parameter is an input parameter. The value of an
input argument is established when a CLI routine is invoked.

b) If <CLI parameter mode> is OUT, then the parameter is an output parameter. The value of
an output argument is established when a CLI routine is executed.

c) If <CLI parameter mode> is DEFIN, then the parameter is a deferred input parameter. The
value of a deferred input argument for a CLI routine R is not established when R is invoked,
but subsequently during the execution of a related CLI routine.

d) If <CLI parameter mode> is DEFOUT, then the parameter is a deferred output parameter.
The value of a deferred output argument for a CLI routine R is not established by the
execution of R but subsequently by the execution of a related CLI routine.

e) If <CLI parameter mode> is DEF, then the parameter is a deferred parameter. The value
of a deferred argument for a CLI routine R is not established by the execution of R but
subsequently by the execution of a related CLI routine.

6) The value of an output, deferred output, deferred input, or deferred parameter is an address.
It is either a non-pointer host variable passed by reference or a pointer host variable passed by
value.

7) A by-value version of a CLI routine is a version that expects each of its non-character input
parameters to be provided as actual values. A by-reference version of a CLI routine is a version
that expects each of its input parameters to be provided as an address. By-value and by-
reference versions of the CLI routines shall be supported according to Table 3, ‘‘Supported
calling conventions of SQL/CLI routines by language’’.

Call-Level Interface specifications 29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.1 <CLI routine>

Table 3—Supported calling conventions of SQL/CLI routines by language

Language By-value By-reference

Ada (ISO 8652) Optional Required

C (ISO/IEC 9899) Required Optional

COBOL (ISO 1989) Optional Required

Fortran (ISO/IEC 1539) Not supported Required

MUMPS (ISO/IEC 11756) Optional Required

Pascal (ISO/IEC 7185 and ISO/IEC
10206)

Optional Required

PL/I (ISO 6160) Optional Required

8) If a <CLI routine> is a by-reference routine, then its <CLI routine name> shall contain a <CLI
by-reference prefix>. Otherwise, its <CLI routine name> shall contain a <CLI by-value prefix>.

9) The <implementation-defined CLI generic name> for an implementation-defined CLI function
shall be different from the <CLI generic name> of any other CLI function. The <implementation-
defined CLI generic name> for an implementation-defined CLI procedure shall be different from
the <CLI generic name> of any other CLI procedure.

10) Any <CLI routine name> that cannot be used by an implementation because of its length or
because it is made identical to some other <CLI routine name> by truncation is effectively
replaced with an abbreviated name according to the following rules:

a) Any <CLI by-value prefix> remains unchanged.

b) Any <CLI by-reference prefix> is replaced by SQR.

c) The <CLI generic name> is replaced by an abbreviated version according to Table 4,
‘‘Abbreviated SQL/CLI generic names’’.

Table 4—Abbreviated SQL/CLI generic names

Generic Name Abbreviation

AllocConnect AC

AllocEnv AE

AllocHandle AH

AllocStmt AS

BindCol BC

BindParameter BP

Cancel CAN

CloseCursor CC

ColAttribute CO

ColumnPrivileges CP

30 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.1 <CLI routine>

Table 4—Abbreviated SQL/CLI generic names (Cont.)

Generic Name Abbreviation

Columns COL

Connect CON

CopyDesc CD

DataSources DS

DescribeCol DC

Disconnect DIS

EndTran ET

Error ER

ExecDirect ED

Execute EX

Fetch FT

FetchScroll FTS

ForeignKeys FK

FreeConnect FC

FreeEnv FE

FreeHandle FH

FreeStmt FS

GetConnectAttr GCA

GetCursorName GCN

GetData GDA

GetDescField GDF

GetDescRec GDR

GetDiagField GXF

GetDiagRec GXR

GetEnvAttr GEA

GetFeatureInfo GFI

GetFunctions GFU

GetInfo GI

GetLength GLN

GetParamData GPD

GetPosition GPO

GetSessionInfo GSI

GetStmtAttr GSA

GetSubString GSB

Call-Level Interface specifications 31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.1 <CLI routine>

Table 4—Abbreviated SQL/CLI generic names (Cont.)

Generic Name Abbreviation

GetTypeInfo GTI

MoreResults MR

NextResult NR

NumResultCols NRC

ParamData PRD

Prepare PR

PrimaryKeys PK

PutData PTD

RowCount RC

SetConnectAttr SCA

SetCursorName SCN

SetDescField SDF

SetDescRec SDR

SetEnvAttr SEA

SetStmtAttr SSA

SpecialColumns SC

StartTran STN

TablePrivileges TP

Tables TAB

Implementation-defined
CLI routine

Implementation-defined abbreviation

11) Let CR be a <CLI routine> and let RN be its <CLI routine name>. Let RNU be the value of
UPPER(RN).

Case:

a) If HL supports case sensitive routine names, then the name used for the invocation of CR
shall be RN.

b) If HL does not support <simple Latin lower case letter>s, then the name used for the
invocation of CR shall be RNU.

c) If HL does not support case sensitive routine names, then the name used for the invocation
of CR shall be RN or RNU.

12) Let operative data type correspondence table be the data type correspondence table for HL
as specified in Subclause 5.15, ‘‘Data type correspondences’’. Refer to the two columns of the
operative data type correspondence table as the ‘‘SQL data type column’’ and the ‘‘host data type
column’’.

32 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.1 <CLI routine>

13) Let TI, TS, TC, and TV be the types listed in the host data type column for the rows that
contains INTEGER, SMALLINT, CHARACTER(L) and CHARACTER VARYING(L), respectively,
in the SQL data type column.

a) If TS is ‘‘None’’, then let TS = TI.

b) If TC is ‘‘None’’, then let TC = TV.

c) For each parameter P,

Case:

i) If the CLI parameter data type is INTEGER, then the type of the corresponding argu-
ment shall be TI.

ii) If the CLI parameter data type is SMALLINT, then the type of the corresponding
argument shall be TS.

iii) If the CLI parameter data type is CHARACTER(L), then the type of the corresponding
argument shall be TC.

iv) If the CLI parameter data type is ANY, then

Case:

1) If HL is C, then the type of the corresponding argument shall be ‘‘void *’’.

2) Otherwise, the type of the corresponding argument shall be any type (other than
‘‘None’’) listed in the host data type column.

d) If the CLI routine is a CLI function, then the type of the returned value is TS.

Access Rules

None.

General Rules

1) The rules for invocation of a <CLI routine> are specified in Subclause 5.2, ‘‘<CLI routine>
invocation’’.

Call-Level Interface specifications 33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.2 <CLI routine> invocation

5.2 <CLI routine> invocation

Function
Specify the rules for invocation of a <CLI routine>.

Syntax Rules

1) Let HL be the standard programming language of the invoking host program.

2) A CLI function or CLI procedure is invoked by the HL mechanism for invoking functions or
procedures, respectively.

3) Let RN be the <CLI routine name> of the <CLI routine> invoked by the host program. The
number of arguments provided in the invocation shall be the same as the number of <CLI
parameter declaration>s for RN.

4) Let DA be the data type of the i-th argument in the invocation and let DP be the <CLI parame-
ter data type> of the i-th <CLI parameter declaration> of RN. DA shall be the HL equivalent of
DP as specified by the rules of Subclause 5.1, ‘‘<CLI routine>’’.

General Rules

1) If the value of any input argument provided by the host program falls outside the set of allowed
values of the data type of the parameter, or if the value of any output argument resulting from
the execution of the <CLI routine> falls outside the set of values supported by the host program
for that parameter, then the effect is implementation-defined.

2) Let GRN be the <CLI generic name> of RN.

3) When the <CLI routine> is called by the host program:

a) The values of all input arguments to RN are established.

b) Case:

i) If RN is a CLI routine with a statement handle as an input parameter, RN has no
accompanying handle type parameter, and GRN is not ’Error’, then:

1) If the statement handle does not identify an allocated SQL-statement, then an
exception condition is raised: CLI-specific condition — invalid handle. Otherwise,
let S be the allocated SQL-statement identified by the statement handle.

2) If GRN is not ’Cancel’, then the diagnostics area associated with S is emptied.

3) Let C be the allocated SQL-connection with which S is associated.

4) If there is no established SQL-connection associated with C, then an exception
condition is raised: connection exception — connection does not exist. Otherwise, let
EC be the established SQL-connection associated with C.

5) If EC is not the current connection, then the General Rules of Subclause 5.3,
‘‘Implicit set connection’’, are applied to EC as the dormant connection.

34 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.2 <CLI routine> invocation

6) If GRN is neither ’Cancel’ nor ’ParamData’ nor ’PutData’ and there is a deferred
parameter number associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

7) RN is invoked.

ii) If RN is a CLI routine with a descriptor handle as an input parameter and RN has no
accompanying handle type parameter and GRN is not ’CopyDesc’, then:

1) If the descriptor handle does not identify an allocated CLI descriptor area, then an
exception condition is raised: CLI-specific condition — invalid handle. Otherwise,
let D be the allocated CLI descriptor area identified by the descriptor handle.

2) The diagnostics area associated with D is emptied.

3) Let C be the allocated SQL-connection with which D is associated.

4) If there is no established SQL-connection associated with C, then an exception
condition is raised: connection exception — connection does not exist. Otherwise, let
EC be the established SQL-connection associated with C.

5) If EC is not the current connection, then the General Rules of Subclause 5.3,
‘‘Implicit set connection’’, are applied to EC as the dormant connection.

6) RN is invoked.

iii) Otherwise, RN is invoked.

4) Case:

a) If the <CLI routine> is a CLI function, then:

i) The values of all output arguments are established.

ii) Let RC be the return value.

b) If the <CLI routine> is a CLI procedure, then:

i) The values of all output arguments are established except for the argument associated
with the ReturnCode parameter.

ii) Let RC be the argument associated with the ReturnCode parameter.

5) Case:

a) If RN did not complete execution because it requires more input data, then:

i) RC is set to indicate Data needed.

ii) An exception condition is raised: CLI-specific condition — dynamic parameter value
needed.

b) If RN executed successfully, then:

i) Either a completion condition is raised: successful completion, or a completion condition
is raised: warning, or a completion condition is raised: no data.

Call-Level Interface specifications 35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.2 <CLI routine> invocation

ii) Case:

1) If a completion condition is raised: successful completion, then RC is set to indicate
Success.

2) If a completion condition is raised: warning, then RC is set to indicate Success
with information.

3) If a completion condition is raised: no data, then RC is set to indicate No data
found.

c) If RN did not execute successfully, then:

i) All changes made to SQL-data or schemas by the execution of RN are canceled.

ii) One or more exception conditions are raised as determined by the General Rules of this
and other Subclauses of this part of ISO/IEC 9075 or by implementation-defined rules.

iii) Case:

1) If an exception condition is raised: CLI-specific condition — invalid handle, then RC
is set to indicate Invalid handle.

2) Otherwise, RC is set to indicate Error.

6) Case:

a) If GRN is neither ’Error, ’GetDiagField’, nor ’GetDiagRec’ and RC indicates neither Invalid
handle nor Data needed, then diagnostic information resulting from the execution of RN
is placed into the appropriate diagnostics area as specified in Subclause 4.2, ‘‘Return codes’’,
and Subclause 4.3, ‘‘Diagnostics areas in SQL/CLI’’.

b) Otherwise, no diagnostics area is updated.

36 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.3 Implicit set connection

5.3 Implicit set connection

Function
Specify the rules for an implicit SET CONNECTION statement.

General Rules

1) Let DC be a dormant SQL-connection specified in an application of this Subclause.

2) If an SQL-transaction is active for the current SQL-connection and the implementation does
not support transactions that affect more than one SQL-server, then an exception condition is
raised: feature not supported — multiple server transactions.

3) If DC cannot be selected, then an exception condition is raised: connection exception — connec-
tion failure.

4) The current SQL-connection and current SQL-session become a dormant SQL-connection and a
dormant SQL-session, respectively. The SQL-session context information is preserved and is not
affected in any way by operations performed over the selected SQL-connection.
NOTE 4 – The SQL-session context information is defined in Subclause 4.34, "SQL-sessions", in ISO/IEC
9075-2.

5) DC becomes the current SQL-connection and the SQL-session associated with DC becomes the
current SQL-session. All SQL-session context information is restored to the same state as at the
time DC became dormant.
NOTE 5 – The SQL-session context information is defined in Subclause 4.34, "SQL-sessions", in ISO/IEC
9075-2.

6) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is
set to that of the current SQL-connection.

Call-Level Interface specifications 37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.4 Implicit cursor

5.4 Implicit cursor

Function
Specify the rules for an implicit DECLARE CURSOR and OPEN statement.

General Rules

1) Let SS and AS be a SELECT SOURCE and ALLOCATED STATEMENT specified in an appli-
cation of this Subclause.

2) If there is no cursor associated with AS, then a cursor is associated with AS and the cursor
name associated with AS becomes the name of the cursor.

3) The General Rules of Subclause 5.6, ‘‘Implicit EXECUTE USING and OPEN USING clauses’’,
are applied to ’OPEN’, SS, and AS as TYPE, SOURCE, and ALLOCATED STATEMENT,
respectively.

4) If the value of the CURSOR SCROLLABLE attribute of AS is SCROLLABLE, then let CT be
’SCROLL’; otherwise, let CT be an empty string.

5) Case:

a) If the value of the CURSOR SENSITIVITY attribute of AS is INSENSITIVE, then let CS be
’INSENSITIVE’.

b) If the value of the CURSOR SENSITIVITY attribute of AS is SENSITIVE, then let CS be
’SENSITIVE’.

c) Otherwise, let CS be ’ASENSITIVE’.

6) If the value of the CURSOR HOLDABLE attribute of AS is HOLDABLE, then let CH be ’WITH
HOLD’; otherwise, let CH be an empty string.

7) Let CN be the name of the cursor associated with AS and let CR be the following <declare
cursor>:

DECLARE CN CS CT CURSOR CH FOR SS

8) Cursor CN is opened in the following steps:

a) A copy of SS is effectively created in which:

i) Each <dynamic parameter specification> is replaced by the value of the corresponding
dynamic parameter.

ii) Each <value specification> generally contained in SS that is CURRENT_USER,
CURRENT_ROLE, SESSION_USER or SYSTEM_USER is replaced by the value re-
sulting from evaluation of CURRENT_USER, CURRENT_ROLE, SESSION_USER, or
SYSTEM_USER, respectively, with all such evaluations effectively done at the same
instant in time.

iii) Each <datetime value function> generally contained in SS is replaced by the value
resulting from evaluation of that <datetime value function>, with all such evaluations
effectively done at the same instant in time.

38 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.4 Implicit cursor

iv) Each <value specification> generally contained in S that is CURRENT_PATH is replaced
by the value resulting from evaluation of CURRENT_PATH, with all such evaluations
effectively done at the same instant in time.

b) Let T be the table specified by the copy of SS.

c) A table descriptor for T is effectively created.

d) The General Rules of Subclause 14.1, "<declare cursor>", in ISO/IEC 9075-2 are applied to
CR.

e) Case:

i) If CR specifies INSENSITIVE, then a copy of T is effectively created and cursor CN is
placed in the open state and its position is before the first row of the copy of T.

ii) Otherwise, cursor CN is placed in the open state and its position is before the first row
of T.

9) If CR specifies INSENSITIVE, and the implementation is unable to guarantee that significant
changes will be invisible through CR during the SQL-transaction in which CR is opened and ev-
ery subsequent SQL-transaction during which it may be held open, then an exception condition
is raised: cursor sensitivity exception — request rejected.

10) If CR specifies SENSITIVE, and the implementation is unable to guarantee that significant
changes will be visible through CR during the SQL-transaction in which CR is opened, then an
exception condition is raised: cursor sensitivity exception — request rejected.
NOTE 6 – The visibility of significant changes through a sensitive holdable cursor during a subsequent
SQL-transaction is implementation-defined.

11) Whether an implementation is able to disallow significant changes that would not be visible
through a currently open cursor is implementation-defined.

Call-Level Interface specifications 39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.5 Implicit DESCRIBE USING clause

5.5 Implicit DESCRIBE USING clause

Function
Specify the rules for an implicit DESCRIBE USING clause.

General Rules

1) Let S and AS be a SOURCE and an ALLOCATED STATEMENT specified in the rules of this
Subclause.

2) Let IRD and IPD be the implementation row descriptor and implementation parameter descrip-
tor, respectively, associated with AS.

3) Let HL be the standard programming language of the invoking host program.

4) The value of DYNAMIC_FUNCTION and DYNAMIC_FUNCTION_CODE in the IRD and IPD
are respectively a character string representation of the prepared statement and a numeric code
that identifies the prepared statement.

5) A representation of the column descriptors of the <select list> columns for the prepared state-
ment is stored in IRD as follows:

a) Case:

i) If there is a select source associated with AS, then:

1) Let TBL be the table defined by S and let D be the degree of TBL.

Case:

A) If the value of the statement attribute NEST DESCRIPTOR is true , then let
NSi, 1 (one) � i � D, be the number of subordinate descriptors of the descriptor
for the i-th column of T.

B) Otherwise, let NSi, 1 (one) � i � D, be 0 (zero).

2) TOP_LEVEL_COUNT is set to D. If D is 0 (zero), then let TD be 0 (zero); otherwise,
let TD be D +

P
D

i=1 (NSi). COUNT is set to TD.

3) Let SL be the collection of <select list> columns of TBL.

4) Case:

A) If some subset of SL is the primary key of TBL, then KEY_TYPE is set to 1
(one).

B) If some subset of SL is the preferred key of TBL, then KEY_TYPE is set to 2.

C) Otherwise, KEY_TYPE is set to 0 (zero).

ii) Otherwise:

1) Let D be 0 (zero). Let TD be 0 (zero).

2) KEY_TYPE is set to 0 (zero).

40 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.5 Implicit DESCRIBE USING clause

b) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor
areas are set so that the i-th item descriptor area contains the descriptor of the j-th column
of TBL such that:

i) The descriptor for the first such column is assigned to the first descriptor area.

ii) The descriptor for the j+1-th column is assigned to the i+NSj+1-th item descriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is true , then the implicitly
ordered subordinate descriptors for the j-th column are assigned to contiguous item
descriptor areas starting at the i+1-th item descriptor area.

c) The descriptor of a column consists of values for LEVEL, TYPE, NULLABLE, NAME,
UNNAMED, KEY_MEMBER, and other fields depending on the value of TYPE as described
below. Those fields and fields that are not applicable for a particular value of TYPE are set
to implementation-dependent values. The DATA_POINTER, INDICATOR_POINTER, and
OCTET_LENGTH_POINTER fields are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to
another whose LEVEL value is some value k, then LEVEL is set to k+1; otherwise,
LEVEL is set to 0 (zero).

ii) TYPE is set to a code as shown in Table 7, ‘‘Codes used for implementation data types in
SQL/CLI’’, indicating the data type of the column or subordinate descriptor.

iii) Case:

1) If the value of LEVEL is 0 (zero), then:

A) If the resulting column is possibly nullable, then NULLABLE is set to 1 (one);
otherwise NULLABLE is set to 0 (zero).

B) If the column name is implementation-dependent, then NAME is set to the
implementation-dependent name of the column and UNNAMED is set to 1 (one);
otherwise, NAME is set to the <derived column> name for the column and
UNNAMED is set to 0 (zero).

C) Case:

I) If a <select list> column C is a member of a primary or preferred key of TBL,
then KEY_MEMBER is set to 1 (one).

II) Otherwise, KEY_MEMBER is set to 0 (zero).

2) Otherwise:

A) NULLABLE is set to 1 (one).

B) Case:

I) If the item descriptor area describes a field of a row, then

Call-Level Interface specifications 41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.5 Implicit DESCRIBE USING clause

Case:

1) If the name of the field is implementation-dependent, then NAME is set
to the implementation-dependent name of the field and UNNAMED is
set to 1 (one).

2) Otherwise, NAME is set to the name of the field and UNNAMED is set
to 0 (zero).

II) Otherwise, UNNAMED is set to 1 (one) and NAME is set to an implementation-
dependent value.

C) KEY_MEMBER is set to 0 (zero).

iv) Case:

1) If TYPE indicates a <character string type>, then LENGTH is set to the length
or maximum length in characters of the character string. OCTET_LENGTH is
set the maximum possible length in octets of the character string. If HL is C,
then the lengths specified in LENGTH and OCTET_LENGTH do not include
the implementation-defined null character that terminates a C character string.
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_
SET_NAME are set to the <character set name> of the character string’s character
set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLATION_NAME
are set to the <collation name> of the character string’s collation.

2) If TYPE indicates a <bit string type>, then LENGTH is set to the length or maxi-
mum length in bits of the bit string and OCTET_LENGTH is set to the maximum
possible length in octets of the bit string.

3) If TYPE indicates a <binary large object string type>, then LENGTH and OCTET_
LENGTH are both set to the maximum length in octets of the binary large object
string.

4) If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to
the precision and scale of the exact numeric.

5) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the
precision of the approximate numeric.

6) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions
of the datetime type, DATETIME_INTERVAL_CODE is set to a code as specified
in Table 9, ‘‘Codes associated with datetime data types in SQL/CLI’’, to indicate
the specific datetime data type and PRECISION is set to the <time precision> or
<timestamp precision> if either is applicable.

7) If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of
the interval type, DATETIME_INTERVAL_CODE is set to a code as specified in
Table 10, ‘‘Codes associated with <interval qualifier> in SQL/CLI’’, to indicate the
specific <interval qualifier>, DATETIME_INTERVAL_PRECISION is set to the
<interval leading field precision>, and PRECISION is set to the <interval fractional
seconds precision>, if applicable.

42 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.5 Implicit DESCRIBE USING clause

8) If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length
in octets of the <reference type>, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG, SCOPE_
SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

9) If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_
CATALOG, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_
NAME are set to the <user-defined type name> of the user-defined type. SPECIFIC_
TYPE_CATALOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are
set to the <user-defined type name> of the user-defined type and CURRENT_
TRANSFORM_GROUP is set to the CURRENT_TRANSFORM_GROUP_FOR_TYPE
for the user-defined type.

10) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

11) If TYPE indicates ARRAY, then CARDINALITY is set to the cardinality of the array
type.

6) Let C be the allocated SQL-connection with which AS is associated.

7) If POPULATE IPD for C is false , then no further rules of this Subclause are applied.

8) If POPULATE IPD for C is true , then a descriptor for the <dynamic parameter specification>s
for the prepared statement is stored in IPD as follows:

a) Let D be the number of <dynamic parameter specification>s in S.

Case:

i) If the value of the statement attribute NEST DESCRIPTOR is true , then let NSi, 1
(one) � i � D, be the number of subordinate descriptors of the descriptor for the i-th
input dynamic parameter.

ii) Otherwise, let NSi, 1 (one) � i � D, be 0 (zero).

b) TOP_LEVEL_COUNT is set to D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let TD
be D +

P
D

i=1 (NSi). COUNT is set to TD.
NOTE 7 – The KEY_TYPE field is not relevant in this case.

c) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor
areas are set so that the i-th item descriptor area contains a descriptor of the j-th <dynamic
parameter specification> such that:

i) The descriptor for the first such <dynamic parameter specification> is assigned to the
first descriptor area.

ii) The descriptor for the j+1-th <dynamic parameter specification> is assigned to the
i+NSj+1-th item descriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is true , then the implicitly
ordered subordinate descriptors for the j-th <dynamic parameter specification> are
assigned to contiguous item descriptor areas starting at the i+1-th item descriptor area.

Call-Level Interface specifications 43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.5 Implicit DESCRIBE USING clause

d) The descriptor of a <dynamic parameter specification> consists of values for LEVEL,
TYPE, NULLABLE, NAME, UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_
POSITION, PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA,
PARAMETER_SPECIFIC_NAME, and other fields depending on the value of TYPE as
described below. Those fields and fields that are not applicable for a particular value of
TYPE are set to implementation-dependent values. The DATA_POINTER, INDICATOR_
POINTER, OCTET_LENGTH_POINTER, RETURNED_CARDINALITY_POINTER, and
KEY_MEMBER fields are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to
another whose LEVEL value is some value k, then LEVEL is set to k+1; otherwise,
LEVEL is set to 0 (zero).

ii) TYPE is set to a code as shown in Table 7, ‘‘Codes used for implementation data types
in SQL/CLI’’, indicating the data type of the <dynamic parameter specification> or
subordinate descriptor.

iii) NULLABLE is set to 1 (one).
NOTE 8 – This indicates that the <dynamic parameter specification> can have the null value.

iv) KEY_MEMBER is set to 0 (zero).

v) UNNAMED is set to 1 (one) and NAME is set to an implementation-dependent value.

vi) Case:

1) If TYPE indicates a <character string type>, then LENGTH is set to the length
or maximum length in characters of the character string. OCTET_LENGTH is
set the maximum possible length in octets of the character string. If HL is C,
then the lengths specified in LENGTH and OCTET_LENGTH do not include
the implementation-defined null character that terminates a C character string.
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_
SET_NAME are set to the <character set name> of the character string’s character
set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLATION_NAME
are set to the <collation name> of the character string’s collation.

2) If TYPE indicates a <bit string type>, then LENGTH is set to the length or maxi-
mum length in bits of the bit string and OCTET_LENGTH is set to the maximum
possible length in octets of the bit string.

3) If TYPE indicates a <binary string type>, then LENGTH is set to the maximum
length in octets of the binary string.

4) If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to
the precision and scale of the exact numeric.

5) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the
precision of the approximate numeric.

6) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions
of the datetime type, DATETIME_INTERVAL_CODE is set to a code as specified
in Table 9, ‘‘Codes associated with datetime data types in SQL/CLI’’, to indicate
the specific datetime data type and PRECISION is set to the <time precision> or
<timestamp precision> if either is applicable.

44 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.5 Implicit DESCRIBE USING clause

7) If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of
the interval type, DATETIME_INTERVAL_CODE is set to a code as specified in
Table 10, ‘‘Codes associated with <interval qualifier> in SQL/CLI’’, to indicate the
specific <interval qualifier>, DATETIME_INTERVAL_PRECISION is set to the
<interval leading field precision>, and PRECISION is set to the <interval fractional
seconds precision>, if applicable.

8) If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length
in octets of the <reference type>, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG, SCOPE_
SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

9) If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_
CATALOG, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_
NAME are set to the <user-defined type name> of the user-defined type. SPECIFIC_
TYPE_CATALOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are
set to the <user-defined type name> of the user-defined type and CURRENT_
TRANSFORM_GROUP is set to the CURRENT_TRANSFORM_GROUP_FOR_TYPE
<user-defined type name>.

10) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

11) If TYPE indicates ARRAY, then CARDINALITY is set to the cardinality of the array
type.

9) If LEVEL is 0 (zero) and the prepared statement being described is a <call statement>, then:

a) Let SR be the subject routine for the <routine invocation> of the <call statement>.

b) Let Dx be the x-th <dynamic parameter specification> simply contained in an SQL argument
Ay of the <call statement>.

c) Let Py be the y-th SQL parameter of SR.
NOTE 9 – A P whose <SQL parameter mode> is IN can be a <value expression> that contains zero,
one, or more <dynamic parameter specification>s. Thus:

— Every Dx maps to one and only one Py.

— Several Dx instances can map to the same Py.

— There can be Py instances that have no Dx instances that map to them.

d) The PARAMETER_MODE value in the descriptor for each Dx is set to the value from
Table 11, ‘‘Codes associated with <parameter mode> in SQL/CLI’’, that indicates the <SQL
parameter mode> of Py.

e) The PARAMETER_ORDINAL_POSITION value in the descriptor for each Dx is set to the
ordinal position of Py.

f) The PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, and
PARAMETER_SPECIFIC_NAME values in the descriptor for each Dx is set to the values
that identify the catalog, schema, and specific name of SR.

Call-Level Interface specifications 45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.6 Implicit EXECUTE USING and OPEN USING clauses

5.6 Implicit EXECUTE USING and OPEN USING clauses

Function
Specify the rules for an implicit EXECUTE USING clause and an implicit OPEN USING clause.

General Rules

1) Let T, S, and AS be a TYPE, SOURCE, and ALLOCATED STATEMENT specified in the rules
of this Subclause.

2) Let IPD, ARD, and APD be the current implementation parameter descriptor, current applica-
tion row descriptor, and current application parameter descriptor, respectively, for AS.

3) Let C be the allocated SQL-connection with which S is associated.

4) IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specifi-
cation> values, respectively, for the statement being executed. Let D be the number of <dynamic
parameter specification>s in S. Let NAPD be the value of COUNT for APD and let NIPD be the
value of COUNT for IPD.

a) If NAPD is less than zero, then an exception condition is raised: dynamic SQL error —
invalid descriptor count.

b) If NIPD is less than zero, then an exception condition is raised: dynamic SQL error —
invalid descriptor count.

c) If NIPD is less than D, then an exception condition is raised: dynamic SQL error — using
clause does not match dynamic parameter specifications.

d) Let NIDAL be the number of item descriptor areas in the IPD for which LEVEL is 0 (zero).
If NIDAL is greater than D, then it is implementation-defined whether an exception con-
dition is raised: dynamic SQL error — using clause does not match dynamic parameter
specifications.

e) If the first NIPD item descriptor areas of IPD are not valid as specified in Subclause 5.13,
‘‘Description of CLI item descriptor areas’’, then an exception condition is raised: dynamic
SQL error — using clause does not match dynamic parameter specifications.

f) Let AD be the minimum of NAPD and NIPD.

g) For each of the first AD item descriptor areas of APD, if TYPE indicates DEFAULT, then:

i) Let TP, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respec-
tively, for the corresponding item descriptor area of IPD.

ii) The data type, precision, and scale of the described <dynamic parameter specification>
value (or part thereof, if the item descriptor area is a subordinate descriptor) are set to
TP, P, and SC, respectively, for the purposes of this invocation only.

h) If the first AD item descriptor areas of APD are not valid as specified in Subclause 5.13,
‘‘Description of CLI item descriptor areas’’, then an exception condition is raised: dynamic
SQL error — using clause does not match dynamic parameter specifications.

46 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

i) For the first AD item descriptor areas in the APD:

i) If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D,
then an exception condition is raised: dynamic SQL error — using clause does not match
dynamic parameter specifications.

ii) If all of the following are true, then an exception condition is raised: dynamic SQL error
— using clause does not match dynamic parameter specifications.

1) The value of the host variable addressed by INDICATOR POINTER is not negative.

2) Either of the following is true:

A) TYPE does not indicate ROW and the item descriptor area is not subordinate to
an item descriptor area for which the value of the host variable addressed by the
INDICATOR POINTER is not negative.

B) TYPE indicates ARRAY or ARRAY LOCATOR.

3) The value of the host variable addressed by DATA_POINTER is not a valid value of
the data type represented by the item descriptor area.

j) If all of the following are true for any item descriptor area in the first AD item descriptor
areas of APD, then an exception condition is raised: dynamic SQL error — using clause does
not match dynamic parameter specifications.

i) DEFERRED is true for the item descriptor area.

ii) Either of the following is true:

1) The value of LEVEL is zero and TYPE indicates ROW or ARRAY.

2) LEVEL is greater than 0 (zero).
NOTE 10 – This rule states that a parameter whose type is ROW or ARRAY must be bound; it
cannot be a deferred parameter.

k) For each item descriptor area whose LEVEL is 0 (zero) and for each of its subordinate de-
scriptor areas, if any, for which DEFERRED is false in the first AD item descriptor areas
of APD and whose corresponding <dynamic parameter specification> has a <parameter
mode> of PARAM MODE IN or PARAM MODE INOUT, refer to the corresponding <dy-
namic parameter specification> value as an immediate parameter value and refer to the
corresponding <dynamic parameter specification> as an immediate parameter.

l) Let IDA be the i-th item descriptor area of the APD whose LEVEL value is 0 (zero). Let
SDT be the data type represented by IDA. The associated value of IDA denoted by SV, is
defined as follows.

Case:

i) If NULL is true for IDA, then SV is the null value.

ii) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field values are
the associated values of the immediately subordinate descriptor areas of IDA.

iii) Otherwise:

1) Let V be the value of the host variable addressed by DATA_POINTER.

Call-Level Interface specifications 47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.6 Implicit EXECUTE USING and OPEN USING clauses

2) Case:

A) If TYPE indicates CHARACTER, then

Case:

I) If OCTET_LENGTH_POINTER is zero or if OCTET_LENGTH_POINTER is
not zero and the value of the host variable addressed by OCTET_LENGTH_
POINTER indicates NULL TERMINATED, then let L be the number of
characters of V that precede the implementation-defined null character that
terminates a C character string.

II) Otherwise, let Q be the value of the host variable addressed by OCTET_
LENGTH_POINTER and let L be the number of characters wholly contained
in the first Q octets of V.

B) Otherwise, let L be zero.

3) Let SV be V with effective data type SDT, as represented by the length value L and
by the values of the TYPE, PRECISION, and SCALE fields.

m) Let TDT be the effective data type of the i-th immediate parameter as represented by the
values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_
SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_
SCHEMA, and SCOPE_NAME fields in the i-th item descriptor area of the IPD for which
the LEVEL value is 0 (zero), and all its subordinate descriptor areas.

n) Let SDT be the effective data type of the i-th bound parameter as represented by the
values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_
SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_
SCHEMA, and SCOPE_NAME fields in the corresponding item descriptor area of the APD
for which the LEVEL is 0 (zero), and all its subordinate descriptor areas.

o) Case:

i) If SDT is a locator type, then let TV be the value SV.

ii) If SDT and TDT are predefined data types, then:

1) Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, and there is an implementation-defined conversion from type
SDT to type TDT, then that implementation-defined conversion is effectively
performed, converting SV to type TDT, and the result is the value TV of the i-th
bound target.

48 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — restricted data type attribute violation.

II) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised in accor-
dance with the General Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2.

III) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound
target.

2) Let UDT be the effective data type of the actual i-th immediate parameter, defined
to be the data type represented by the values of the TYPE, LENGTH, PRECISION,
SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_
NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would automatically be set in the corresponding item
descriptor area of IPD if POPULATE IPD was true for C.

3) Case:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, and there is an implementation-defined conversion from type
SDT to type UDT, then that implementation-defined conversion is effectively
performed, converting SV to type UDT and the result is the value TV of the i-th
immediate parameter.

B) Otherwise:

I) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — restricted data type attribute violation.

II) If the <cast specification>

CAST (TV AS UDT)

Call-Level Interface specifications 49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.6 Implicit EXECUTE USING and OPEN USING clauses

does not conform to the General Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised in accor-
dance with the General Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2.

III) The <cast specification>

CAST (TV AS UDT)

is effectively performed and is the value of the i-th immediate parameter.

iii) If SDT is a predefined data type and TDT is a user-defined type, then:

1) Let DT be the data type identified by TDT.

2) If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform
group name associated with the current SQL-session.

3) The Syntax Rules of Subclause 10.17, "Determination of a to-sql function", in
ISO/IEC 9075-2, are applied with DT and GN as TYPE and GROUP, respectively.

Case:

A) If there is an applicable to-sql function, then let TSF be that to-sql function.
If TSF is an SQL-invoked method, then let TSFPT be the declared type of the
second SQL parameter of TSF; otherwise, let TSFPT be the declared type of the
first SQL parameter of TSF.

Case:

I) If TSFPT is compatible with SDT, then

Case:

1) If TSF is an SQL-invoked method, then TSF is effectively invoked with
the value returned by the function invocation:

DT()

as the first parameter and SV as the second parameter. The <return
value> is the value of the i-th immediate parameter.

2) Otherwise, TSF is effectively invoked with SV as the first parameter.
The <return value> is the value of the i-th immediate parameter.

II) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

p) If DEFERRED is true for at least one of the first AD item descriptor areas of APD, then:

i) Let PN be the parameter number associated with the first such item descriptor area.

ii) PN becomes the deferred parameter number associated with AS.

iii) If T is ’EXECUTE’, then S becomes the statement source associated with AS.

50 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

iv) An exception condition is raised: CLI-specific condition — dynamic parameter value
needed.

Call-Level Interface specifications 51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.7 Implicit CALL USING clause

5.7 Implicit CALL USING clause

Function
Specify the rules for an implicit CALL USING clause.

General Rules

1) Let S and AS be a SOURCE and an ALLOCATED STATEMENT specified in the rules of this
Subclause.

2) Let IPD and APD be the current implementation parameter descriptor and current application
row descriptor, respectively, for AS.

3) IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter speci-
fication> values, respectively, for the <call statement> being executed. Let D be the number of
<dynamic parameter specification>s in S.

a) Let AD be the value of the COUNT field of APD. If AD is less than zero, then an exception
condition is raised: dynamic SQL error — invalid descriptor count.

b) For each item descriptor area in the APD whose LEVEL is 0 (zero) in the first AD item de-
scriptor areas of APD, and for all of their subordinate descriptor areas, refer to a <dynamic
parameter specification> value whose corresponding item descriptor areas have a non-zero
DATA_POINTER value and whose corresponding <dynamic parameter specification> has a
<parameter mode> of PARAM MODE OUT or PARAM MODE INOUT as a bound target and
refer to the corresponding <dynamic parameter specification> as a bound parameter.

c) If any item descriptor area corresponding to a bound target in the first AD item descriptor
areas of APD is not valid as specified in Subclause 5.13, ‘‘Description of CLI item descriptor
areas’’, then an exception condition is raised: dynamic SQL error — using clause does not
match target specifications.

d) Let SDT be the effective data type of the i-th bound parameter as represented by the
values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_
SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_
SCHEMA, and SCOPE_NAME fields in the i-th item descriptor area of the IPD for which
the LEVEL is 0 (zero) and all of its subordinate descriptor areas. Let SV be the value of the
output parameter, with data type SDT.

e) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound
parameter whose value is SV be represented by the values of the SPECIFIC_TYPE_
CATALOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the cor-
responding item descriptor area of IPD.

f) Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_
POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively,
in the item descriptor area of the APD corresponding to the i-th bound target (or part
thereof, if the item descriptor area is a subordinate descriptor).

52 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.7 Implicit CALL USING clause

g) Case:

i) If TYPE indicates CHARACTER, then:

1) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, ‘‘Codes used for implementation data types in SQL/CLI’’.

2) Let LV be the implementation-defined maximum length for a CHARACTER
VARYING data type.

ii) Otherwise, let UT be TYPE and let LV be 0 (zero).

h) Let TDT be the effective data type of the i-th bound target as represented by the type
UT, the length value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_
CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_
TYPE_ CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in the corresponding item
descriptor area of the APD for which the LEVEL is 0 (zero) and all its subordinate descriptor
areas.

i) Case:

i) If TDT is a locator type, then:

1) If SV is not the null value, then a locator L that uniquely identifies SV is generated
and the value TV of the i-th bound target is set to an implementation-dependent
four-octet value that represents L.

2) Otherwise, the value TV of the i-th bound target is the null value.

ii) If SDT and TDT are predefined data types, then

Case:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT
to type TDT, then that implementation-defined conversion is effectively performed,
converting SV to type TDT, and the result is the value TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

B) If the <cast specification>

CAST (SV AS TDT)

Call-Level Interface specifications 53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.7 Implicit CALL USING clause

does not conform to the General Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised in accordance with the
General Rules of Subclause 6.22, "<cast specification>", in ISO/IEC 9075-2.

C) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

iii) If SDT is a user-defined type and TDT is a predefined data type, then:

1) Let DT be the data type identified by SDT.

2) If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform
group name associated with the current SQL-session.

3) The Syntax Rules of Subclause 10.15, "Determination of a from-sql function", in
ISO/IEC 9075-2, are applied with DT and GN as TYPE and GROUP, respectively.

Case:

A) If there is an applicable from-sql function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

Case:

I) If FSFRT is compatible with TDT, then the from-sql function TSF is effec-
tively invoked with SV as its input parameter and the <return value> is the
value TV of the i-th bound target.

II) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

j) Let IDA be the top-level item descriptor area corresponding to the i-th output parameter.

k) Case:

i) If TYPE indicates ROW, then

Case:

1) If TV is the null value, then

Case:

A) If IP is a null pointer for IDA or for any of the subordinate descriptor areas of
IDA that are not subordinate to an item descriptor area whose type indicates
ARRAY or ARRAY_LOCATOR, then an exception condition is raised: data
exception — null value, no indicator parameter.

B) Otherwise, the value of the host variable addressed by IP for IDA, and that
in all subordinate descriptor areas of IDA that are not subordinate to an item
descriptor area whose TYPE indicates ARRAY or ARRAY_LOCATOR, is set
to the appropriate ’Code’ for SQL NULL DATA in Table 26, ‘‘Miscellaneous

54 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.7 Implicit CALL USING clause

codes used in CLI’’, and the values of variables addressed by DP and LP are
implementation-dependent.

2) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of
the i-th field of TV by applying General Rule 3)k) to the i-th subordinate descriptor
area of IDA as IDA, the value of i-th field of TV as TV, the value of the i-th field of
SV as SV, and the data type of the i-th field of SV as SDT.

ii) Otherwise,

Case:

1) If TV is the null value, then

Case:

A) If IP is a null pointer, then an exception condition is raised: data exception —
null value, no indicator parameter.

B) Otherwise, the value of the host variable addressed by IP is set to the ap-
propriate ’Code’ for SQL NULL DATA in Table 26, ‘‘Miscellaneous codes used
in CLI’’, and the values of the host variables addressed by DP and LP are
implementation-dependent.

2) Otherwise:

A) If IP is not a null pointer, then the value of the host variable addressed by IP is
set to 0 (zero).

B) Case:

I) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined
whether or not an exception condition is raised: data exception — zero-
length character string.

B) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are
applied with DP, TV, OL, and LP as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

II) If TYPE indicates BINARY LARGE OBJECT, then the General Rules of
Subclause 5.10, ‘‘Binary large object string retrieval’’, are applied with DP,
TV, OL, and LP as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

III) If TYPE indicates ARRAY or ARRAY LOCATOR, and if RETURNED_
CATDINALITY_POINTER is not 0 (zero), then the value of the host vari-
able addressed by RETURNED_CARDINALITY_POINTER is set to the
cardinality of TV.

IV) Otherwise, the value of the host variable addressed by DP is set to TV.

Call-Level Interface specifications 55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.8 Implicit FETCH USING clause

5.8 Implicit FETCH USING clause

Function
Specify the rules for an implicit FETCH USING clause.

General Rules

1) Let S, RS, RP, and AS be a SOURCE, ROWS, ROWS PROCESSED, and an ALLOCATED
STATEMENT specified in the rules of this Subclause.

2) Let IRD and ARD be the current implementation row descriptor and current application row
descriptor, respectively, associated with AS.

3) IRD and ARD describe the <select list> columns and <target specification>s, respectively, for
the column values that are to be retrieved. Let D be the degree of the table defined by S.

a) Let AD be the value of the COUNT field of ARD. If AD is less than zero, then an exception
condition is raised: dynamic SQL error — invalid descriptor count.

b) For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item de-
scriptor areas of ARD, and for all of their subordinate descriptor areas, refer to a <target
specification> whose corresponding item descriptor areas have a non-zero DATA_POINTER
as a bound target and refer to the corresponding <select list> column as a bound column.

c) If any item descriptor area corresponding to a bound target in the first AD item descriptor
areas of ARD is not valid as specified in Subclause 5.13, ‘‘Description of CLI item descriptor
areas’’, then an exception condition is raised: dynamic SQL error — using clause does not
match target specifications.

d) Let SDT be the effective data type of the i-th bound column as represented by the values of
the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_
INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_
SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields in the i-th item descriptor area of the IRD whose LEVEL is 0 (zero)
and all of its subordinate descriptor areas.

e) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound
column whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item
descriptor area of IRD.

f) Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_
POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively,
in the item descriptor area of the ARD corresponding to the i-th bound target (or part
thereof, if the item descriptor area is a subordinate descriptor).

g) Let ASP be the value of the ARRAY_STATUS_POINTER field in the IRD.

h) For RN ranging from 1 (one) through RS, if the RN-th row of the rowset has been fetched,
then:

i) Let SV be the value of the <select list> column, with data type SDT.

56 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.8 Implicit FETCH USING clause

ii) Let DPE, IPE, and LPE be the addresses of the RN-th element of the arrays addressed
by DP, IP, and LP, respectively.

iii) Case:

1) If TYPE indicates CHARACTER, then:

A) Let UT be the code value corresponding to CHARACTER VARYING as specified
in Table 7, ‘‘Codes used for implementation data types in SQL/CLI’’.

B) Let LV be the implementation-defined maximum length for a CHARACTER
VARYING data type.

2) Otherwise, let UT be TYPE and let LV be 0 (zero).

iv) Let TDT be the effective data type of the i-th bound target as represented by the type
UT, the length value LV, and the values of the PRECISION, SCALE, CHARACTER_
SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, USER_
DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_
TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in the
item descriptor area of the ARD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

v) Let LTDT be the data type on the last fetch of the i-th bound target, if any. If any of the
following is true, then is implementation-defined whether or not an exception condition
is raised: dynamic SQL error — restricted data type attribute violation.

1) If LTDT and TDT both identify a binary large object type and only one of LTDT and
TDT is a binary large object locator.

2) If LTDT and TDT both identify a character large object type and only one of LTDT
and TDT is a character large object locator.

3) If LTDT and TDT both identify an array type and only one of LTDT and TDT is an
array locator.

4) If LTDT and TDT both identify a user-defined type and only one of LTDT and TDT
is a user-defined type locator.

vi) Case:

1) If TDT is a locator type, then;

A) If SV is not the null value, then a locator L that uniquely identifies SV is gen-
erated and the value TV of the i-th bound target is set to an implementation-
dependent four-octet value that represents L.

B) Otherwise, the value TV of the i-th bound target is the null value.

2) If SDT and TDT are predefined data types, then

Case:

A) If the <cast specification>

CAST (SV AS TDT)

Call-Level Interface specifications 57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.8 Implicit FETCH USING clause

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, and there is an implementation-defined conversion from type
SDT to type TDT, then that implementation-defined conversion is effectively
performed, converting SV to type TDT, and the result is the value TV of the i-th
bound target.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — restricted data type attribute violation.

II) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised in accor-
dance with the General Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is
set to i. If ASP is not a null pointer, then the RN-th element of the array
addressed by ASP is set to:

1) If there were completion conditions: warning raised during the applica-
tion of this Rule, then 6 (indicating Row success with information).

2) If there were exception conditions raised during the application of this
Rule, then 5 (indicating Row error).

III) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound
target.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined
name of DT, then let GN be that group name; otherwise, let GN be the default
transform group name associated with the current SQL-session.

C) The Syntax Rules of Subclause 10.15, "Determination of a from-sql function",
in ISO/IEC 9075-2, are applied with DT and GN as TYPE and GROUP, respec-
tively.

Case:

I) If there is an applicable from-sql function, then let FSF be that from-sql
function and let FSFRT be the <returns data type> of FSF.

58 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.8 Implicit FETCH USING clause

Case:

1) If FSFRT is compatible with TDT, then the from-sql function TSF is
effectively invoked with SV as its input parameter and the <return
value> is the value TV of the i-th bound target.

2) Otherwise, an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

vii) Let IDA be the top-level item descriptor area corresponding to the i-th bound column.

viii) Case:

1) If TYPE indicates ROW, then

Case:

A) If TV is the null value, then

Case:

I) If IPE is a null pointer for IDA or for any of the subordinate descriptor
areas of IDA that are not subordinate to an item descriptor area whose
type indicates ARRAY or ARRAY_LOCATOR, then an exception condition is
raised: data exception — null value, no indicator parameter.

II) Otherwise, the value of the host variable addressed by IPE for IDA, and that
in all subordinate descriptor areas of IDA that are not subordinate to an item
descriptor area whose TYPE indicates ARRAY or ARRAY_LOCATOR, is set
to the appropriate ’Code’ for SQL NULL DATA in Table 26, ‘‘Miscellaneous
codes used in CLI’’, and the values of variables addressed by DPE and LPE
are implementation-dependent.

B) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value
of the i-th field of TV by applying General Rule 3)h)viii) to the i-th subordinate
descriptor area of IDA as IDA, the value of i-th field of TV as TV, the value of
the i-th field of SV as SV, and the data type of the i-th field of SV as SDT.

2) Otherwise,

Case:

A) If TV is the null value, then

Case:

I) If IPE is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter.

II) Otherwise, the value of the host variable addressed by IPE is set to the
appropriate ’Code’ for SQL NULL DATA in Table 26, ‘‘Miscellaneous codes
used in CLI’’, and the values of the host variables addressed by DPE and
LPE are implementation-dependent.

Call-Level Interface specifications 59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.8 Implicit FETCH USING clause

B) Otherwise:

I) If IPE is not a null pointer, then the value of the host variable addressed by
IPE is set to 0 (zero).

II) Case:

1) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT,
then:

a) If TV is a zero-length character string, then it is implementation-
defined whether or not an exception condition is raised: data excep-
tion — zero-length character string.

b) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are
applied with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

2) For every status record that results from the application of the preced-
ing Rule, the ROW_NUMBER field is set to RN and the COLUMN_
NUMBER field is set to i. If ASP is not a null pointer, then the RN-th
element of the array addressed by ASP is set to:

a) If there were completion conditions: warning raised during the
application of the preceding Rule, then 6 (indicating Row success
with information).

b) If there were exception conditions raised during the application of
the preceding Rule, then 5 (indicating Row error).

3) If TYPE indicates BINARY LARGE OBJECT, then the General Rules
of Subclause 5.10, ‘‘Binary large object string retrieval’’, are applied
with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is
set to i. If ASP is not a null pointer, then the RN-th element of the array
addressed by ASP is set to:

a) If there were completion conditions: warning raised during the
application of this Rule, then 6 (indicating Row success with
information).

b) If there were exception conditions raised during the application of
this Rule, then 5 (indicating Row error).

4) If TYPE indicates ARRAY or ARRAY LOCATOR, and if RETURNED_
CARDINALITY_POINTER is not a null pointer, then the value of the
host variable addressed by RETURNED_CARDINALITY_POINTER is
set to the cardinality of TV.

5) Otherwise, the value of the host variable addressed by DPE is set to TV
and the value of the host variable addressed by LPE is implementation-
dependent.

60 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.8 Implicit FETCH USING clause

3) If there were no exception conditions raised during the application of this Rule,
then:

A) Increment RP by 1 (one).

B) If ASP is not a null pointer, then set the RN-th element of the array pointed to
by ASP to 0 (zero, indicating Row success).

Call-Level Interface specifications 61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.9 Character string retrieval

5.9 Character string retrieval

Function
Specify the rules for retrieving character string values.

General Rules

1) Let T, V, TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH specified in an application of this Subclause.

2) If TL is not greater than zero, then an exception condition is raised: CLI-specific condition —
invalid string length or buffer length.

3) Let L be the length in octets of V.

4) If RL is not a null pointer, then the value of the host variable addressed by RL is set to L.

5) Case:

a) If null termination is false for the current SQL-environment, then:

i) If L is not greater than TL, then the first L octets of T are set to V and the values of the
remaining octets of T are implementation-dependent.

ii) Otherwise, T is set to the first TL octets of V and a completion condition is raised:
warning — string data, right truncation.

b) Otherwise, let NB be the length in octets of a null terminator in the character set of T.

Case:

i) If L is not greater than (TL�NB), then the first (L+NB) octets of T are set to V concate-
nated with a single implementation-defined null character that terminates a C character
string. The values of the remaining characters of T are implementation-dependent.

ii) Otherwise, T is set to the first (TL�NB) octets of V concatenated with a single
implementation-defined null character that terminates a C character string and a
completion condition is raised: warning — string data, right truncation.

62 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.10 Binary large object string retrieval

5.10 Binary large object string retrieval

Function
Specify the rules for retrieving BINARY LARGE OBJECT string values.

General Rules

1) Let T, V, TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH specified in an application of this Subclause.

2) If TL is not greater than zero, then an exception condition is raised: CLI-specific condition —
invalid string length or buffer length.

3) Let L be the length in octets of V.

4) If RL is not a null pointer, then RL is set to L.

5) Case:

a) If L is not greater than TL, then the first L octets of T are set to V and the values of the
remaining octets of T are implementation-dependent.

b) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning
— string data, right truncation.

Call-Level Interface specifications 63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.11 Deferred parameter check

5.11 Deferred parameter check

Function
Check for the existence of deferred dynamic parameters when accessing a CLI descriptor.

General Rules

1) Let DA be a DESCRIPTOR AREA specified in an application of this Subclause.

2) Let C be the allocated SQL-connection with which DA is associated.

3) Let L1 be the set of all allocated SQL-statements associated with C.

4) Let L2 be the set of all allocated SQL-statements in L1 which have an associated deferred
parameter number.

5) Let L3 be the set of all CLI descriptor areas that are either the current application parameter
descriptor for, or the implementation parameter descriptor associated with, an allocated SQL-
statement in L2.

6) If DA is contained in L3, then an exception condition is raised: CLI-specific condition — function
sequence error.

64 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.12 CLI-specific status codes

5.12 CLI-specific status codes

Some of the conditions that can occur during the execution of CLI routines are CLI-specific. The
corresponding status codes are listed in Table 5, ‘‘SQLSTATE class and subclass values for SQL/CLI-
specific conditions’’.

Table 5—SQLSTATE class and subclass values for SQL/CLI-specific conditions

Category Condition Class Subcondition Subclass

X CLI-specific condition HY (no subclass) 000

associated statement is not prepared 007

attempt to concatenate a null value 020

attribute cannot be set now 011

column type out of range 097

dynamic parameter value needed (See the Note
at the end of
the table)

function sequence error 010

inconsistent descriptor information 021

invalid attribute identifier 092

invalid attribute value 024

invalid cursor position 109

invalid data type 004

invalid data type in application
descriptor

003

invalid descriptor field identifier 091

invalid fetch orientation 106

invalid FunctionId specified 095

invalid handle (See the Note
at the end of
the table)

invalid information type 096

invalid LengthPrecision value 104

invalid parameter mode 105

invalid retrieval code 103

invalid string length or buffer
length

090

invalid transaction operation code 012

invalid use of automatically-
allocated descriptor handle

017

invalid use of null pointer 009

limit on number of handles exceeded 014

Call-Level Interface specifications 65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.12 CLI-specific status codes

Table 5—SQLSTATE class and subclass values for SQL/CLI-specific conditions (Cont.)

Category Condition Class Subcondition Subclass

memory allocation error 001

memory management error 013

non-string data cannot be sent in
pieces

019

non-string data cannot be used with
string routine

055

nullable type out of range 099

operation canceled 008

optional feature not implemented C00

row value out of range 107

scope out of range 098

server declined the cancellation
request

018

NOTE 11 – No subclass value is defined for the subcondition invalid handle since no diagnostic information
can be generated in this case or for the subcondition dynamic parameter value needed, since no diagnostic
information is generated in this case.

66 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.13 Description of CLI item descriptor areas

5.13 Description of CLI item descriptor areas

Function
Specify the identifiers, data types and codes for fields used in CLI item descriptor areas.

Syntax Rules

1) A CLI item descriptor area comprises the fields specified in Table 6, ‘‘Fields in SQL/CLI row and
parameter descriptor areas’’.

2) Given a CLI item descriptor area IDA in which the value of LEVEL is some value N, the im-
mediately subordinate descriptor areas of IDA are those CLI item descriptor areas in which the
value of LEVEL is N+1 and whose position in the CLI descriptor area follows that of IDA and
precedes that of any CLI item descriptor area in which the value of LEVEL is less than N+1.
The subordinate descriptor areas of IDA are those CLI item descriptor areas that are imme-
diately subordinate descriptor areas of IDA or that are subordinate descriptor areas of an CLI
item descriptor area that is immediately subordinate to IDA.

3) Given a data type DT and its descriptor DE, the immediately subordinate descriptors of DE are
defined to be

Case:

a) If DT is ROW, then the field descriptors of the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) If DT is ARRAY, then the descriptor of the associated element type of DT. The subordinate
descriptors of DE are those descriptors that are immediately subordinate descriptors of DE
or that are subordinate descriptors of a descriptor that is immediately subordinate to DE.

4) Given a descriptor DE, let SDEj represent its j-th immediately subordinate descriptor. There is
an implied ordering of the subordinate descriptors of DE, such that:

a) SDE1 is in the first ordinal position.

b) The ordinal position of SDEj+1 is K+NS+1, where K is the ordinal position of SDEj and
NS is the number of subordinate descriptors of SDEj. The implicitly ordered subordinate
descriptors of SDEj occupy contiguous ordinal positions starting at position K+1.

5) Let IDA be an item descriptor area in an implementation parameter descriptor. IDA is valid if
and only if all of the following are true:

a) TYPE is one of the code values in Table 7, ‘‘Codes used for implementation data types in
SQL/CLI’’.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT of the
implementation parameter descriptor associated with IDA. IDA shall be one of exactly TLC
item descriptor areas in the implementation parameter descriptor.

c) Exactly one of the following is true:

Case:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

Call-Level Interface specifications 67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.13 Description of CLI item descriptor areas

ii) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale
values for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

iv) TYPE indicates INTEGER, SMALLINT, REAL, or DOUBLE PRECISION.

v) TYPE indicates CHARACTER or CHARACTER VARYING, or CHARACTER LARGE
OBJECT and LENGTH is a valid length value for a <character string type>.

vi) TYPE indicates BIT or BIT VARYING and LENGTH is a valid length value for <bit
string type>.

vii) TYPE indicates BINARY LARGE OBJECT and LENGTH is a valid value for a <binary
string type>.

viii) TYPE indicates a <datetime type>, DATETIME_INTERVAL_CODE is one of the
code values in Table 9, ‘‘Codes associated with datetime data types in SQL/CLI’’, and
PRECISION is a valid value for the <time precision> or <timestamp precision> of the
indicated datetime data type.

ix) TYPE indicates an <interval type>, DATETIME_INTERVAL_CODE is one of the code
values in Table 10, ‘‘Codes associated with <interval qualifier> in SQL/CLI’’, to indicate
the <interval qualifier> of the interval data type, DATETIME_INTERVAL_PRECISION
is a valid <interval leading field precision>, and PRECISION is a valid value for <inter-
val fractional seconds precision>, if applicable.

x) TYPE indicates REF.

xi) TYPE indicates USER-DEFINED TYPE.

xii) TYPE indicates BOOLEAN.

xiii) TYPE indicates ROW, the value N of DEGREE is a valid value for the degree of a row
type, there are exactly N immediately subordinate descriptor areas of IDA, and those
item descriptor areas are valid.

xiv) TYPE indicates ARRAY or ARRAY CARDINALITY is a valid value for the cardinal-
ity of an array, there is LOCATOR, the value of exactly one immediately subordinate
descriptor area of IDA, and that item descriptor area is valid.

xv) TYPE indicates an implementation-defined data type.

6) Let HL be the standard programming language of the invoking host program. Let operative
data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, ‘‘Data type correspondences’’. Refer to the two columns of the operative data
type correspondence table as the SQL data type column and the host data type column.

7) A CLI item descriptor area in a CLI descriptor area that is not an implementation row descrip-
tor is consistent if and only if all of the following are true:

a) TYPE indicates DEFAULT or is one of the code values in Table 8, ‘‘Codes used for applica-
tion data types in SQL/CLI’’.

68 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.13 Description of CLI item descriptor areas

b) All of the following are true:

i) TYPE is one of the code values in Table 8, ‘‘Codes used for application data types in
SQL/CLI’’.

ii) TYPE is neither ROW nor ARRAY.

iii) The row that contains the SQL data type corresponding to TYPE in the SQL data type
column of the operative data type correspondence table does not contain ‘‘None’’ in the
host data type column.

c) Exactly one of the following is true:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

ii) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale
values for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

iv) TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT, BINARY
LARGE OBJECT, CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE
OBJECT LOCATOR, USER-DEFINED TYPE LOCATOR, REF, INTEGER, SMALLINT,
REAL, or DOUBLE PRECISION.

v) TYPE indicates ROW and, where N is the value of the DEGREE field in the correspond-
ing item descriptor area in the implementation parameter descriptor, there are exactly
N immediately subordinate descriptor areas of IDA, and those item descriptor areas are
valid.

vi) TYPE indicates ARRAY or ARRAY LOCATOR, there is exactly 1 (one) immediately
subordinate descriptor area of IDA, and that item descriptor area is valid.

vii) TYPE indicates an implementation-defined data type.

8) Let IDA be a CLI item descriptor area in an application parameter descriptor. Let IDA1 be the
corresponding item descriptor area in the implementation parameter descriptor.

9) If the OCTET_LENGTH_POINTER field of IDA has the same non-zero value as the INDICATOR_
POINTER field of IDA, then SHARE is true for IDA; otherwise SHARE is false for IDA.

10) Case:

a) If SHARE is true and the value of the commonly addressed host variable is the appropriate
’Code’ for SQL NULL DATA in Table 26, ‘‘Miscellaneous codes used in CLI’’, then NULL is
true for IDA.

b) If SHARE is false, INDICATOR_POINTER is not zero, and the value of the host variable
addressed by INDICATOR_POINTER is the appropriate ’Code’ for SQL NULL DATA in
Table 26, ‘‘Miscellaneous codes used in CLI’’, then NULL is true for IDA.

c) Otherwise, NULL is false for IDA.

Call-Level Interface specifications 69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.13 Description of CLI item descriptor areas

11) If NULL is false, OCTET_LENGTH_POINTER is not zero, and the value of the host variable ad-
dressed by OCTET_LENGTH_POINTER the appropriate ’Code’ for DATA AT EXEC in Table 26,
‘‘Miscellaneous codes used in CLI’’, then DEFERRED is true for IDA; otherwise DEFERRED is
false for IDA.

12) IDA is valid if and only if:

a) TYPE is one of the code values in Table 8, ‘‘Codes used for application data types in
SQL/CLI’’, and at least one of the following is true:

i) TYPE is ROW or ARRAY.

ii) The row of the operative data type correspondences table that contains the SQL data
type corresponding to the value of TYPE in the SQL data type column does not contain
’None’ in the host data type column.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the
application parameter descriptor associated with IDA. IDA shall be one of exactly TLC item
descriptor areas in the implementation parameter descriptor.

c) One of the following is true:

Case:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

ii) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale
values for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

iv) TYPE indicates INTEGER, SMALLINT, REAL, or DOUBLE PRECISION.

v) TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, or BINARY LARGE
OBJECT, and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

3) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, the value V of the host variable addressed
by OCTET_LENGTH_POINTER is greater than zero, and the number of char-
acters wholly contained in the first V octets of the host variable addressed by
DATA_POINTER is a valid length value for a CHARACTER, CHARACTER LARGE
OBJECT, or BINARY LARGE OBJECT data type, as indicated by TYPE.

4) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, and the number of
characters of the value of the host variable addressed by DATA_POINTER that
precede the implementation-defined null character that terminates a C character
string is a valid length value for a CHARACTER, CHARACTER LARGE OBJECT,
or BINARY LARGE OBJECT data type, as indicated by TYPE.

70 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.13 Description of CLI item descriptor areas

5) OCTET_LENGTH_POINTER is zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, and the number of characters of the value of
the host variable addressed by DATA_POINTER that precede the implementation-
defined null character that terminates a C character string is a valid length value
for a CHARACTER, CHARACTER LARGE OBJECT, or BINARY LARGE OBJECT
data type, as indicated by TYPE.

6) PARAMETER_MODE in IDA1 is PARAM MODE OUT.

vi) TYPE indicates REF and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

vii) TYPE indicates CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT
LOCATOR, or USER-DEFINED TYPE LOCATOR and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

viii) TYPE indicates ROW and, where N is the value of the DEGREE field in the correspond-
ing item descriptor area in the implementation parameter descriptor, there are exactly
N immediately subordinate descriptor areas of IDA, and those item descriptor areas are
valid.

ix) TYPE indicates ARRAY or ARRAY LOCATOR, there is exactly 1 (one) immediately
subordinate descriptor area of IDA, and that item descriptor area is valid.

x) TYPE indicates an implementation-defined data type.

d) One of the following is true:

i) DATA_POINTER is zero and NULL is true.

ii) DATA_POINTER is zero and DEFERRED is true.

iii) DATA_POINTER is not zero and exactly one of the following is true:

1) NULL is true.

2) DEFERRED is true.

3) PARAMETER_MODE in IDA1 is PARAM MODE IN or PARAM MODE INOUT and
the value of the host variable addressed by DATA_POINTER is a valid value of the
data type indicated by TYPE.

4) PARAMETER_MODE in IDA1 is PARAM MODE OUT.

13) A CLI item descriptor area in an application row descriptor is valid if and only if:

a) TYPE is one of the code values in Table 8, ‘‘Codes used for application data types in
SQL/CLI’’, and at least one of the following is true:

i) TYPE is ROW or ARRAY.

Call-Level Interface specifications 71

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.13 Description of CLI item descriptor areas

ii) The row of the operative data type correspondences table that contains the SQL data
type corresponding to the value of TYPE in the SQL data type column does not contain
’None’ in the host data type column.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the
application parameter descriptor associated with IDA. IDA shall be one of exactly TLC item
descriptor areas in the implementation parameter descriptor.

c) One of the following is true:

Case:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

ii) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale
values for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

iv) TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, BINARY LARGE
OBJECT, CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT
LOCATOR, USER-DEFINED TYPE LOCATOR, REF, INTEGER, SMALLINT, REAL,
or DOUBLE PRECISION.

v) TYPE indicates ROW and, where N is the value of the DEGREE field in the correspond-
ing item descriptor area in the implementation parameter descriptor, there are exactly
N immediately subordinate descriptor areas of IDA, and those item descriptor areas are
valid.

vi) TYPE indicates ARRAY or ARRAY LOCATOR, there is exactly 1 (one) immediately
subordinate descriptor area of IDA, and that item descriptor area is valid.

vii) TYPE indicates an implementation-defined data type.

Table 6—Fields in SQL/CLI row and parameter descriptor areas

Field Data Type

Header fields

ALLOC_TYPE SMALLINT

ARRAY_SIZE INTEGER

ARRAY_STATUS_POINTER host variable address of INTEGER

DYNAMIC_FUNCTION CHARACTER VARYING(L)

DYNAMIC_FUNCTION_CODE INTEGER

KEY_TYPE SMALLINT

ROWS_PROCESSED_POINTER host variable address of INTEGER

TOP_LEVEL_COUNT SMALLINT

Where L is an implementation-defined integer not less than 128, and L1 is the implementation-defined maximum
length for the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

72 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.13 Description of CLI item descriptor areas

Table 6—Fields in SQL/CLI row and parameter descriptor areas (Cont.)

Field Data Type

Header fields

Implementation-defined header field Implementation-defined

Fields in item descriptor areas

CARDINALITY INTEGER

CHARACTER_SET_CATALOG CHARACTER VARYING(L)

CHARACTER_SET_NAME CHARACTER VARYING(L)

CHARACTER_SET_SCHEMA CHARACTER VARYING(L)

COLLATION_CATALOG CHARACTER VARYING(L)

COLLATION_NAME CHARACTER VARYING(L)

COLLATION_SCHEMA CHARACTER VARYING(L)

COUNT SMALLINT

CURRENT_TRANSFORM_GROUP CHARACTER VARYING(L1)

DATA_POINTER host variable address

DATETIME_INTERVAL_CODE SMALLINT

DATETIME_INTERVAL_PRECISION SMALLINT

DEGREE INTEGER

INDICATOR_POINTER host variable address of INTEGER

KEY_MEMBER SMALLINT

LENGTH INTEGER

LEVEL INTEGER

NAME CHARACTER VARYING(L)

NULLABLE SMALLINT

OCTET_LENGTH INTEGER

OCTET_LENGTH_POINTER host variable address of INTEGER

PARAMETER_MODE SMALLINT

PARAMETER_ORDINAL_POSITION SMALLINT

PARAMETER_SPECIFIC_CATALOG CHARACTER VARYING(L)

PARAMETER_SPECIFIC_NAME CHARACTER VARYING(L)

PARAMETER_SPECIFIC_SCHEMA CHARACTER VARYING(L)

PRECISION SMALLINT

RETURNED_CARDINALITY_POINTER host variable address of INTEGER

SCALE SMALLINT

Where L is an implementation-defined integer not less than 128, and L1 is the implementation-defined maximum
length for the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

(Continued on next page)

Call-Level Interface specifications 73

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.13 Description of CLI item descriptor areas

Table 6—Fields in SQL/CLI row and parameter descriptor areas (Cont.)

Field Data Type

Fields in item descriptor areas

SCOPE_CATALOG CHARACTER VARYING(L)

SCOPE_NAME CHARACTER VARYING(L)

SCOPE_SCHEMA CHARACTER VARYING(L)

SPECIFIC_TYPE_CATALOG CHARACTER VARYING(L)

SPECIFIC_TYPE_NAME CHARACTER VARYING(L)

SPECIFIC_TYPE_SCHEMA CHARACTER VARYING(L)

TYPE SMALLINT

UNNAMED SMALLINT

USER_DEFINED_TYPE_CATALOG CHARACTER VARYING(L)

USER_DEFINED_TYPE_NAME CHARACTER VARYING(L)

USER_DEFINED_TYPE_SCHEMA CHARACTER VARYING(L)

Implementation-defined item field Implementation-defined

Where L is an implementation-defined integer not less than 128, and L1 is the implementation-defined maximum
length for the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

General Rules

1) Table 7, ‘‘Codes used for implementation data types in SQL/CLI’’, specifies the codes associated
with the SQL data types used in implementation descriptor areas.

Table 7—Codes used for implementation data types in SQL/CLI

Data Type Code

ARRAY 50

BINARY LARGE OBJECT 30

BIT 14

BIT VARYING 15

BOOLEAN 16

CHARACTER 1

CHARACTER LARGE OBJECT 40

CHARACTER VARYING 12

DATE, TIME, TIME WITH TIME ZONE,
TIMESTAMP, or TIMESTAMP WITH
TIME ZONE

9

DECIMAL 3

DOUBLE PRECISION 8

74 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.13 Description of CLI item descriptor areas

Table 7—Codes used for implementation data types in SQL/CLI (Cont.)

Data Type Code

FLOAT 6

INTEGER 4

INTERVAL 10

NUMERIC 2

REAL 7

REF 20

ROW 19

SMALLINT 5

USER-DEFINED TYPE 17

Implementation-defined data type <0

2) Table 8, ‘‘Codes used for application data types in SQL/CLI’’, specifies the codes associated with
the SQL data types used in application descriptor areas.

Table 8—Codes used for application data types in SQL/CLI

Data Type Code

Implementation-defined data type <0

ARRAY LOCATOR 51

BINARY LARGE OBJECT 30

BINARY LARGE OBJECT LOCATOR 31

CHARACTER 1

CHARACTER LARGE OBJECT 40

CHARACTER LARGE OBJECT
LOCATOR

41

DECIMAL 3

DOUBLE PRECISION 8

FLOAT 6

INTEGER 4

NUMERIC 2

REAL 7

REF 20

SMALLINT 5

USER-DEFINED TYPE LOCATOR 18

3) Table 9, ‘‘Codes associated with datetime data types in SQL/CLI’’, specifies the codes associated
with the datetime data types allowed in SQL/CLI.

Call-Level Interface specifications 75

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.13 Description of CLI item descriptor areas

Table 9—Codes associated with datetime data types in SQL/CLI

Datetime Data Type Code

DATE 1

TIME 2

TIME WITH TIME ZONE 4

TIMESTAMP 3

TIMESTAMP WITH TIME ZONE 5

4) Table 10, ‘‘Codes associated with <interval qualifier> in SQL/CLI’’, specifies the codes associated
with <interval qualifier>s for interval data types in SQL/CLI.

Table 10—Codes associated with <interval qualifier> in SQL/CLI

Interval qualifier Code

DAY 3

DAY TO HOUR 8

DAY TO MINUTE 9

DAY TO SECOND 10

HOUR 4

HOUR TO MINUTE 11

HOUR TO SECOND 12

MINUTE 5

MINUTE TO SECOND 13

MONTH 2

SECOND 6

YEAR 1

YEAR TO MONTH 7

5) Table 11, ‘‘Codes associated with <parameter mode> in SQL/CLI’’, specifies the codes associated
with the SQL parameter modes.

Table 11—Codes associated with <parameter mode> in SQL/CLI

Parameter mode Code

PARAM MODE IN 1

PARAM MODE INOUT 2

PARAM MODE OUT 4

76 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

5.14 Other tables associated with CLI

The tables contained in this Subclause are used to specify the codes used by the various CLI rou-
tines.

Table 12—Codes used for diagnostic fields

Field Code Type

CATALOG_NAME 18 Status

CLASS_ORIGIN 8 Status

COLUMN_NAME 21 Status

COLUMN_NUMBER -1247 Status

CONDITION_IDENTIFIER 25 Status

CONDITION_NUMBER 14 Status

CONNECTION_NAME 10 Status

CONSTRAINT_CATALOG 15 Status

CONSTRAINT_NAME 17 Status

CONSTRAINT_SCHEMA 16 Status

CURSOR_NAME 22 Status

DYNAMIC_FUNCTION 7 Header

DYNAMIC_FUNCTION_CODE 12 Header

MESSAGE_LENGTH 23 Status

MESSAGE_OCTET_LENGTH 24 Status

MESSAGE_TEXT 6 Status

MORE 13 Header

NATIVE_CODE 5 Status

NUMBER 2 Header

PARAMETER_MODE 37 Status

PARAMETER_NAME 26 Status

PARAMETER_ORDINAL_POSITION 38 Status

RETURNCODE 1 Header

ROUTINE_CATALOG 27 Status

ROUTINE_NAME 29 Status

ROUTINE_SCHEMA 28 Status

ROW_COUNT 3 Header

ROW_NUMBER -1248 Status

SCHEMA_NAME 19 Status

Call-Level Interface specifications 77

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 12—Codes used for diagnostic fields (Cont.)

Field Code Type

SERVER_NAME 11 Status

SPECIFIC_NAME 30 Status

SQLSTATE 4 Status

SUBCLASS_ORIGIN 9 Status

TABLE_NAME 20 Status

TRANSACTION_ACTIVE 36 Header

TRANSACTIONS_COMMITTED 34 Header

TRANSACTIONS_ROLLED_BACK 35 Header

TRIGGER_CATALOG 31 Status

TRIGGER_NAME 33 Status

TRIGGER_SCHEMA 32 Status

Implementation-defined diagnostics
header field

< 01 Header

Implementation-defined diagnostics
status field

< 01 Status

1Except for values in this table that are less than 0 (zero).

Table 13—Codes used for handle types

Handle type Code

CONNECTION HANDLE 2

DESCRIPTOR HANDLE 4

ENVIRONMENT HANDLE 1

STATEMENT HANDLE 3

Implementation-defined handle type < 1 or > 100

Table 14—Codes used for transaction termination

Termination type Code

COMMIT 0

ROLLBACK 1

SAVEPOINT NAME COMMIT 2

SAVEPOINT NUMBER COMMIT 3

SAVEPOINT NAME RELEASE 4

SAVEPOINT NUMBER RELEASE 5

COMMIT AND CHAIN 6

78 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 14—Codes used for transaction termination (Cont.)

Termination type Code

ROLLBACK AND CHAIN 7

Implementation-defined termination type <0

Table 15—Codes used for environment attributes

Attribute Code May be set

NULL TERMINATION 10001 Yes

Implementation-defined environment
attribute

� 0,
except
values
given
above

Implementation-defined

Table 16—Codes used for connection attributes

Attribute Code May be set

POPULATE IPD 10001 No

SAVEPOINT NAME 10027 Yes

SAVEPOINT NUMBER 10028 Yes

Implementation-defined connection
attribute

� 0,
except
values
given
above

Implementation-defined

Table 17—Codes used for statement attributes

Attribute Code May be set

APD HANDLE 10011 Yes

ARD HANDLE 10010 Yes

IPD HANDLE 10013 No

IRD HANDLE 10012 No

CURRENT OF POSITION 10027 Yes

CURSOR HOLDABLE -3 Yes

CURSOR SCROLLABLE -1 Yes

CURSOR SENSITIVITY -2 Yes

METADATA ID 10014 Yes

NEST DESCRIPTOR 10029 Yes

Call-Level Interface specifications 79

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 17—Codes used for statement attributes (Cont.)

Attribute Code May be set

Implementation-defined statement at-
tribute

� 0,
except
values
given
above

Implementation-defined

Table 18—Codes used for FreeStmt options

Option Code

CLOSE CURSOR 0

FREE HANDLE 1

UNBIND COLUMNS 2

UNBIND PARAMETERS 3

REALLOCATE 4

Table 19—Data types of attributes

80 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Attribute Data type Values

Environment attributes

NULL TERMINATION INTEGER 0 (false)
1 (true)

Connection attributes

POPULATE IPD INTEGER 0 (false)
1 (true)

Statement attributes

APD HANDLE INTEGER Handle value

ARD HANDLE INTEGER Handle value

IPD HANDLE INTEGER Handle value

IRD HANDLE INTEGER Handle value

CURRENT OF POSITION INTEGER Integer value denoting the current row
in the rowset

CURSOR HOLDABLE INTEGER 0 (NONHOLDABLE)
1 (HOLDABLE)

CURSOR SCROLLABLE INTEGER 0 (NONSCROLLABLE)
1 (SCROLLABLE)

CURSOR SENSITIVITY INTEGER 0 (ASENSITIVE)
1 (INSENSITIVE)
2 (SENSITIVE)

METADATA ID INTEGER 0 (FALSE)
1 (TRUE)

NEST DESCRIPTOR INTEGER 0 (FALSE)
1 (TRUE)

SAVEPOINT NAME CHARACTER Not specified

SAVEPOINT NUMBER INTEGER Not specified

Table 20—Codes used for descriptor fields

Field Code SQL Item Descriptor Name Type

ALLOC_TYPE 1099 (Not applicable) Header

ARRAY_SIZE 20 (Not applicable) Header

ARRAY_STATUS_POINTER 21 (Not applicable) Header

CARDINALITY 1040 CARDINALITY Status

CHARACTER_SET_CATALOG 1018 CHARACTER_SET_CATALOG Item

CHARACTER_SET_NAME 1020 CHARACTER_SET_NAME Item

CHARACTER_SET_SCHEMA 1019 CHARACTER_SET_SCHEMA Item

COLLATION_CATALOG 1015 COLLATION_CATALOG Item

Call-Level Interface specifications 81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 20—Codes used for descriptor fields (Cont.)

Field Code SQL Item Descriptor Name Type

COLLATION_NAME 1017 COLLATION_NAME Item

COLLATION_SCHEMA 1016 COLLATION_SCHEMA Item

COUNT 1001 COUNT Header

CURRENT_TRANSFORM_GROUP 1039 (Not applicable) Status

DATA_POINTER 1010 DATA Item

DATETIME_INTERVAL_CODE 1007 DATETIME_INTERVAL_CODE Item

DATETIME_INTERVAL_PRECISION 26 DATETIME_INTERVAL_PRECISION Item

DEGREE 1041 DEGREE Status

DYNAMIC_FUNCTION 1031 DYNAMIC_FUNCTION Header

DYNAMIC_FUNCTION_CODE 1032 DYNAMIC_FUNCTION_CODE Header

INDICATOR_POINTER 1009 INDICATOR Item

KEY_MEMBER 1030 KEY_MEMBER Item

KEY_TYPE 1029 KEY_TYPE Header

LENGTH 1003 LENGTH Item

LEVEL 1042 LEVEL Item

NAME 1011 NAME Item

NULLABLE 1008 NULLABLE Item

OCTET_LENGTH 1013 OCTET_LENGTH Item

OCTET_LENGTH_POINTER 1004 Both OCTET_LENGTH (input) and
RETURNED_OCTET_LENGTH (out-
put)

Item

PARAMETER_MODE 1021 PARAMETER_MODE Item

PARAMETER_ORDINAL_POSITION 1022 PARAMETER_ORDINAL_POSITION Item

PARAMETER_SPECIFIC_CATALOG 1023 PARAMETER_SPECIFIC_CATALOG Item

PARAMETER_SPECIFIC_NAME 1025 PARAMETER_SPECIFIC_NAME Item

PARAMETER_SPECIFIC_SCHEMA 1024 PARAMETER_SPECIFIC_SCHEMA Item

PRECISION 1005 PRECISION Item

RETURNED_CARDINALITY_
POINTER

1043 RETURNED_CARDINALITY Status

ROW_PROCESSED_POINTER 34 (Not applicable) Header

SCALE 1006 SCALE Item

SCOPE_CATALOG 1033 SCOPE_CATALOG Status

SCOPE_NAME 1035 SCOPE_NAME Status

SCOPE_SCHEMA 1034 SCOPE_SCHEMA Status

SPECIFIC_TYPE_CATALOG 1036 (Not applicable) Status

82 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 20—Codes used for descriptor fields (Cont.)

Field Code SQL Item Descriptor Name Type

SPECIFIC_TYPE_NAME 1038 (Not applicable) Status

SPECIFIC_TYPE_SCHEMA 1037 (Not applicable) Status

TOP_LEVEL_COUNT 1044 TOP_LEVEL_COUNT Header

TYPE 1002 TYPE Item

UNNAMED 1012 UNNAMED Item

USER_DEFINED_TYPE_CATALOG 1026 USER_DEFINED_TYPE_CATALOG Item

USER_DEFINED_TYPE_NAME 1028 USER_DEFINED_TYPE_NAME Item

USER_DEFINED_TYPE_SCHEMA 1027 USER_DEFINED_TYPE_SCHEMA Item

Implementation-defined descriptor
header field

0
(zero)
through
999,
or �
1200,
ex-
clud-
ing
values
de-
fined
in this
table

Implementation-defined descriptor
header field

Header

Implementation-defined descriptor item
field

0
(zero)
through
999,
or �
1200,
ex-
clud-
ing
values
de-
fined
in this
table

Implementation-defined descriptor item
field

Item

Table 21—Ability to set SQL/CLI descriptor fields

May be set

Field ARD IRD APD IPD

ALLOC_TYPE No No No No

Where ‘‘No’’ means that the descriptor field is not settable, ‘‘ID’’ means that it is implementation-defined whether or not
the descriptor field is settable, and the absence of any notation means that the descriptor field is settable.

(Continued on next page)

Call-Level Interface specifications 83

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 21—Ability to set SQL/CLI descriptor fields (Cont.)

May be set

Field ARD IRD APD IPD

ARRAY_SIZE No No

ARRAY_STATUS_POINTER

CARDINALITY No No No

CHARACTER_SET_CATALOG No

CHARACTER_SET_NAME No

CHARACTER_SET_SCHEMA No

COLLATION_CATALOG No

COLLATION_NAME No

COLLATION_SCHEMA No

COUNT No

CURRENT_TRANSFORM_GROUP No No No No

DATA_POINTER No

DATETIME_INTERVAL_CODE No

DATETIME_INTERVAL_PRECISION No

DEGREE No No No

DYNAMIC_FUNCTION No No No No

DYNAMIC_FUNCTION_CODE No No No No

INDICATOR_POINTER No No

KEY_MEMBER No No No No

KEY_TYPE No No No No

LENGTH No

LEVEL No

NAME No

NULLABLE No

OCTET_LENGTH No

OCTET_LENGTH_POINTER No No

PARAMETER_MODE No No No

PARAMETER_ORDINAL_POSITION No No No

PARAMETER_SPECIFIC_CATALOG No No No

PARAMETER_SPECIFIC_NAME No No No

PARAMETER_SPECIFIC_SCHEMA No No No

PRECISION No

84 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 21—Ability to set SQL/CLI descriptor fields (Cont.)

May be set

Field ARD IRD APD IPD

RETURNED_CARDINALITY_POINTER No No

ROWS_PROCESSED_POINTER No No

SCALE No

SCOPE_CATALOG No

SCOPE_NAME No

SCOPE_SCHEMA No

SPECIFIC_TYPE_CATALOG No No No No

SPECIFIC_TYPE_NAME No No No No

SPECIFIC_TYPE_SCHEMA No No No No

TOP_LEVEL_COUNT No

TYPE No

UNNAMED No

USER_DEFINED_TYPE_CATALOG No

USER_DEFINED_TYPE_NAME No

USER_DEFINED_TYPE_SCHEMA No

Implementation-defined descriptor
header field

ID ID ID ID

Implementation-defined descriptor item
field

ID ID ID ID

Table 22—Ability to retrieve SQL/CLI descriptor fields

May be retrieved

Field ARD IRD APD IPD

ALLOC_TYPE PS

ARRAY_SIZE No No

ARRAY_STATUS_POINTER

CARDINALITY No PS No

CHARACTER_SET_CATALOG PS

CHARACTER_SET_NAME PS

CHARACTER_SET_SCHEMA PS

COLLATION_CATALOG PS

COLLATION_NAME PS

Call-Level Interface specifications 85

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 22—Ability to retrieve SQL/CLI descriptor fields (Cont.)

May be retrieved

Field ARD IRD APD IPD

COLLATION_SCHEMA PS

COUNT PS

CURRENT_TRANSFORM_GROUP PS

DATA_POINTER No No

DATETIME_INTERVAL_CODE PS

DATETIME_INTERVAL_PRECISION PS

DEGREE No PS No

DYNAMIC_FUNCTION No No

DYNAMIC_FUNCTION_CODE No No

INDICATOR_POINTER No No

KEY_MEMBER No PS No No

KEY_TYPE No PS No No

LENGTH PS

LEVEL PS

NAME PS

NULLABLE PS

OCTET_LENGTH PS

OCTET_LENGTH_POINTER No No

PARAMETER_MODE No PS No No

PARAMETER_ORDINAL_POSITION No PS No No

PARAMETER_SPECIFIC_CATALOG No PS No No

PARAMETER_SPECIFIC_NAME No PS No No

PARAMETER_SPECIFIC_SCHEMA No PS No No

PRECISION PS

RETURNED_CARDINALITY_POINTER No No

ROWS_PROCESSED_POINTER No No

SCALE PS

SCOPE_CATALOG PS

SCOPE_NAME PS

SCOPE_SCHEMA PS

Where ‘‘No’’ means that the descriptor field is not retrievable, PS means that the descriptor field is retrievable from the
IRD only when a prepared or executed statement is associated with the IRD, the absence of any notation means that
the descriptor field is retrievable, and ‘‘ID’’ means that it is implementation-defined whether or not the descriptor field
is retrievable.

86 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 22—Ability to retrieve SQL/CLI descriptor fields (Cont.)

May be retrieved

Field ARD IRD APD IPD

SPECIFIC_TYPE_CATALOG PS

SPECIFIC_TYPE_NAME PS

SPECIFIC_TYPE_SCHEMA PS

TOP_LEVEL_COUNT PS

TYPE PS

UNNAMED PS

USER_DEFINED_TYPE_CATALOG PS

USER_DEFINED_TYPE_NAME PS

USER_DEFINED_TYPE_SCHEMA PS

Implementation-defined descriptor
header field

ID ID ID ID

Implementation-defined descriptor item
field

ID ID ID ID

Table 23—SQL/CLI descriptor field default values

Default values

Field ARD IRD APD IPD

ALLOC_TYPE AUTOMATIC
or USER

AUTOMATIC AUTOMATIC
or USER

AUTOMATIC

ARRAY_SIZE 1 (one) 1 (one)

ARRAY_STATUS_POINTER Null Null Null Null

CARDINALITY

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

COUNT 0 (zero) 0 (zero)

CURRENT_TRANSFORM_
GROUP

Where ‘‘Null’’ means that the descriptor field’s default value is a null pointer, the absence of any notation means
that the descriptor field’s default value is initially undefined, ‘‘ID’’ means that the descriptor field’s default value is
implementation-defined, and any other value specifies the descriptor field’s default value.

(Continued on next page)

Call-Level Interface specifications 87

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 23—SQL/CLI descriptor field default values (Cont.)

Default values

Field ARD IRD APD IPD

DATA_POINTER Null Null

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_
PRECISION

DEGREE

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

INDICATOR_POINTER Null Null

KEY_MEMBER

KEY_TYPE

LENGTH

LEVEL 0 (zero) 0 (zero)

NAME

NULLABLE

OCTET_LENGTH

OCTET_LENGTH_POINTER Null Null

PARAMETER_MODE

PARAMETER_ORDINAL_
POSITION

PARAMETER_SPECIFIC_
CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_
SCHEMA

PRECISION

RETURNED_CARDINALITY_
POINTER

Null Null

ROWS_PROCESSED_POINTER Null Null

SCALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

SPECIFIC_TYPE_NAME

88 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 23—SQL/CLI descriptor field default values (Cont.)

Default values

Field ARD IRD APD IPD

SPECIFIC_TYPE_SCHEMA

TOP_LEVEL_COUNT 0 (zero) 0 (zero)

TYPE DEFAULT DEFAULT

UNNAMED

USER_DEFINED_TYPE_
CATALOG

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_
SCHEMA

Implementation-defined descriptor
header field

ID ID ID ID

Implementation-defined descriptor
item field

ID ID ID ID

Table 24—Codes used for fetch orientation

Fetch Orientation Code

NEXT 1

FIRST 2

LAST 3

PRIOR 4

ABSOLUTE 5

RELATIVE 6

Table 25—Multi-row fetch status codes

Return code meaning Return code

Row success 0 (zero)

Row success with
information

6

Row error 5

No row 3

Call-Level Interface specifications 89

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 26—Miscellaneous codes used in CLI

Context Code Indicates

Allocation type 1 AUTOMATIC

Allocation type 2 USER

Attribute value 0 FALSE, NONSCROLLABLE, ASENSITIVE, NO NULLS,
NONHOLDABLE

Attribute value 1 TRUE, SCROLLABLE, INSENSITIVE, NULLABLE, HOLDABLE

Attribute value 2 SENSITIVE

Data type 0 ALL TYPES

Data type -99 APD TYPE

Data type -99 ARD TYPE

Data type 99 DEFAULT

Deferrable constraints 5 INITIALLY DEFERRED

Deferrable constraints 6 INITIALLY IMMEDIATE

Deferrable constraints 7 NOT DEFERRABLE

Input string length -3 NULL TERMINATED

Input or output data -1 SQL NULL DATA

Parameter length -2 DATA AT EXEC

Referential Constraint 0 CASCADE

Referential Constraint 1 RESTRICT

Referential Constraint 4 SET DEFAULT

Referential Constraint 2 SET NULL

Referential Constraint 3 NO ACTION

Table 27—Codes used to identify SQL/CLI routines

Generic Name Code

AllocConnect 1

AllocEnv 2

AllocHandle 1001

AllocStmt 3

BindCol 4

BindParameter 72

Cancel 5

CloseCursor 1003

ColAttribute 6

ColumnPrivileges 56

90 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 27—Codes used to identify SQL/CLI routines (Cont.)

Generic Name Code

Columns 40

Connect 7

CopyDesc 1004

DataSources 57

DescribeCol 8

Disconnect 9

EndTran 1005

Error 10

ExecDirect 11

Execute 12

Fetch 13

FetchScroll 1021

ForeignKeys 60

FreeConnect 14

FreeEnv 15

FreeHandle 1006

FreeStmt 16

GetConnectAttr 1007

GetCursorName 17

GetData 43

GetDescField 1008

GetDescRec 1009

GetDiagField 1010

GetDiagRec 1011

GetEnvAttr 1012

GetFeatureInfo 1027

GetFunctions 44

GetInfo 45

GetLength 1022

GetParamData 1025

GetPosition 1023

GetSessionInfo 1028

GetStmtAttr 1014

GetSubString 1024

Call-Level Interface specifications 91

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 27—Codes used to identify SQL/CLI routines (Cont.)

Generic Name Code

GetTypeInfo 47

MoreResults 61

NextResult 73

NumResultCols 18

ParamData 48

Prepare 19

PrimaryKeys 65

PutData 49

RowCount 20

SetConnectAttr 1016

SetCursorName 21

SetDescField 1017

SetDescRec 1018

SetEnvAttr 1019

SetStmtAttr 1020

SpecialColumns 52

StartTran 74

TablePrivileges 70

Tables 54

Implementation-defined
CLI routine

< 0 (zero), or 400 through 1299, or � 2000

Table 28—Codes and data types for implementation information

Information Type Code Data Type

ALTER TABLE 86 INTEGER

CATALOG NAME 10003 CHARACTER(1)

COLLATING SEQUENCE 10004 CHARACTER(254)

CURSOR COMMIT BEHAVIOR 23 SMALLINT

CURSOR SENSITIVITY 10001 INTEGER

DATA SOURCE NAME 2 CHARACTER(128)

DATA SOURCE READ ONLY 25 CHARACTER(1)

DBMS NAME 17 CHARACTER(254)

DBMS VERSION 18 CHARACTER(254)

DEFAULT TRANSACTION ISOLATION 26 INTEGER

92 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 28—Codes and data types for implementation information (Cont.)

Information Type Code Data Type

DESCRIBE PARAMETER 10002 CHARACTER(1)

FETCH DIRECTION 8 INTEGER

GETDATA EXTENSIONS 81 INTEGER

IDENTIFIER CASE 28 SMALLINT

INTEGRITY 73 CHARACTER(1)

MAXIMUM CATALOG NAME LENGTH 34 SMALLINT

MAXIMUM COLUMN NAME LENGTH 30 SMALLINT

MAXIMUM COLUMNS IN GROUP BY 97 SMALLINT

MAXIMUM COLUMNS IN ORDER BY 99 SMALLINT

MAXIMUM COLUMNS IN SELECT 100 SMALLINT

MAXIMUM COLUMNS IN TABLE 101 SMALLINT

MAXIMUM CONCURRENT ACTIVITIES 1 SMALLINT

MAXIMUM CURSOR NAME LENGTH 31 SMALLINT

MAXIMUM DRIVER CONNECTIONS 0 SMALLINT

MAXIMUM IDENTIFIER LENGTH 10005 SMALLINT

MAXIMUM SCHEMA NAME LENGTH 32 SMALLINT

MAXIMUM STATEMENT OCTETS 20000 SMALLINT

MAXIMUM STATEMENT OCTETS
DATA

20001 SMALLINT

MAXIMUM STATEMENT OCTETS
SCHEMA

20002 SMALLINT

MAXIMUM TABLE NAME LENGTH 35 SMALLINT

MAXIMUM TABLES IN SELECT 106 SMALLINT

MAXIMUM USER NAME LENGTH 107 SMALLINT

NULL COLLATION 85 SMALLINT

OUTER JOIN CAPABILITIES 115 INTEGER

ORDER BY COLUMNS IN SELECT 90 CHARACTER(1)

SCROLL CONCURRENCY 43 INTEGER

SEARCH PATTERN ESCAPE 14 CHARACTER(1)

SERVER NAME 13 CHARACTER(128)

SPECIAL CHARACTERS 94 CHARACTER(254)

TRANSACTION CAPABLE 46 SMALLINT

TRANSACTION ISOLATION OPTION 72 INTEGER

USER NAME 47 CHARACTER(128)

Call-Level Interface specifications 93

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 28—Codes and data types for implementation information (Cont.)

Information Type Code Data Type

Implementation-defined information type Implementation-
defined

Implementation-defined

SQL implementation information 21000 through
24999

CHARACTER(L1) or INTEGER

SQL sizing information 25000 through
29999

INTEGER

Implementation-defined implementation
information

11000 through
14999

CHARACTER(L1) or INTEGER

Implementation-defined sizing informa-
tion

15000 through
19999

INTEGER

1L is the implementation-defined maximum length of a variable-length character string.

NOTE 12 – Additional implementation information items are defined in Subclause 21.36, "SQL_
IMPLEMENTATION_INFO base table", in ISO/IEC 9075-2.

Additional sizing items are defined in Subclause 21.38, "SQL_SIZING base table", in ISO/IEC 9075-2.

Table 29—Codes and data types for session implementation information

Information Type Code Data Type <general value specification>

CURRENT USER 47 CHARACTER(L) USER and CURRENT_USER

CURRENT DEFAULT
TRANSFORM GROUP

20004 CHARACTER(L) CURRENT_DEFAULT_TRANSFORM_
GROUP

CURRENT PATH 20005 CHARACTER(L) CURRENT_PATH

CURRENT ROLE 20006 CHARACTER(L) CURRENT_ROLE

SESSION USER 20007 CHARACTER(L) SESSION_USER

SYSTEM USER 20008 CHARACTER(L) SYSTEM_USER

Where L is the implementation-defined maximum length of the corresponding <general value specification>.

Table 30—Values for ALTER TABLE with GetInfo

Information Type Value

ADD COLUMN 1

DROP COLUMN 2

ALTER COLUMN 4

ADD CONSTRAINT 8

DROP CONSTRAINT 16

94 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 31—Values for FETCH DIRECTION with GetInfo

Information Type Value

FETCH NEXT 1

FETCH FIRST 2

FETCH LAST 4

FETCH PRIOR 8

FETCH ABSOLUTE 16

FETCH RELATIVE 32

Table 32—Values for GETDATA EXTENSIONS with GetInfo

Information Type Value

ANY COLUMN 1

ANY ORDER 2

Table 33—Values for OUTER JOIN CAPABILITIES with GetInfo

Information Type Value

LEFT 1

RIGHT 2

FULL 4

NESTED 8

NOT ORDERED 16

INNER 32

ALL COMPARISON OPS 64

Table 34—Values for SCROLL CONCURRENCY with GetInfo

Information Type Value

READ ONLY 1

LOCK 2

OPT ROWVER 4

OPT VALUES 8

Table 35—Values for TRANSACTION ISOLATION OPTION with GetInfo and StartTran

Information Type Value

READ UNCOMMITTED 1

READ COMMITTED 2

Call-Level Interface specifications 95

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 35—Values for TRANSACTION ISOLATION OPTION with GetInfo and StartTran (Cont.)

Information Type Value

REPEATABLE READ 4

SERIALIZABLE 8

Table 36—Values for TRANSACTION ACCESS MODE with StartTran

Information Type Value

READ ONLY 1

READ WRITE 2

Table 37—Codes used for concise data types

Data Type Code

Implementation-defined data type <0

CHARACTER 1

CHAR 1

NUMERIC 2

DECIMAL 3

DEC 3

INTEGER 4

INT 4

SMALLINT 5

FLOAT 6

REAL 7

DOUBLE 8

CHARACTER VARYING 12

CHAR VARYING 12

VARCHAR 12

BIT 14

BIT VARYING 15

BOOLEAN 16

REF 20

BINARY LARGE OBJECT 30

BLOB 30

CHARACTER LARGE OBJECT 40

CLOB 40

96 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 37—Codes used for concise data types (Cont.)

Data Type Code

DATE 91

TIME 92

TIMESTAMP 93

TIME WITH TIME ZONE 94

TIMESTAMP WITH TIME ZONE 95

INTERVAL YEAR 101

INTERVAL MONTH 102

INTERVAL DAY 103

INTERVAL HOUR 104

INTERVAL MINUTE 105

INTERVAL SECOND 106

INTERVAL YEAR TO MONTH 107

INTERVAL DAY TO HOUR 108

INTERVAL DAY TO MINUTE 109

INTERVAL DAY TO SECOND 110

INTERVAL HOUR TO MINUTE 111

INTERVAL HOUR TO SECOND 112

INTERVAL MINUTE TO SECOND 113

Table 38—Codes used with concise datetime data types in SQL/CLI

Concise Data Type Code Data Type Code Datetime Interval Code

91 9 1

92 9 2

93 9 3

94 9 4

95 9 5

Table 39—Codes used with concise interval data types in SQL/CLI

Concise Data Type Code Data Type Code Datetime Interval Code

101 10 1

102 10 2

103 10 3

104 10 4

Call-Level Interface specifications 97

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.14 Other tables associated with CLI

Table 39—Codes used with concise interval data types in SQL/CLI (Cont.)

Concise Data Type Code Data Type Code Datetime Interval Code

105 10 5

106 10 6

107 10 7

108 10 8

109 10 9

110 10 10

111 10 11

112 10 12

113 10 13

Table 40—Concise codes used with datetime data types in SQL/CLI

Datetime Interval Code Concise Code

1 91

2 92

3 93

4 94

5 95

Table 41—Concise codes used with interval data types in SQL/CLI

Datetime Interval Code Code

1 101

2 102

3 103

4 104

5 105

6 106

7 107

8 108

9 109

10 110

11 111

12 112

13 113

98 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.14 Other tables associated with CLI

Table 42—Special parameter values

Value Name Value Data Type

ALL CATALOGS ’%’ CHARACTER(1)

ALL SCHEMAS ’%’ CHARACTER(1)

ALL TYPES ’%’ CHARACTER(1)

Table 43—Column types and scopes used with SpecialColumns

Context Code Indicates

Special Column Type 1 BEST ROWID

Scope of Row Id 0 SCOPE CURRENT ROW

Scope of Row Id 1 SCOPE TRANSACTION

Scope of Row Id 2 SCOPE SESSION

Pseudo Column Flag 0 PSEUDO UNKNOWN

Pseudo Column Flag 1 NOT PSEUDO

Pseudo Column Flag 2 PSEUDO

Call-Level Interface specifications 99

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.15 Data type correspondences

5.15 Data type correspondences

Function
Replaces first paragraph Specify the data type correspondences for SQL data types and host language

types associated with the required parameter mechanisms, as shown in Table 3, ‘‘Supported calling
conventions of SQL/CLI routines by language’’.

Replaces second paragraph In the following tables, let P be <precision>, S be <scale>, L be <length>,
T be <time fractional seconds precision>, and Q be <interval qualifier>.

Tables

Table 44—Data type correspondences for Ada

SQL Data Type Ada Data Type

ARRAY None

ARRAY LOCATOR SQL_STANDARD.INT

BINARY LARGE OBJECT (L) SQL_STANDARD.CHAR, with P’LENGTH of L

BINARY LARGE OBJECT LOCATOR SQL_STANDARD.INT

BIT (L) SQL_STANDARD.BIT, with P’LENGTH of L

BIT VARYING (L) None

BOOLEAN SQL_STANDARD.BOOLEAN

CHARACTER (L) SQL_STANDARD.CHAR, with P’LENGTH of L

CHARACTER LARGE OBJECT (L) SQL_STANDARD.CHAR, with P’LENGTH of L

CHARACTER LARGE OBJECT
LOCATOR

SQL_STANDARD.INT

CHARACTER VARYING (L) None

DATE None

DECIMAL(P,S) None

DOUBLE PRECISION SQL_STANDARD.DOUBLE_PRECISION

FLOAT(P) None

INTEGER SQL_STANDARD.INT

INTERVAL(Q) None

NUMERIC(P,S) None

REAL SQL_STANDARD.REAL

REF SQL_STANDARD.CHAR with P’LENGTH of L

ROW None

SMALLINT SQL_STANDARD.SMALLINT

TIME(T) None

TIMESTAMP(T) None

100 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.15 Data type correspondences

Table 44—Data type correspondences for Ada (Cont.)

SQL Data Type Ada Data Type

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR SQL_STANDARD.INT

Call-Level Interface specifications 101

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.15 Data type correspondences

Table 45—Data type correspondences for C

SQL Data Type C Data Type

ARRAY None

ARRAY LOCATOR long

BINARY LARGE OBJECT (L) char, with length L

BINARY LARGE OBJECT LOCATOR long

BIT (L) char, with length X2

BIT VARYING (L) None

BOOLEAN short

CHARACTER (L) char, with length (L+1)*k1

CHARACTER LARGE OBJECT (L) char, with length (L+1)*k1

CHARACTER LARGE OBJECT
LOCATOR

long

CHARACTER VARYING (L) char, with length (L+1)*k1

DATE None

DECIMAL(P,S) None

DOUBLE PRECISION double

FLOAT(P) None

INTEGER long

INTERVAL(Q) None

NUMERIC(P,S) None

REAL float

REF char, with length L

ROW None

SMALLINT short

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR long

1k is the length in units of C char of the largest character in the character set associated with the SQL data type.
2The length X of the character data type corresponding with SQL data type BIT(L) is the smallest integer not less than
the quotient of the division L/B, where B is the implementation-defined number of bits contained in a character of the
host language.

102 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.15 Data type correspondences

Table 46—Data type correspondences for COBOL

SQL Data Type COBOL Data Type

ARRAY None

ARRAY LOCATOR PICTURE S9(PI) USAGE BINARY, where PI is
implementation-defined

BINARY LARGE OBJECT (L) alphanumeric, with length L

BINARY LARGE OBJECT LOCATOR PICTURE S9(PI) USAGE BINARY, where PI is
implementation-defined

BIT (L) alphanumeric, with length X1

BIT VARYING (L) None

BOOLEAN PICTURE X

CHARACTER (L) alphanumeric, with length L

CHARACTER LARGE OBJECT (L) alphanumeric, with length L

CHARACTER LARGE OBJECT
LOCATOR

PICTURE S9(PI) USAGE BINARY, where PI is
implementation-defined

CHARACTER VARYING (L) None

DATE None

DECIMAL(P,S) None

DOUBLE PRECISION None

FLOAT(P) None

INTEGER PICTURE S9(PI) USAGE BINARY, where PI is
implementation-defined

INTERVAL(Q) None

NUMERIC(P,S) USAGE DISPLAY SIGN LEADING SEPARATE, with
PICTURE as specified2

REAL None

REF alphanumeric, with length L

ROW None

SMALLINT PICTURE S9(SPI) USAGE BINARY, where SPI is
implementation-defined

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

1The length of a character type corresponding with SQL BIT(L) is one more than the smallest integer not less than the
quotient of the division L/B, where B is the implementation-defined number of bits contained in one character of the
host language.
2Case:

a) If S=P, then a PICTURE with an ’S’ followed by a ’V’ followed by P ’9’s.
b) If P>S>0, then a PICTURE with an ’S’ followed by P–S ’9’s followed by a ’V’ followed by S ’9’s.
c) If S=0, then a PICTURE with an ’S’ followed by P ’9’s optionally followed by a ’V’.

(Continued on next page)

Call-Level Interface specifications 103

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.15 Data type correspondences

Table 46—Data type correspondences for COBOL (Cont.)

SQL Data Type COBOL Data Type

USER-DEFINED TYPE LOCATOR PICTURE S9(PI) USAGE BINARY, where PI is
implementation-defined

104 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.15 Data type correspondences

Table 47—Data type correspondences for Fortran

SQL Data Type Fortran Data Type

ARRAY None

ARRAY LOCATOR INTEGER

BINARY LARGE OBJECT (L) CHARACTER, with length L

BINARY LARGE OBJECT LOCATOR INTEGER

BOOLEAN LOGICAL

BIT (L) CHARACTER, with length X1

BIT VARYING (L) None

CHARACTER (L) CHARACTER, with length L

CHARACTER LARGE OBJECT (L) CHARACTER, with length L

CHARACTER LARGE OBJECT
LOCATOR

INTEGER

CHARACTER VARYING (L) None

DATE None

DECIMAL(P,S) None

DOUBLE PRECISION DOUBLE PRECISION

FLOAT(P) None

INTEGER INTEGER

INTERVAL(Q) None

NUMERIC(P,S) None

REAL REAL

REF CHARACTER, with length L

ROW None

SMALLINT None

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR INTEGER

1The length X of the character data type corresponding with SQL data type BIT(L) is the smallest integer not less than
the quotient of the division L/B, where B is the implementation-defined number of bits contained in a character of the
host language.

Call-Level Interface specifications 105

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.15 Data type correspondences

Table 48—Data type correspondences for MUMPS

SQL Data Type MUMPS Data Type

ARRAY None

ARRAY LOCATOR character

BINARY LARGE OBJECT (L) character

BINARY LARGE OBJECT LOCATOR character

BIT (L) None

BIT VARYING (L) None

BOOLEAN None

CHARACTER (L) None

CHARACTER LARGE OBJECT (L) character

CHARACTER LARGE OBJECT
LOCATOR

character

CHARACTER VARYING (L) character with maximum length L

DATE None

DECIMAL(P,S) character

DOUBLE PRECISION None

FLOAT(P) None

INTEGER character

INTERVAL(Q) None

NUMERIC(P,S) character

REAL character

REF character

ROW None

SMALLINT None

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR character

106 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
5.15 Data type correspondences

Table 49—Data type correspondences for Pascal

SQL Data Type Pascal Data Type

ARRAY None

ARRAY LOCATOR INTEGER

BIT (L), 1 � L � B1 CHAR

BIT (L), B1 < L PACKED ARRAY[LB1] OF CHAR

BIT VARYING (L) None

BINARY LARGE OBJECT (L), L > 1 PACKED ARRAY[1..L] OF CHAR

BINARY LARGE OBJECT LOCATOR INTEGER

BOOLEAN BOOLEAN

CHARACTER (1) CHAR

CHARACTER (L), L > 1 PACKED ARRAY[1..L] OF CHAR

CHARACTER LARGE OBJECT (L), L >
1

PACKED ARRAY[1..L] OF CHAR

CHARACTER LARGE OBJECT
LOCATOR

INTEGER

CHARACTER VARYING (L) None

DATE None

DECIMAL(P,S) None

DOUBLE PRECISION None

FLOAT(P) None

INTEGER INTEGER

INTERVAL(Q) None

NUMERIC(P,S) None

REAL REAL

REF, L > 1 PACKED ARRAY[1..L] OF CHAR

ROW None

SMALLINT None

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR INTEGER

1The length LB of the character data type corresponding with SQL data type BIT(L) is the smallest integer not less
than the quotient of the division L/B, where B is the implementation-defined number of bits contained in a character of
the host language.

Call-Level Interface specifications 107

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
5.15 Data type correspondences

Table 50—Data type correspondences for PL/I

SQL Data Type PL/I Data Type

ARRAY None

ARRAY LOCATOR FIXED BINARY(PI), where PI is implementation-defined

BINARY LARGE OBJECT (L) CHARACTER VARYING(L)

BINARY LARGE OBJECT LOCATOR FIXED BINARY(PI), where PI is implementation-defined

BIT (L) BIT(L)

BIT VARYING (L) BIT VARYING (L)

BOOLEAN BIT(1)

CHARACTER (L) CHARACTER(L)

CHARACTER LARGE OBJECT (L) CHARACTER VARYING(L)

CHARACTER LARGE OBJECT
LOCATOR

FIXED BINARY(PI), where PI is implementation-defined

CHARACTER VARYING (L) CHARACTER VARYING(L)

DATE None

DECIMAL(P,S) FIXED DECIMAL(P,S)

DOUBLE PRECISION None

FLOAT(P) FLOAT BINARY (P)

INTEGER FIXED BINARY(PI), where PI is implementation-defined

INTERVAL(Q) None

NUMERIC(P,S) None

REAL None

REF CHARACTER VARYING (L)

ROW None

SMALLINT FIXED BINARY(SPI), where SPI is implementation-defined

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE LOCATOR None

USER-DEFINED TYPE FIXED BINARY(PI), where PI is implementation-defined

108 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

6 SQL/CLI routines

Subclause 5.1, ‘‘<CLI routine>’’, defines a generic CLI routine. This Subclause describes the individ-
ual CLI routines in alphabetical order.

For convenience, the variable <CLI name prefix> is omitted and the <CLI generic name> is used for
the descriptions. For presentation purposes (and purely arbitrarily), the routines are presented as
functions rather than as procedures.

6.1 AllocConnect

Function
Allocate an SQL-connection and assign a handle to it.

Definition

AllocConnect (
EnvironmentHandle IN INTEGER,
ConnectionHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) AllocHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE, with
EH as the value of InputHandle and with ConnectionHandle as OutputHandle.

SQL/CLI routines 109

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.2 AllocEnv

6.2 AllocEnv

Function
Allocate an SQL-environment and assign a handle to it.

Definition

AllocEnv (
EnvironmentHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) AllocHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE, with
zero as the value of InputHandle, and with EnvironmentHandle as OutputHandle.

110 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.3 AllocHandle

6.3 AllocHandle

Function
Allocate a resource and assign a handle to it.

Definition

AllocHandle (
HandleType IN SMALLINT,
InputHandle IN INTEGER,
OutputHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let IH be the value of InputHandle.

2) If HT is not one of the code values in Table 13, ‘‘Codes used for handle types’’, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i) If the maximum number of SQL-environments that can be allocated at one time has
already been reached, then an exception condition is raised: CLI-specific condition —
limit on number of handles exceeded. A skeleton SQL-environment is allocated and is
assigned a unique value that is returned in OutputHandle.

ii) Case:

1) If the memory requirements to manage an SQL-environment cannot be satisfied,
then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — memory allocation error.
NOTE 13 – No diagnostic information is generated in this case as there is no valid envi-
ronment handle that can be used in order to obtain diagnostic information.

2) If the resources to manage an SQL-environment cannot be allocated for implementation-
defined reasons, then an implementation-defined exception condition is raised.
A skeleton SQL-environment is allocated and is assigned a unique value that is
returned in OutputHandle.

3) Otherwise, the resources to manage an SQL-environment are allocated and are
referred to as an allocated SQL-environment. The allocated SQL-environment is
assigned a unique value that is returned in OutputHandle.

b) If HT indicates CONNECTION HANDLE, then:

i) If IH does not identify an allocated SQL-environment or if it identifies an allocated
skeleton SQL-environment, then OutputHandle is set to zero and an exception condition
is raised: CLI-specific condition — invalid handle.

ii) Let E be the allocated SQL-environment identified by IH.

SQL/CLI routines 111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.3 AllocHandle

iii) The diagnostics area associated with E is emptied.

iv) If the maximum number of SQL-connections that can be allocated at one time has
already been reached, then OutputHandle is set to zero and an exception condition is
raised: CLI-specific condition — limit on number of handles exceeded.

v) Case:

1) If the memory requirements to manage an SQL-connection cannot be satisfied,
then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — memory allocation error.

2) If the resources to manage an SQL-connection cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined
exception condition is raised.

3) Otherwise, the resources to manage an SQL-connection are allocated and are re-
ferred to as an allocated SQL-connection. The allocated SQL-connection is associated
with E and is assigned a unique value that is returned in OutputHandle.

c) If HT indicates STATEMENT HANDLE, then:

i) If IH does not identify an allocated SQL-connection, then OutputHandle is set to zero
and an exception condition is raised: CLI-specific condition — invalid handle.

ii) Let C be the allocated SQL-connection identified by IH.

iii) The diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set
to zero and an exception condition is raised: connection exception — connection does not
exist. Otherwise, let EC be the established SQL-connection associated with C.

v) If the maximum number of SQL-statements that can be allocated at one time has
already been reached, then OutputHandle is set to zero and an exception condition is
raised: CLI-specific condition — limit on number of handles exceeded.

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3,
‘‘Implicit set connection’’, are applied to EC as the dormant SQL-connection.

vii) If the memory requirements to manage an SQL-statement cannot be satisfied, then
OutputHandle is set to zero and an exception condition is raised: CLI-specific condition
— memory allocation error.

viii) If the resources to manage an SQL-statement cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined
exception condition is raised.

ix) The resources to manage an SQL-statement are allocated and are referred to as an
allocated SQL-statement. The allocated SQL-statement is associated with C and is
assigned a unique value that is returned in OutputHandle.

x) The following CLI descriptor areas are automatically allocated and associated with the
allocated SQL-statement:

1) An implementation parameter descriptor.

112 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.3 AllocHandle

2) An implementation row descriptor.

3) An application parameter descriptor.

4) An application row descriptor.

For each of these descriptor areas, the ALLOC_TYPE field is set to indicate AUTOMATIC.
For each of these descriptor areas, fields with non-blank entries in Table 23, ‘‘SQL/CLI
descriptor field default values’’, are set to the specified default values. All other fields in
the CLI item descriptor areas are initially undefined.

xi) The automatically allocated application parameter descriptor becomes the current ap-
plication parameter descriptor for the allocated SQL-statement and the automatically
allocated application row descriptor becomes the current application row descriptor for
the allocated SQL-statement.

d) If HT indicates DESCRIPTOR HANDLE, then:

i) If IH does not identify an allocated SQL-connection then OutputHandle is set to zero
and an exception condition is raised: CLI-specific condition — invalid handle.

ii) Let C be the allocated SQL-connection identified by IH.

iii) The diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set
to zero and an exception condition is raised: connection exception — connection does not
exist. Otherwise, let EC be the established SQL-connection associated with C.

v) If the maximum number of CLI descriptor areas that can be allocated at one time has
already been reached, then OutputHandle is set to zero and an exception condition is
raised: CLI-specific condition — limit on number of handles exceeded.

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3,
‘‘Implicit set connection’’, are applied to EC as the dormant SQL-connection.

vii) Case:

1) If the memory requirements to manage a CLI descriptor area cannot be satisfied,
then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — memory allocation error.

2) If the resources to manage a CLI descriptor area cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined
exception condition is raised.

3) Otherwise, the resources to manage a CLI descriptor area are allocated and are
referred to as an allocated CLI descriptor area. The allocated CLI descriptor area is
associated with C and is assigned a unique value that is returned in OutputHandle.
The ALLOC_TYPE field of the allocated CLI descriptor area is set to indicate USER.
Other fields of the allocated CLI descriptor area are set to the default values for an
ARD specified in Table 23, ‘‘SQL/CLI descriptor field default values’’. Fields in the
CLI item descriptor areas not set to a default value are initially undefined.

SQL/CLI routines 113

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.4 AllocStmt

6.4 AllocStmt

Function
Allocate an SQL-statement and assign a handle to it.

Definition

AllocStmt (
ConnectionHandle IN INTEGER,
StatementHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) AllocHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE, with CH
as the value of InputHandle, and with StatementHandle as OutputHandle.

114 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.5 BindCol

6.5 BindCol

Function
Describe a target specification or array of target specifications.

Definition

BindCol (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
TargetType IN SMALLINT,
TargetValue DEFOUT ANY,
BufferLength IN INTEGER,
StrLen_or_Ind DEFOUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let HV be the value of the handle of the current application row descriptor for S.

3) Let ARD be the allocated CLI descriptor area identified by HV and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

4) Let CN be the value of ColumnNumber.

5) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

6) If CN is greater than N, then

Case:

a) If the memory requirements to manage the larger ARD cannot be satisfied, then an excep-
tion condition is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of ARD is set to CN and the COUNT field of
ARD is incremented by 1 (one).

7) Let TT be the value of TargetType.

8) Let HL be the standard programming language of the invoking host program. Let operative
data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, ‘‘Data type correspondences’’. Refer to the two columns of this table as the SQL
data type column and the host data type column.

9) If either of the following is true, then an exception condition is raised: CLI-specific condition —
invalid data type in application descriptor.

a) TT does not indicate DEFAULT and is not one of the code values in Table 8, ‘‘Codes used for
application data types in SQL/CLI’’.

SQL/CLI routines 115

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.5 BindCol

b) TT is one of the code values in Table 8, ‘‘Codes used for application data types in SQL/CLI’’,
but the row that contains the corresponding SQL data type in the SQL data type column of
the operative data type correspondence table contains ’None’ in the host data type column.

10) Let BL be the value of BufferLength.

11) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition —
invalid string length or buffer length.

12) Let IDA be the item descriptor area of ARD specified by CN.

13) If an exception condition is raised in any of the following General Rules, then the TYPE,
OCTET_LENGTH, LENGTH, DATA_POINTER, INDICATOR_POINTER, and OCTET_
LENGTH_POINTER fields of IDA are set to implementation-dependent values and the value of
COUNT for ARD is unchanged.

14) The data type of the <target specification> described by IDA is set to TT.

15) The length in octets of the <target specification> described by IDA is set to BL.

16) The length in characters or positions of the <target specification> described by IDA is set to the
maximum number of characters or positions that may be represented by the data type TT.

17) The address of the host variable or array of host variables that is to receive a value or values
for the <target specification> or <target specification>s described by IDA is set to the address of
TargetValue. If TargetValue is a null pointer, then the address is set to 0 (zero).

18) The address of the <indicator variable> or array of <indicator variable>s associated with the
host variable or host variables addressed by the DATA_POINTER field of IDA is set to the
address of StrLen_or_Ind.

19) The address of the host variable or array of host variables that is to receive the returned length
(in characters) of the <target specification> or <target specification>s described by IDA is set to
the address of StrLen_or_Ind.

20) Restrictions on the differences allowed between ARD and IRD are implementation-defined,
except as specified in the General Rules of Subclause 5.8, ‘‘Implicit FETCH USING clause’’, and
the General Rules of Subclause 6.30, ‘‘GetData’’.

116 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.6 BindParameter

6.6 BindParameter

Function
Describe a dynamic parameter specification and its value.

Definition

BindParameter (
StatementHandle IN INTEGER,
ParameterNumber IN SMALLINT,
InputOutputMode IN SMALLINT,
ValueType IN SMALLINT,
ParameterType IN SMALLINT,
ColumnSize IN INTEGER,
DecimalDigits IN SMALLINT,
ParameterValue DEF ANY,
BufferLength IN INTEGER,
StrLen_or_Ind DEF INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let HV be the value of the handle of the current application parameter descriptor for S.

3) Let APD be the allocated CLI descriptor area identified by HV and let N2 be the value of the
TOP_LEVEL_COUNT field of APD.

4) Let PN be the value of ParameterNumber.

5) If PN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

6) Let IOM be the value of InputOutputMode.

7) If IOM is not one of the code values in Table 11, ‘‘Codes associated with <parameter mode> in
SQL/CLI’’, then an exception condition is raised: CLI-specific condition — invalid parameter
mode.

8) Let VT be the value of ValueType.

9) Let HL be the standard programming language of the invoking host program. Let operative
data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, ‘‘Data type correspondences’’. Refer to the two columns of the operative data
type correspondence table as the SQL data type column and the host data type column.

10) If any of the following are true, then an exception condition is raised: CLI-specific condition —
invalid data type in application descriptor.

a) VT does not indicate DEFAULT and is not one of the code values in Table 8, ‘‘Codes used for
application data types in SQL/CLI’’.

SQL/CLI routines 117

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.6 BindParameter

b) VT is one of the code values in Table 8, ‘‘Codes used for application data types in SQL/CLI’’,
but the row that contains the corresponding SQL data type in the SQL data type column of
the operative data type correspondence table contains ’None’ in the host data type column.

11) Let PT be the value of ParameterType.

12) If PT is not one of the code values in Table 37, ‘‘Codes used for concise data types’’, then an
exception condition is raised: CLI-specific condition — invalid data type.

13) Let IPD be the implementation parameter descriptor associated with S and let N1 be the value
of the TOP_LEVEL_COUNT field of IPD.

14) If PN is greater than N1, then

Case:

a) If the memory requirements to manage the larger IPD cannot be satisfied, then an exception
condition is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of IPD is set to PN and the COUNT field of APD
is incremented by 1 (one).

15) If PN is greater than N2, then

Case:

a) If the memory requirements to manage the larger APD cannot be satisfied, then an excep-
tion condition is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of APD is set to PN and the COUNT field of APD
is incremented by 1 (one).

16) Let IDA1 be the item descriptor area of IPD specified by PN.

17) Let CS be the value of ColumnSize, let DD be the value of DecimalDigits, and let BL be the
value of BufferLength.

18) Case:

a) If PT is one of the values listed in Table 38, ‘‘Codes used with concise datetime data types in
SQL/CLI’’, then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to
a code shown in the Data Type Code column of Table 38, ‘‘Codes used with concise
datetime data types in SQL/CLI’’, indicating the concise data type code.

ii) The datetime interval code of the <dynamic parameter specification> described by IDA1
is set to a code shown in the Datetime Interval Code column in Table 38, ‘‘Codes used
with concise datetime data types in SQL/CLI’’, indicating the concise data type code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1 is
set to CS.

iv) Case:

1) If the datetime interval code of the <dynamic parameter specification> indicates
DATE, then the time fractional seconds precision of the <dynamic parameter specifi-
cation> described by IDA1 is set to zero.

118 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.6 BindParameter

2) Otherwise, the time fractional seconds precision of the <dynamic parameter specifi-
cation> described by IDA1 is set to DD.

b) If PT is one of the values listed in Table 39, ‘‘Codes used with concise interval data types in
SQL/CLI’’, then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to a
code shown in the Data Type Code column of Table 39, ‘‘Codes used with concise interval
data types in SQL/CLI’’, indicating the concise data type code.

ii) The datetime interval code of the <dynamic parameter specification> described by IDA1
is set to a code shown in the Datetime Interval Code column in Table 39, ‘‘Codes used
with concise interval data types in SQL/CLI’’, indicating the concise data type code. Let
DIC be that code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1 is
set to CS.

iv) Let LS be 0 (zero).

v) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null
pointer, and BL is greater than zero, then:

1) Let PV be the value of ParameterValue.

2) Let FC be the value of

SUBSTR (PV FROM 1 FOR 1)

3) If FC is <plus sign> or <minus sign>, then let LS be 1 (one).

vi) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval fractional seconds precision of the <dynamic parameter
specification> described by IDA1 is set to DD. If DD is zero, then let DP be zero;
otherwise, let DP be one.

2) Otherwise, the interval fractional seconds precision of the <dynamic parameter
specification> described by IDA1 is set to zero.

vii) Case:

1) If DIC indicates YEAR TO MONTH, DAY TO HOUR, HOUR TO MINUTE or
MINUTE TO SECOND, then let IL be 3.

2) If DIC indicates DAY TO MINUTE or HOUR TO SECOND, then let IL be 6.

3) If DIC indicates DAY TO SECOND, then let IL be 9.

4) Otherwise, let IL be zero.

viii) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE
TO SECOND, then the interval leading field precision of the <dynamic parameter
specification> described by IDA1 is set to CS�IL�DD�DP�LS.

SQL/CLI routines 119

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.6 BindParameter

2) Otherwise, the interval leading field precision of the <dynamic parameter specifica-
tion> described by IDA1 is set to CS�IL�LS.

c) Otherwise:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to PT.

ii) If PT indicates a character string type, then the length (in characters) of the <dynamic
parameter specification> described by IDA1 is set to CS.

iii) If PT indicates a bit type, then the length (in bits) of the <dynamic parameter specifica-
tion> described by IDA1 is set to CS.

iv) If PT indicates a numeric type, then the precision of the <dynamic parameter specifica-
tion> described by IDA1 is set to CS.

v) If PT indicates a numeric type, then the scale of the <dynamic parameter specification>
described by IDA1 is set to DD.

19) Let IDA2 be the item descriptor area of APD specified by PN.

20) If an exception condition is raised in any of the following General Rules, then:

a) The TYPE, LENGTH, PRECISION, and SCALE fields of IDA1 are set to implementation-
dependent values and the values of the TOP_LEVEL_COUNT and COUNT fields of IPD are
unchanged.

b) The TYPE, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER
fields of IDA2 are set to implementation-dependent values and the values of the TOP_
LEVEL_COUNT and COUNT fields of APD are unchanged.

21) The parameter mode of the <dynamic parameter specification> described by IDA2 is set to IOM.

22) The data type of the <dynamic parameter specification> described by IDA2 is set to VT.

23) The address of the host variable that is to provide a value for the <dynamic parameter specifi-
cation> value described by IDA2 is set to the address of ParameterValue. If ParameterValue is
a null pointer, then the address is set to 0 (zero).

24) The address of the <indicator variable> associated with the host variable addressed by the
DATA_POINTER field of IDA2 is set to the address of StrLen_or_Ind.

25) The address of the host variable that is to define the length (in octets) of the <dynamic parame-
ter specification> value described by IDA2 is set to the address of StrLen_or_Ind.

26) If IOM is PARAM MODE OUT or PARAM MODE INOUT and BL is not greater than zero, then
an exception condition is raised: CLI-specific condition — invalid string length or buffer length.

27) The length in octets of the <dynamic parameter specification> value described by IDA2 is set to
BL.

28) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pointer,
and BL is greater than 0 (zero), then let PV be the value of the <dynamic parameter specifica-
tion> value described by IDA2.

120 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.6 BindParameter

29) Restrictions on the differences allowed between APD and IPD are implementation-defined,
except as specified in the General Rules of Subclause 5.6, ‘‘Implicit EXECUTE USING and
OPEN USING clauses’’, Subclause 5.7, ‘‘Implicit CALL USING clause’’, and the General Rules
of Subclause 6.49, ‘‘ParamData’’.

SQL/CLI routines 121

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.7 Cancel

6.7 Cancel

Function
Attempt to cancel execution of a CLI routine.

Definition

Cancel (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is a CLI routine concurrently operating on S, then:

i) Let RN be the routine name of the concurrent CLI routine.

ii) Let C be the allocated SQL-connection with which S is associated.

iii) Let EC be the established SQL-connection associated with C and let SS be the SQL-
server associated with EC.

iv) SS is requested to cancel the execution of RN.

v) If SS rejects the cancellation request, then an exception condition is raised: CLI-specific
condition — server declined the cancellation request.

vi) If SS accepts the cancellation request, then a completion condition is raised: successful
completion.
NOTE 14 – Acceptance of the request does not guarantee that the execution of RN will be
canceled.

vii) If SS succeeds in canceling the execution of RN, then an exception condition is raised for
RN: CLI-specific condition — operation canceled.
NOTE 15 – Canceling the execution of RN does not destroy any diagnostic information already
generated by its execution.

NOTE 16 – The method of passing control between concurrently operating programs is implementation-
dependent.

b) If there is a deferred parameter number associated with S, then:

i) The diagnostics area associated with S is emptied.

ii) The deferred parameter number is removed from association with S.

iii) Any statement source associated with S is removed from association with S.

c) Otherwise:

i) The diagnostics area associated with S is emptied.

122 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.7 Cancel

ii) A completion condition is raised: successful completion.

SQL/CLI routines 123

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.8 CloseCursor

6.8 CloseCursor

Function
Close a cursor.

Definition

CloseCursor (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error.

3) Case:

a) If there is no open cursor associated with S, then an exception condition is raised: invalid
cursor state.

b) Otherwise:

i) The open cursor associated with S is placed in the closed state and its copy of the select
source is destroyed.

ii) Any fetched row associated with S is removed from association with S.

124 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.9 ColAttribute

6.9 ColAttribute

Function
Get a column attribute.

Definition

ColAttribute (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
FieldIdentifier IN SMALLINT,
CharacterAttribute OUT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength OUT SMALLINT,
NumericAttribute OUT INTEGER)
RETURNS SMALLINT

where L is the value of BufferLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared or executed statement associated with S, then an exception condition is
raised: CLI-specific condition — function sequence error.

3) Let IRD be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of IRD.

4) Let FI be the value of FieldIdentifier.

5) If FI is not one of the code values in Table 20, ‘‘Codes used for descriptor fields’’, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

6) Let CN be the value of ColumnNumber.

7) Let TYPE be the value of the Type column in the row of Table 20, ‘‘Codes used for descriptor
fields’’, that contains FI.

8) Let FDT be the value of the Data Type column in the row of Table 6, ‘‘Fields in SQL/CLI row
and parameter descriptor areas’’, whose Field column contains the value of the Field column in
the row of Table 20, ‘‘Codes used for descriptor fields’’, that contains FI.

9) If TYPE is ’ITEM’, then:

a) If N is zero, then an exception condition is raised: dynamic SQL error — prepared statement
not a cursor specification.

b) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

c) If CN is greater than N, then a completion condition is raised: no data.

SQL/CLI routines 125

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.9 ColAttribute

d) Let IDA be the item descriptor area of IRD specified by the CN-th descriptor area in IRD for
which LEVEL is 0 (zero).

e) Let DT and DIC be the values of the TYPE and DATETIME_INTERVAL_CODE fields,
respectively, for IDA.

10) If TYPE is ’HEADER’, then:

a) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

b) If CN is greater than N, then a completion condition is raised: no data.

c) Let CN be 0 (zero).

11) Let DH be the handle that identifies IRD.

12) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which
LEVEL is 0 (zero).

Case:

a) If FDT indicates character string, then let the information be retrieved from IRD by implic-
itly executing GetDescField as follows:

GetDescField (DH, RI, FI,
CharacterAttribute, BufferLength, StringLength)

b) Otherwise,

Case:

i) If FI indicates TYPE, then:

1) If DT indicates a <datetime type>, then NumericAttribute is set to the concise code
value corresponding to the datetime interval code value DIC as defined in Table 40,
‘‘Concise codes used with datetime data types in SQL/CLI’’.

2) If DT indicates INTERVAL, then NumericAttribute is set to the concise code value
corresponding to the datetime interval code value DIC as defined in Table 41,
‘‘Concise codes used with interval data types in SQL/CLI’’.

3) Otherwise, NumericAttribute is set to DT.

ii) Otherwise, let the information be retrieved from IRD by implicitly executing GetDescField
as follows:

GetDescField (DH, RI, FI,
NumericAttribute, BufferLength, StringLength)

126 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.10 ColumnPrivileges

6.10 ColumnPrivileges

Function
Return a result set that contains a list of the privileges held on the columns whose names adhere to
the requested pattern or patterns within a single specified table stored in the information schemas
of the connected data source.

Definition

ColumnPrivileges (
StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
SchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
TableName IN CHARACTER(L3),
NameLength3 IN SMALLINT,
ColumnName IN CHARACTER(L4),
NameLength4 IN SMALLINT)
RETURNS SMALLINT

where L1, L2, L3, and L4 are determined by the values of NameLength1, NameLength2,
NameLength3, and NameLength4, respectively and each of L1, L2, L3, and L4 has a maximum
value equal to the implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let COLUMN_PRIVILEGES_QUERY be a table, with the definition:

CREATE TABLE COLUMN_PRIVILEGES_QUERY (
TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
GRANTOR CHARACTER VARYING(128),
GRANTEE CHARACTER VARYING(128) NOT NULL,
PRIVILEGE CHARACTER VARYING(128) NOT NULL,
IS_GRANTABLE CHARACTER VARYING(3))

SQL/CLI routines 127

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.10 ColumnPrivileges

6) COLUMN_PRIVILEGES_QUERY contains a row for each privilege in SS’s Information Schema
COLUMN_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

b) Case:

i) If the value of SUP is 1 (one), then COLUMN_PRIVILEGES_QUERY contains a row for
each privilege in SS’s Information Schema COLUMN_PRIVILEGES view.

ii) Otherwise, COLUMN_PRIVILEGES_QUERY contains a row for each privilege in SS’s
Information Schema COLUMN_PRIVILEGES view that meets implementation-defined
authorization criteria.

7) For each row of COLUMN_PRIVILEGES_QUERY:

a) If the implementation does not support catalog names, then TABLE_CAT is the null value;
otherwise, the value of TABLE_CAT in COLUMN_PRIVILEGES_QUERY is the value of the
TABLE_CATALOG column in the COLUMN_PRIVILEGES view in the information schema.

b) The value of TABLE_SCHEM in COLUMN_PRIVILEGES_QUERY is the value of the
TABLE_SCHEMA column in the COLUMN_PRIVILEGES view.

c) The value of TABLE_NAME in COLUMN_PRIVILEGES_QUERY is the value of the
TABLE_NAME column in the COLUMN_PRIVILEGES view.

d) The value of COLUMN_NAME in COLUMN_PRIVILEGES_QUERY is the value of the
COLUMN_NAME column in the COLUMN_PRIVILEGES view.

e) The value of GRANTOR in COLUMN_PRIVILEGES_QUERY is the value of the GRANTOR
column in the COLUMN_PRIVILEGES view.

f) The value of GRANTEE in COLUMN_PRIVILEGES_QUERY is the value of the GRANTEE
column in the COLUMN_PRIVILEGES view.

g) The value of PRIVILEGE in COLUMN_PRIVILEGES_QUERY is the value of the
PRIVILEGE_TYPE column in the COLUMN_PRIVILEGES view.

h) The value of IS_GRANTABLE in COLUMN_PRIVILEGES_QUERY is the value of the IS_
GRANTABLE column in the COLUMN_PRIVILEGES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3,
and NameLength4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of CatalogName, SchemaName,
TableName, and ColumnName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type
from Table 28, ‘‘Codes and data types for implementation information’’, is ’Y’, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

128 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.10 ColumnPrivileges

b) If SchemaName is a null pointer or if ColumnName is a null pointer, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

11) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition —
invalid use of null pointer.

12) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then
NL2 is set to zero. If TableName is a null pointer, then NL3 is set to zero. If ColumnName is a
null pointer, then NL4 is set to zero.

13) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of CatalogName.

14) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of SchemaName.

15) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of TableName.

16) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName
that precede the implementation-defined null character that terminates a C character string.

SQL/CLI routines 129

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.10 ColumnPrivileges

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let COLVAL be the first L octets of ColumnName.

17) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(CATVAL) FROM 2

FOR CHAR_LENGTH(TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

TABLE_CAT = ’TEMPSTR’ AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER(’CATVAL’) AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

a) SUBSTRING(TRIM(SCHVAL) FROM 2

FOR CHAR_LENGTH(TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = ’TEMPSTR’ AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER(’SCHVAL’) AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

130 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.10 ColumnPrivileges

Case:

A) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(TBLVAL) FROM 2

FOR CHAR_LENGTH(TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = ’TEMPSTR’ AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER(’TBLVAL’) AND

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(COLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(COLVAL)
FROM CHAR_LENGTH(TRIM(COLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(COLVAL) FROM 2

FOR CHAR_LENGTH(TRIM(COLVAL)) - 2)

and let COLSTR be the character string:

COLUMN_NAME = ’TEMPSTR’

B) Otherwise, let COLSTR be the character string:

UPPER(COLUMN_NAME) = UPPER(’COLVAL’)

b) Otherwise,

i) Let SPC be the Code value from Table 28, ‘‘Codes and data types for implementation
information’’, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

TABLE_CAT = ’CATVAL’ AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

TABLE_SCHEM = ’SCHVAL’ AND

SQL/CLI routines 131

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.10 ColumnPrivileges

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

TABLE_NAME = ’TBLVAL’ AND

vi) If the value of NL4 is zero, then let COLSTR be a zero-length string. Otherwise, let
COLSTR be the character string:

COLUMN_NAME LIKE ’COLVAL’ ESCAPE ’ESC’ AND

18) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || COLSTR || ’ ’ || 1=1

19) Let STMT be the character string:

SELECT *
FROM COLUMN_PRIVILEGES_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, PRIVILEGE

20) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

132 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.11 Columns

6.11 Columns

Function
Based on the specified selection criteria, return a result set that contains information about columns
of tables stored in the information schemas of the connected data source.

Definition

Columns (
StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
SchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
TableName IN CHARACTER(L3),
NameLength3 IN SMALLINT,
ColumnName IN CHARACTER(L4),
NameLength4 IN SMALLINT)
RETURNS SMALLINT

where L1, L2, L3, and L4 are determined by the values of NameLength1, NameLength2,
NameLength3, and NameLength4, respectively, and each of L1, L2, L3, and L4 has a maximum
value equal to the implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let COLUMNS_QUERY be a table, with the definition:

CREATE TABLE COLUMNS_QUERY (
TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
DATA_TYPE SMALLINT NOT NULL,
TYPE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_SIZE INTEGER,
BUFFER_LENGTH INTEGER,
DECIMAL_DIGITS SMALLINT,
NUM_PREC_RADIX SMALLINT,
NULLABLE SMALLINT NOT NULL,
REMARKS CHARACTER VARYING(254),
COLUMN_DEF CHARACTER VARYING(254),
SQL_DATA_TYPE SMALLINT NOT NULL,
SQL_DATETIME_SUB INTEGER,
CHAR_OCTET_LENGTH INTEGER,
ORDINAL_POSITION INTEGER NOT NULL,
IS_NULLABLE CHARACTER VARYING(254),

SQL/CLI routines 133

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.11 Columns

CHAR_SET_CAT CHARACTER VARYING(128),
CHAR_SET_SCHEM CHARACTER VARYING(128),
CHAR_SET_NAME CHARACTER VARYING(128),
COLLATION_CAT CHARACTER VARYING(128),
COLLATION_SCHEM CHARACTER VARYING(128),
COLLATION_NAME CHARACTER VARYING(128),
UDT_CAT CHARACTER VARYING(128),
UDT_SCHEM CHARACTER VARYING(128),
UDT_NAME CHARACTER VARYING(128),
DOMAIN_CAT CHARACTER VARYING(128),
DOMAIN_SCHEM CHARACTER VARYING(128),
DOMAIN_NAME CHARACTER VARYING(128),
SCOPE_CAT CHARACTER VARYING(128),
SCOPE_SCHEM CHARACTER VARYING(128),
SCOPE_NAME CHARACTER VARYING(128),
MAX_CARDINALITY INTEGER,
DTD_IDENTIFIER CHARACTER VARYING(128),
IS_SELF_REF CHARACTER VARYING(128),

UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME))

6) COLUMNS_QUERY contains a row for each column described by SS’s Information Schema
COLUMNS view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

b) Case:

i) If the value of SUP is 1 (one), then COLUMNS_QUERY contains a row for each row
describing a column in SS’s Information Schema COLUMNS view.

ii) Otherwise, COLUMNS_QUERY contains a row for each row describing a column in SS’s
Information Schema COLUMNS view that meets implementation-defined authorization
criteria.

7) For each row of COLUMNS_QUERY:

a) The value of TABLE_CAT in COLUMNS_QUERY is the value of the TABLE_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then TABLE_CAT is
set to the null value.

b) The value of TABLE_SCHEM in COLUMNS_QUERY is the value of the TABLE_SCHEMA
column in the COLUMNS view.

c) The value of TABLE_NAME in COLUMNS_QUERY is the value of the TABLE_NAME
column in the COLUMNS view.

d) The value of COLUMN_NAME in COLUMNS_QUERY is the value of the COLUMN_NAME
column in the COLUMNS view.

e) The value of DATA_TYPE in COLUMNS_QUERY is determined by the values of the DATA_
TYPE and INTERVAL_TYPE columns in the COLUMNS view.

134 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.11 Columns

Case:

i) If the value of DATA_TYPE in the COLUMNS view is ’INTERVAL’, then the value of
DATA_TYPE in COLUMNS_QUERY is the appropriate ’Code’ from Table 37, ‘‘Codes
used for concise data types’’, that matches the interval specified in the INTERVAL_
TYPE column in the COLUMNS view.

ii) Otherwise, the value of DATA_TYPE in COLUMNS_QUERY is the appropriate ’Code’
from Table 37, ‘‘Codes used for concise data types’’, that matches the value specified in
the DATA_TYPE column in the COLUMNS view.

f) The value of TYPE_NAME in COLUMNS_QUERY is an implementation-defined value that
is the character string by which the data type is known at the data source.

g) The value of COLUMN_SIZE in COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is ’CHARACTER’, ’CHARACTER
VARYING’, ’CHARACTER LARGE OBJECT’, or ’BINARY LARGE OBJECT’, then
the value is that of the CHARACTER_MAXIMUM_LENGTH in the same row of the
COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is ’BIT’ or ’BIT VARYING’, then
the value is that of the CHARACTER_MAXIMUM_LENGTH in the same row of the
COLUMNS view.

iii) If the value of DATA_TYPE in the COLUMNS view is ’DECIMAL’ or ’NUMERIC’,
then the value is that of the NUMERIC_PRECISION column in the same row of the
COLUMNS view.

iv) If the value of DATA_TYPE in the COLUMNS view is ’SMALLINT’, ’INTEGER’, ’REAL’,
’DOUBLE PRECISION’, or ’FLOAT’, then the value is implementation-defined.

v) If the value of DATA_TYPE in the COLUMNS view is ’DATE’, ’TIME’, ’TIMESTAMP’,
’TIME WITH TIME ZONE’, or ’TIMESTAMP WITH TIME ZONE’, then the value of
COLUMN_SIZE is that determined by Syntax Rule 33), in Subclause 6.1, "<data type>",
in ISO/IEC 9075-2, where the value of <time fractional seconds precision> is the value
of the DATETIME_PRECISION column in the same row of the COLUMNS view.

vi) If the value of DATA_TYPE in the COLUMNS view is ’INTERVAL’, then the value of
COLUMN_SIZE is that determined by the General Rules of Subclause 10.1, "<interval
qualifier>", in ISO/IEC 9075-2, where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in the
same row of the COLUMNS view.

2) The value of <interval leading field precision> is the value of the INTERVAL_
PRECISION column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the NUMERIC_
PRECISION column in the same row of the COLUMNS view.

vii) If the value of DATA_TYPE in the COLUMNS view is ’REF’, then the value is the length
in octets of the reference type.

viii) Otherwise, the value is implementation-dependent.

SQL/CLI routines 135

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.11 Columns

h) The value of BUFFER_LENGTH in COLUMNS_QUERY is implementation-defined.
NOTE 17 – The purpose of BUFFER_LENGTH in COLUMNS_QUERY is to record the number of
octets transferred for the column with a Fetch routine, a FetchScroll routine, or a GetData routine
when the TYPE field in the application row descriptor indicates DEFAULT. This length excludes any
null terminator.

i) The value of DECIMAL_DIGITS in COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is one of ’DATE’, ’TIME’,
’TIMESTAMP’, ’TIME WITH TIME ZONE’, or ’TIMESTAMP WITH TIME ZONE’, then
the value of DECIMAL_DIGITS in COLUMNS_QUERY is the value of the DATETIME_
PRECISION column in the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is one of ’DECIMAL’, ’INTEGER’,
’NUMERIC’, or ’SMALLINT’, then the value of DECIMAL_DIGITS in COLUMNS_
QUERY is the value of the NUMERIC_SCALE column in the COLUMNS view.

iii) Otherwise, the value of DECIMAL_DIGITS in COLUMNS_QUERY is the null value.

j) The value of NUM_PREC_RADIX in COLUMNS_QUERY is the value of the NUMERIC_
PRECISION_RADIX column in the COLUMNS view.

k) If the value of the IS_NULLABLE column in the COLUMNS view is ’NO’, then the value
of NULLABLE in COLUMNS_QUERY is set to the appropriate ’Code’ for NO NULLS in
Table 26, ‘‘Miscellaneous codes used in CLI’’; otherwise it is set to the appropriate ’Code’ for
NULLABLE from Table 26, ‘‘Miscellaneous codes used in CLI’’.

l) The value of REMARKS in COLUMNS_QUERY is an implementation-defined description of
the column.

m) The value of COLUMN_DEF in COLUMNS_QUERY is the value of the COLUMN_
DEFAULT column in the COLUMNS view.

n) The value of SQL_DATETIME_SUB in COLUMNS_QUERY is determined by the value of
the DATA_TYPE column in the same row of the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate ’Code’ for the
any of the data types ’DATE’, ’TIME’, ’TIMESTAMP’, ’TIME WITH TIME ZONE’, or
’TIMESTAMP WITH TIME ZONE’ from Table 37, ‘‘Codes used for concise data types’’,
then the value is the matching ’Datetime Interval Code’ from Table 37, ‘‘Codes used for
concise data types’’.

ii) If the value of DATA_TYPE in the COLUMNS view is the appropriate ’Code’ for any of
the INTERVAL data types from Table 37, ‘‘Codes used for concise data types’’, then the
value is the matching ’Datetime Interval Code’ from Table 37, ‘‘Codes used for concise
data types’’.

iii) Otherwise, the value is the null value.

o) The value of CHAR_OCTET_LENGTH in COLUMNS_QUERY is the value of the
CHARACTER_OCTET_LENGTH column in the COLUMNS view.

136 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.11 Columns

p) The value of ORDINAL_POSITION in COLUMNS_QUERY is the value of the ORDINAL_
POSITION column in the COLUMNS view.

q) The value of IS_NULLABLE in COLUMNS_QUERY is the value of the IS_NULLABLE
column in the COLUMNS view.

r) The value of SQL_DATA_TYPE in COLUMNS_QUERY is determined by the value of the
DATA_TYPE column in the same row of the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate ’Code’ for
any of the data types ’DATE’, ’TIME’, ’TIMESTAMP’, ’TIME WITH TIME ZONE’, or
’TIMESTAMP WITH TIME ZONE’, from Table 37, ‘‘Codes used for concise data types’’,
then the value is the matching ’Code’ from Table 7, ‘‘Codes used for implementation data
types in SQL/CLI’’.

ii) If the value of DATA_TYPE in the COLUMNS view is the appropriate ’Code’ for any of
the INTERVAL data types from Table 37, ‘‘Codes used for concise data types’’, then the
value is the matching ’Code’ from Table 7, ‘‘Codes used for implementation data types in
SQL/CLI’’.

iii) Otherwise, the value is the same as the value of DATA_TYPE in COLUMNS_QUERY.

s) The value of CHAR_SET_CAT in COLUMNS_QUERY is the value of the CHARACTER_
SET_CATALOG column in the COLUMNS view. If SS does not support catalog names, then
CHAR_SET_CAT is set to the null value.

t) The value of CHAR_SET_SCHEM in COLUMNS_QUERY is the value of the CHARACTER_
SET_SCHEMA column in the COLUMNS view.

u) The value of CHAR_SET_NAME in COLUMNS_QUERY is the value of the CHARACTER_
SET_NAME column in the COLUMNS view.

v) The value of COLLATION_CAT in COLUMNS_QUERY is the value of the COLLATION_
CATALOG column in the COLUMNS view. If SS does not support catalog names, then
COLLATION_CAT is set to the null value.

w) The value of COLLATION _SCHEM in COLUMNS_QUERY is the value of the COLLATION_
SCHEMA column in the COLUMNS view.

x) The value of COLLATION_NAME in COLUMNS_QUERY is the value of the COLLATION_
NAME column in the COLUMNS view.

y) The value of UDT_CAT in COLUMNS_QUERY is the value of the USER_DEFINED_TYPE_
CATALOG column in the COLUMNS view. If SS does not support catalog names, then
UDT_CAT is set to the null value.

z) The value of UDT_SCHEM in COLUMNS_QUERY is the value of the USER_DEFINED_
TYPE_SCHEMA column in the COLUMNS view.

aa) The value of UDT_NAME in COLUMNS_QUERY is the value of the USER_DEFINED_
TYPE_NAME column in the COLUMNS view.

bb) The value of DOMAIN_CAT in COLUMNS_QUERY is the value of the DOMAIN_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then DOMAIN_CAT
is set to the null value.

SQL/CLI routines 137

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.11 Columns

cc) The value of DOMAIN_SCHEM in COLUMNS_QUERY is the value of the DOMAIN_
SCHEMA column in the COLUMNS view.

dd) The value of DOMAIN_NAME in COLUMNS_QUERY is the value of the DOMAIN_NAME
column in the COLUMNS view.

ee) The value of SCOPE_CAT in COLUMNS_QUERY is the value of the SCOPE_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then SCOPE_CAT is
set to the null value.

ff) The value of SCOPE_SCHEM in COLUMNS_QUERY is the value of the SCOPE_SCHEMA
column in the COLUMNS view.

gg) The value of SCOPE_NAME in COLUMNS_QUERY is the value of the SCOPE_NAME
column in the COLUMNS view.

hh) The value of MAX_CARDINALITY in COLUMNS_QUERY is the value of the MAXIMUM_
CARDINALITY column in the COLUMNS view.

ii) The value of DTD_IDENTIFIER in COLUMNS_QUERY is the value of the DTD_
IDENTIFIER column in the COLUMNS view.

jj) The value of IS_SELF_REF in COLUMNS_QUERY is the value of the IS_SELF_
REFERENCING column in the COLUMNS view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3,
and NameLength4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of CatalogName, SchemaName,
TableName, and ColumnName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type
from Table 28, ‘‘Codes and data types for implementation information’’, is ’Y’, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer, or if TableName is a null pointer, or if ColumnName is a
null pointer, then an exception condition is raised: CLI-specific condition — invalid use of
null pointer.

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then
NL2 is set to zero. If TableName is a null pointer, then NL3 is set to zero. If ColumnName is a
null pointer, then NL4 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of CatalogName.

138 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.11 Columns

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let COLVAL be the first L octets of ColumnName.

16) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM (CATVAL) FROM 2
FOR CHAR_LENGTH (TRIM(CATVAL)) - 2)

SQL/CLI routines 139

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.11 Columns

and let CATSTR be the character string:

TABLE_CAT = ’TEMPSTR’ AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER(’CATVAL’) AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM(SCHVAL) FROM 2
FOR CHAR_LENGTH (TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = ’TEMPSTR’ AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER(’SCHVAL’) AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM(TBLVAL) FROM 2
FOR CHAR_LENGTH (TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = ’TEMPSTR’ AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER(’TBLVAL’) AND

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.

2) Otherwise,

140 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.11 Columns

Case:

A) If SUBSTRING(TRIM(COLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(COLVAL)
FROM CHAR_LENGTH(TRIM(COLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM(COLVAL) FROM 2
FOR CHAR_LENGTH (TRIM(COLVAL)) - 2)

and let COLSTR be the character string:

COLUMN_NAME = ’TEMPSTR’

B) Otherwise, let COLSTR be the character string:

UPPER(COLUMN_NAME) = UPPER(’COLVAL’)

b) Otherwise:

i) Let SPC be the Code value from Table 28, ‘‘Codes and data types for implementation
information’’, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

TABLE_CAT = ’CATVAL’ AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

TABLE_SCHEM LIKE ’SCHVAL’ ESCAPE ’ESC’ AND

NOTE 18 – The pattern value specified in the string to the right of LIKE may use the escape
character that is indicated by the value of the SEARCH PATTERN ESCAPE information type
from Table 28, ‘‘Codes and data types for implementation information’’.

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

TABLE_NAME LIKE ’TBLVAL’ ESCAPE ’ESC’ AND

NOTE 19 – The pattern value specified in the string to the right of LIKE may use the escape
character that is indicated by the value of the SEARCH PATTERN ESCAPE information type
from Table 28, ‘‘Codes and data types for implementation information’’.

vi) If the value of NL4 is zero, then let COLSTR be a zero-length string. Otherwise, let
COLSTR be the character string:

COLUMN_NAME = ’COLVAL’ AND

17) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || COLSTR || ’ ’ || 1=1

SQL/CLI routines 141

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.11 Columns

18) Let STMT be the character string:

SELECT *
FROM COLUMNS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

19) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

142 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.12 Connect

6.12 Connect

Function
Establish a connection.

Definition

Connect (
ConnectionHandle IN INTEGER,
ServerName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
UserName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
Authentication IN CHARACTER(L3),
NameLength3 IN SMALLINT)
RETURNS SMALLINT

where:

— L1 is determined by the value of NameLength1 and has a maximum value of 128.

— L2 is determined by the value of NameLength2 and has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

— L3 is determined by the value of NameLength3 and has an implementation-defined maximum
value.

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) If an SQL-transaction is active for the current SQL-connection and the implementation does
not support transactions that affect more than one SQL-server, then an exception condition is
raised: feature not supported — multiple server transactions.

3) If there is an established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection name in use.

4) Case:

a) If ServerName is a null pointer, then let NL1 be zero.

b) Otherwise, let NL1 be the value of NameLength1.

SQL/CLI routines 143

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.12 Connect

5) Case:

a) If NL1 is not negative, then let L1 be NL1.

b) If NL1 indicates NULL TERMINATED, then let L1 be the number of octets of ServerName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

6) Case:

a) If L1 is zero, then let ’DEFAULT’ be the value of SN.

b) If L1 is greater than 128, then an exception condition is raised: CLI-specific condition —
invalid string length or buffer length.

c) Otherwise, let SN be the first L1 octets of ServerName.

7) Let E be the allocated SQL-environment with which C is associated.

8) Case:

a) If UserName is a null pointer, then let NL2 be zero.

b) Otherwise, let NL2 be the value of NameLength2.

9) Case:

a) If NL2 is not negative, then let L2 be NL2.

b) If NL2 indicates NULL TERMINATED, then let L2 be the number of Octets of UserName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

10) Case:

a) If Authentication is a null pointer, then let NL3 be zero.

b) Otherwise, let NL3 be the value of NameLength3.

11) Case:

a) If NL3 is not negative, then let L3 be NL3.

b) If NL3 indicates NULL TERMINATED, then let L3 be the number of octets of Authentication
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

144 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.12 Connect

12) Case:

a) If the value of SN is ’DEFAULT’, then:

i) If L2 is not zero, then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

ii) If L3 is not zero, then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

iii) If an established default SQL-connection is associated with an allocated SQL-connection
associated with E, then an exception condition is raised: connection exception — connec-
tion name in use.

b) Otherwise:

i) If L2 is zero, then let UN be an implementation-defined <user identifier>.

ii) If L2 is non-zero, then:

1) Let UV be the first L2 octets of UserName and let UN be the result of

TRIM (BOTH ’ ’ FROM UV)

2) If UN does not conform to the Format and Syntax Rules of a <user identifier>, then
an exception condition is raised: invalid authorization specification.

3) If UN does not conform to any implementation-defined restrictions on its value, then
an exception condition is raised: invalid authorization specification.

iii) Case:

1) If L3 is not zero, then let AU be the first L3 octets of Authentication.

2) Otherwise, let AU be an implementation-defined authentication string, whose length
may be zero.

13) Case:

a) If the value of SN is ’DEFAULT’, then the default SQL-session is initiated and associated
with the default SQL-server. The method by which the default SQL-server is determined is
implementation-defined.

b) Otherwise, an SQL-session is initiated and associated with the SQL-server identified
by SN. The method by which SN is used to determine the appropriate SQL-server is
implementation-defined.

14) If an SQL-session is successfully initiated, then:

a) The current SQL-connection and current SQL-session, if any, become a dormant SQL-
connection and a dormant SQL-session respectively. The SQL-session context information
is preserved and is not affected in any way by operations performed over the initiated
SQL-connection.
NOTE 20 – The SQL-session context information is defined in Subclause 4.34, "SQL-sessions", in
ISO/IEC 9075-2.

SQL/CLI routines 145

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.12 Connect

b) The initiated SQL-session becomes the current SQL-session and the SQL-connection estab-
lished to that SQL-session becomes the current SQL-connection and is associated with C.

NOTE 21 – If an SQL-session is not successfully initiated, then the current SQL-connection and
current SQL-session, if any, remain unchanged.

15) If the SQL-client cannot establish the SQL-connection, then an exception condition is raised:
connection exception — SQL-client unable to establish SQL-connection.

16) If the SQL-server rejects the establishment of the SQL-connection, then an exception condition
is raised: connection exception — SQL-server rejected establishment of SQL-connection.
NOTE 22 – AU and UN are used by the SQL-server, along with other implementation-dependent values,
to determine whether to accept or reject the establishment of an SQL-session.

17) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is
set to the SQL-server identified by SN.

18) The SQL-session user identifier and the current user identifier are set to UN. The current role
name is set to the null value.

146 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.13 CopyDesc

6.13 CopyDesc

Function
Copy a CLI descriptor.

Definition

CopyDesc (
SourceDescHandle IN INTEGER,
TargetDescHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Case:

a) If SourceDescHandle does not identify an allocated CLI descriptor area, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise, let SD be the CLI descriptor area identified by SourceDescHandle.

2) Case:

a) If TargetDescHandle does not identify an allocated CLI descriptor area, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let TD be the CLI descriptor area identified by TargetDescHandle.

ii) The diagnostics area associated with TD is emptied.

3) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to SD as the
DESCRIPTOR AREA.

4) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to TD as the
DESCRIPTOR AREA.

5) If TD is an implementation row descriptor, then an exception condition is raised: CLI-specific
condition — cannot modify an implementation row descriptor.

6) Let AT be the value of the ALLOC_TYPE field of TD.

7) The contents of TD are replaced by a copy of the contents of SD.

8) The ALLOC_TYPE field of TD is set to AT.

SQL/CLI routines 147

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.14 DataSources

6.14 DataSources

Function
Get server name(s) that the application can connect to, along with description information, if
available.

Definition

DataSources (
EnvironmentHandle IN INTEGER,
Direction IN SMALLINT,
ServerName OUT CHARACTER(L1),
BufferLength1 IN SMALLINT,
NameLength1 OUT SMALLINT,
Description OUT CHARACTER(L2),
BufferLength2 IN SMALLINT,
NameLength2 OUT SMALLINT)
RETURNS SMALLINT

where L1 and L2 are the values of BufferLength1 and BufferLength2, respectively, and have max-
imum values equal to the implementation-defined maximum length of a variable-length character
string.

General Rules

1) Let EH be the value of EnvironmentHandle.

2) If EH does not identify an allocated SQL-environment or if it identifies an allocated skeleton
SQL-environment, then an exception condition is raised: CLI-specific condition — invalid
handle.

3) Let E be the allocated SQL-environment identified by EH. The diagnostics area associated with
E is emptied.

4) Let BL1 and BL2 be the values of BufferLength1 and BufferLength2, respectively.

5) Let D be the value of Direction.

6) If D is not either the code value for NEXT or the code value for FIRST in Table 24, ‘‘Codes used
for fetch orientation’’, then an exception condition is raised: CLI-specific condition — invalid
retrieval code.

7) Let SN1, SN2, SN3, etc., be an ordered set of the names of SQL-servers to which the application
might be eligible to connect (where the mechanism used to establish this set is implementation-
defined).
NOTE 23 – SN1, SN2, SN3, etc., are the names that an application program would use in invocations of
Connect, rather than the ‘‘actual’’ names of the SQL-servers.

8) Let D1, D2, D3, etc., be strings describing the SQL-servers named by SN1, SN2, SN3, etc. (again
provided via an implementation-defined mechanism).

148 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.14 DataSources

9) Case:

a) If D indicates FIRST, or if DataSources has never been successfully called on EH, or if the
previous call to DataSources on EH raised a completion condition: no data, then:

i) If there are no entries in the set SN1, SN2, SN3, etc., then a completion condition is
raised: no data and no further rules for this Subclause are applied.

ii) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
ServerName, SN1, BL1, and NameLength1 as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

iii) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
Description, D1, BL2, and NameLength2 as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

b) Otherwise,

i) Let SNn be the ServerName value that was returned on the previous call to DataSources
on EH.

ii) If there is no entry in the set after SNn, then a completion condition is raised: no data
and no further rules for this subclause are applied.

iii) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
ServerName, SNn+1, BL1, and NameLength1 as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

iv) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
Description, Dn+1, BL2, and NameLength2 as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

SQL/CLI routines 149

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.15 DescribeCol

6.15 DescribeCol

Function
Get column attributes.

Definition

DescribeCol (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
ColumnName OUT CHARACTER(L),
BufferLength IN SMALLINT,
NameLength OUT SMALLINT,
DataType OUT SMALLINT,
ColumnSize OUT INTEGER,
DecimalDigits OUT SMALLINT,
Nullable OUT SMALLINT)
RETURNS SMALLINT

where L is the value of BufferLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared or executed statement associated with S, then an exception condition is
raised: CLI-specific condition — function sequence error.

3) Let IRD be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of IRD.

4) If N is zero, then an exception condition is raised: dynamic SQL error — prepared statement not
a cursor specification.

5) Let CN be the value of ColumnNumber.

6) If CN is less than 1 (one) or greater than N, then an exception condition is raised: dynamic SQL
error — invalid descriptor index.

7) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which
LEVEL is 0 (zero). Let C be the <select list> column described by the item descriptor area of
IRD specified by RI.

8) Let BL be the value of BufferLength.

9) Information is retrieved from IRD:

a) Case:

i) If the data type of C is datetime, then DataType is set to the value of the Code column
from Table 40, ‘‘Concise codes used with datetime data types in SQL/CLI’’, corresponding
to the datetime interval code of C.

150 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.15 DescribeCol

ii) If the data type of C is interval, then DataType is set to the value of the Code column
from Table 41, ‘‘Concise codes used with interval data types in SQL/CLI’’, corresponding
to the datetime interval code of C.

iii) Otherwise, DataType is set to the data type of C.

b) Case:

i) If the data type of C is character string, then ColumnSize is set to the maximum length
in octets of C.

ii) If the data type of C is exact numeric or approximate numeric, then ColumnSize is set
to the maximum length of C in decimal digits.

iii) If the data type of C is datetime or interval, then ColumnSize is set to the length in
positions of C.

iv) If the data type of C is bit string, then ColumnSize is set to the length in bits of C.

v) If the data type of C is a reference type, then ColumnSize is set to the length in octets of
that reference type.

vi) Otherwise, ColumnSize is set to an implementation-dependent value.

c) Case:

i) If the data type of C is exact numeric, then DecimalDigits is set to the scale of C.

ii) If the data type of C is datetime, then DecimalDigits is set to the time fractional seconds
precision of C.

iii) If the data type of C is interval, then DecimalDigits is set to the interval fractional
seconds precision of C.

iv) Otherwise, DecimalDigits is set to an implementation-dependent value.

d) If C can have the null value, then Nullable is set to 1 (one); otherwise, Nullable is set to 0
(zero).

e) The name associated with C is retrieved. If C has an implementation-dependent name,
then the value retrieved is the implementation-dependent name for C; otherwise, the value
retrieved is the <derived column> name of C. Let V be the value retrieved. The General
Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with ColumnName, V,
BL, and NameLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 151

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.16 Disconnect

6.16 Disconnect

Function
Terminate an established connection.

Definition

Disconnect (
ConnectionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) Let L1 be a list of the allocated SQL-statements associated with C. Let L2 be a list of the
allocated CLI descriptor areas associated with C.

4) If EC is active, then

Case:

a) If any allocated SQL-statement in L1 has a deferred parameter number associated with it,
then an exception condition is raised: CLI-specific condition — function sequence error.

b) Otherwise, an exception condition is raised: invalid transaction state — active SQL-
transaction.

5) For every allocated SQL-statement AS in L1:

a) Let SH be the StatementHandle that identifies AS.

b) FreeHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE and
with SH as the value of Handle.
NOTE 24 – Any diagnostic information generated by the invocation is associated with C and not
with AS.

152 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.16 Disconnect

6) For every allocated CLI descriptor area AD in L2:

a) Let DH be the DescriptorHandle that identifies AD.

b) FreeHandle is implicitly invoked with HandleType indicating DESCRIPTOR HANDLE and
with DH as the value of Handle.
NOTE 25 – Any diagnostic information generated by the invocation is associated with C and not
with AD.

7) Let CC be the current SQL-connection.

8) The SQL-session associated with EC is terminated. EC is terminated, regardless of any excep-
tion conditions that might occur during the disconnection process, and is no longer associated
with C.

9) If any error is detected during the disconnection process, then a completion condition is raised:
warning — disconnect error.

10) If EC and CC were the same SQL-connection, then there is no current SQL-connection.
Otherwise, CC remains the current SQL-connection.

SQL/CLI routines 153

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.17 EndTran

6.17 EndTran

Function
Terminate an SQL-transaction.

Definition

EndTran (
HandleType IN SMALLINT,
Handle IN INTEGER,
CompletionType IN SMALLINT)
RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 13, ‘‘Codes used for handle types’’, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates STATEMENT HANDLE, then:

i) If H does not identify an allocated SQL-statement, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

b) If HT indicates DESCRIPTOR HANDLE, then:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

c) If HT indicates CONNECTION HANDLE, then:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise:

1) Let C be the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

3) If C has an associated established SQL-connection that is active, then let L1 be a
list containing C; otherwise, let L1 be an empty list.

154 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.17 EndTran

d) If HT indicates ENVIRONMENT HANDLE, then:

i) If H does not identify an allocated SQL-environment or if it identifies an allocated SQL-
environment that is a skeleton SQL-environment, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) Let L be a list of the allocated SQL-connections associated with E. Let L1 be a list
of the allocated SQL-connections in L that have an associated established SQL-
connection that is active.

4) Let CT be the value of CompletionType.

5) If CT is not one of the code values in Table 14, ‘‘Codes used for transaction termination’’, then
an exception condition is raised: CLI-specific condition — invalid transaction operation code.

6) If L1 is empty, then no further rules of this Subclause are applied.

7) If the current SQL-transaction is part of an encompassing transaction that is controlled by
an agent other than the SQL-agent, then an exception condition is raised: invalid transaction
termination.

8) Let L2 be a list of the allocated SQL-statements associated with allocated SQL-connections in
L1.

9) If any of the allocated SQL-statements in L2 has an associated deferred parameter number,
then an exception condition is raised: CLI-specific condition — function sequence error.

10) Let L3 be a list of the open cursors associated with allocated SQL-statements in L2.

11) If CT indicates COMMIT, COMMIT AND CHAIN, ROLLBACK, or ROLLBACK AND CHAIN,
then:

a) Case:

i) If CT indicates COMMIT or COMMIT AND CHAIN), then let LOC be the list of all
non-holdable cursors in L3.

ii) Otherwise, let LOC be the list of all cursors in L3.

b) For OC ranging over all cursors in LOC:

i) Let S be the allocated SQL-statement with which OC is associated.

ii) OC is placed in the closed state and its copy of the select source is destroyed.

iii) Any fetched row associated with S is removed from association with S.

12) If CT indicates COMMIT or COMMIT AND CHAIN, then:

a) If an atomic execution context is active, then an exception condition is raised: invalid
transaction termination.

SQL/CLI routines 155

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.17 EndTran

b) For every temporary table associated with the current SQL-transaction that specifies the
ON COMMIT DELETE option and that was updated by the current SQL-transaction, the
invocation of EndTran with CT indicating COMMIT is effectively preceded by the execution
of a <delete statement: searched> that specifies DELETE FROM T, where T is the <table
name> of that temporary table.

c) The effects specified in the General Rules of Subclause 16.3, "<set constraints mode
statement>", in ISO/IEC 9075-2, occur as if the statement SET CONSTRAINTS ALL
IMMEDIATE were executed.

d) Case:

i) If any constraint is not satisfied, then any changes to SQL-data or schemas that were
made by the current SQL-transaction are canceled and an exception condition is raised:
transaction rollback — integrity constraint violation.

ii) If the execution of any <triggered SQL statement> is unsuccessful, then all changes to
SQL-data or schemas that were made by the current SQL-transaction are cancelled and
an exception condition is raised: transaction rollback — triggered action exception.

iii) If any other error preventing commitment of the SQL-transaction has occurred, then
any changes to SQL-data or schemas that were made by the current SQL-transaction
are canceled and an exception condition is raised: transaction rollback with an
implementation-defined subclass value.

iv) Otherwise, any changes to SQL-data or schemas that were made by the current SQL-
transaction are made accessible to all concurrent and subsequent SQL-transactions.

e) Every savepoint established in the current SQL-transaction is destroyed.

f) Every valid non-holdable locator value is marked invalid.

g) The current SQL-transaction is terminated. If CT indicates COMMIT AND CHAIN, then
a new SQL-transaction is initiated with the same access mode and isolation level as the
SQL-transaction just terminated. Any branch transactions of the SQL-transaction are
initiated with the same access mode and isolation level as the corresponding branch of the
SQL-transaction just terminated.

13) If CT indicates SAVEPOINT NAME COMMIT or SAVEPOINT NUMBER COMMIT, then:

a) If HT is not CONNECTION HANDLE, then an exception condition is raised: CLI-specific
condition — invalid handle.

b) Case:

i) If CT indicates SAVEPOINT NAME COMMIT, then let SP be the value of the
SAVEPOINT NAME connection attribute of C.

ii) If CT indicates SAVEPOINT NUMBER COMMIT, then let SP be the value of the
SAVEPOINT NUMBER connection attribute of C.

c) If SP does not specify a savepoint established within the current SQL-transaction, then an
exception condition is raised: savepoint exception — invalid specification.

156 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.17 EndTran

d) The savepoint identified by SP and all savepoints established by the current SQL-
transaction subsequent to the establishment of SP are destroyed.

14) If CT indicates ROLLBACK or ROLLBACK AND CHAIN, then:

a) If an atomic execution context is active, then an exception condition is raised: invalid
transaction termination.

b) All changes to SQL-data or schemas that were made by the current SQL-transaction are
canceled.

c) Every savepoint established in the current SQL-transaction is destroyed.

d) Every valid non-holdable locator value is marked invalid.

e) The current SQL-transaction is terminated. If CT indicates ROLLBACK AND CHAIN,
then a new SQL-transaction is initiated with the same access mode and isolation level as
the SQL-transaction just terminated. Any branch transactions of the SQL-transaction are
initiated with the same access mode and isolation level as the corresonding branch of the
SQL-transaction just terminated.

15) If CT indicates SAVEPOINT NAME RELEASE or SAVEPOINT NUMBER RELEASE, then:

a) If HT is not CONNECTION HANDLE, then an exception condition is raised: CLI-specific
condition — invalid handle.

b) Case:

i) If CT indicates SAVEPOINT NAME RELEASE, then let SP be the value of the
SAVEPOINT NAME connection attribute of C.

ii) If CT indicates SAVEPOINT NUMBER RELEASE, then let SP be the value of the
SAVEPOINT NUMBER connection attribute of C.

c) If SP does not specify a savepoint established within the current SQL-transaction, then an
exception condition is raised: savepoint exception — invalid specification.

d) If an atomic execution context is active and SP specifies a savepoint established before the
beginning of the most recent atomic execution context, then an exception condition is raised:
savepoint exception — invalid specification.

e) Any changes to SQL-data or schemas that were made by the current SQL-transaction
subsequent to the establishment of SP are canceled.

f) All savepoints established by the current SQL-transaction subsequent to the establishment
of SP are destroyed.

g) Every valid locator is marked invalid.

h) For every open cursor OC in L3 that was opened subsequent to the establishment of SP:

i) Let S be the allocated SQL-statement with which OC is associated.

ii) OC is placed in the closed state and its copy of the select source is destroyed.

iii) Any fetched row associated with OC is removed from association with S.

SQL/CLI routines 157

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.17 EndTran

i) The status of any open cursors in L3 that were opened by the current SQL-transaction
before the establishment of SP is implementation-defined.
NOTE 26 – The current SQL-transaction is not terminated, and there is no other effect on the
SQL-data or schemas.

158 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.18 Error

6.18 Error

Function
Return diagnostic information.

Definition

Error (
EnvironmentHandle IN INTEGER,
ConnectionHandle IN INTEGER,
StatementHandle IN INTEGER,
Sqlstate OUT CHARACTER(5),
NativeError OUT INTEGER,
MessageText OUT CHARACTER(L),
BufferLength IN SMALLINT,
TextLength OUT SMALLINT)
RETURNS SMALLINT

where L is the value of BufferLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) Case:

a) If StatementHandle identifies an allocated SQL-statement, then let IH be the value of
StatementHandle and let HT be the code value for STATEMENT HANDLE from Table 13,
‘‘Codes used for handle types’’.

b) If StatementHandle is zero and ConnectionHandle identifies an allocated SQL-connection,
then let IH be the value of ConnectionHandle and let HT be the code value for CONNECTION
HANDLE from Table 13, ‘‘Codes used for handle types’’.

c) If ConnectionHandle is zero and EnvironmentHandle identifies an allocated SQL-
environment, then let IH be the value of EnvironmentHandle and let HT be the code value
for ENVIRONMENT HANDLE from Table 13, ‘‘Codes used for handle types’’.

d) Otherwise, an exception condition is raised: CLI-specific condition — invalid handle.

2) Let R be the most recently executed CLI routine, other than Error, GetDiagField, or
GetDiagRec, for which IH was passed as a value of an input handle.
NOTE 27 – The GetDiagField, GetDiagRec and Error routines may cause exception or completion
conditions to be raised, but they do not cause status records to be generated.

3) Let N be the number of status records generated by the execution of R. Let AP be the number
of status records generated by the execution of R already processed by Error. If N is zero or AP
equals N then a completion condition is raised: no data, Sqlstate is set to ’00000’, the values of
NativeError, MessageText, and TextLength are set to implementation-dependent values, and no
further rules of this Subclause are applied.

4) Let SR be the first status record generated by the execution of R not yet processed by Error.
Let RN be the number of the status record SR. Information is retrieved by implicitly executing
GetDiagRec as follows:

GetDiagRec (HT, IH, RN, Sqlstate,

SQL/CLI routines 159

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.18 Error

NativeError, MessageText, BufferLength, TextLength)

5) Add SR to the list of status records generated by the execution of R already processed by Error.

160 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.19 ExecDirect

6.19 ExecDirect

Function
Execute a statement directly.

Definition

ExecDirect (
StatementHandle IN INTEGER,
StatementText IN CHARACTER(L),
TextLength IN INTEGER)
RETURNS SMALLINT

where L is determined by the value of TextLength and has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let TL be the value of TextLength.

4) Case:

a) If TL is not negative, then let L be TL.

b) If TL indicates NULL TERMINATED, then let L be the number of octets of StatementText
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

b) Otherwise, let P be the first L octets of StatementText.

6) If P is a <preparable dynamic delete statement: positioned> or a <preparable dynamic update
statement: positioned>, then let CN be the cursor name referenced by P. Let C be the allocated
SQL-connection with which S is associated. If CN is not the name of a cursor associated with
another allocated SQL-statement associated with C, then an exception condition is raised:
invalid cursor name.

SQL/CLI routines 161

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.19 ExecDirect

7) If one or more of the following are true, then an exception condition is raised: syntax error or
access rule violation.

a) P does not conform to the Format, Syntax Rules or Access Rules for a <preparable state-
ment> or P is a <start transaction statement>, a <commit statement>, a <rollback state-
ment>, or a <release savepoint statement>.
NOTE 28 – See Table 26, "SQL-statement codes", in ISO/IEC 9075-2 and Table 9, "SQL-statement
codes", in ISO/IEC 9075-5 for the list of <preparable statement>s. Other parts of ISO/IEC 9075 may
have corresponding tables that define additional codes representing statements defined by those parts
of ISO/IEC 9075.

b) P contains a <simple comment>.

c) P contains a <dynamic parameter specification> whose data type is undefined as determined
by the rules specified in Subclause 15.6, "<prepare statement>", in ISO/IEC 9075-5.

8) The data type of any <dynamic parameter specification> contained in P is determined by the
rules specified in Subclause 15.6, "<prepare statement>", in ISO/IEC 9075-5.

9) Let DTGN be the default transform group name and TFL be the list of user-defined type name—
transform group name pairs used to identify the group of transform functions for every user-
defined type that is referenced in P. DTGN and TFL are not affected by the execution of a <set
transform group statement> after P is prepared.

10) The following objects associated with S are destroyed:

a) Any prepared statement.

b) Any cursor.

c) Any select source.

If a cursor associated with S is destroyed, then so are any prepared statements that reference
that cursor.

11) P is prepared.

12) Case:

a) If P is a <dynamic select statement> or a <dynamic single row select statement>, then:

i) P becomes the select source associated with S.

ii) If there is no cursor name associated with S, then a unique implementation-dependent
name that has the prefix ’SQLCUR’ or the prefix ’SQL_CUR’ becomes the cursor name
associated with S.

iii) The General Rules of Subclause 5.5, ‘‘Implicit DESCRIBE USING clause’’, are applied to
P and S, as SOURCE and ALLOCATED STATEMENT, respectively.

iv) The General Rules of Subclause 5.4, ‘‘Implicit cursor’’, are applied to P and S as SELECT
SOURCE and ALLOCATED STATEMENT, respectively.

b) Otherwise:

i) The General Rules of Subclause 5.5, ‘‘Implicit DESCRIBE USING clause’’, are applied to
P and S, as SOURCE and ALLOCATED STATEMENT, respectively.

162 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.19 ExecDirect

ii) The General Rules of Subclause 5.6, ‘‘Implicit EXECUTE USING and OPEN USING
clauses’’, are applied to ’EXECUTE’, P, and S, as TYPE, SOURCE, and ALLOCATED
STATEMENT, respectively.

iii) Case:

1) If P is a <preparable dynamic delete statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated
with CR.

B) All the General Rules in Subclause 15.21, "<preparable dynamic delete state-
ment: positioned>", in ISO/IEC 9075-5 apply to P. For the purposes of the
application of these Rules, the row in CR identified by SCR’s CURRENT OF
POSITION statement attribute is the current row of CR.

C) If the execution of P deleted the current row of CR, then the effect on the fetched
row, if any, associated with the allocated SQL-statement under which that
current row was established, is implementation-defined.

2) If P is a <preparable dynamic update statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated
with CR.

B) All the General Rules in Subclause 15.22, "<preparable dynamic update state-
ment: positioned>", in ISO/IEC 9075-5 apply to P. For the purposes of the
application of these Rules, the row in CR identified by SCR’s CURRENT OF
POSITION statement attribute is the current row of CR.

C) If the execution of P updated the current row of CR, then the effect on the
fetched row, if any, associated with the allocated SQL-statement under which
that current row was established, is implementation-defined.

3) Otherwise, the results of the execution are the same as if the statement were con-
tained in an <externally-invoked procedure> and executed; these are described in
Subclause 13.3, "<externally-invoked procedure>", in ISO/IEC 9075-2.

iv) If P is a <call statement>, then the General Rules of Subclause 5.7, ‘‘Implicit CALL
USING clause’’, are applied to P and S, as SOURCE and ALLOCATED STATEMENT,
respectively.

13) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

14) R becomes the row count associated with S.

15) If P executed successfully, then any executed statement associated with S is destroyed and P
becomes the executed statement associated with S.

SQL/CLI routines 163

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.20 Execute

6.20 Execute

Function
Execute a prepared statement.

Definition

Execute (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error. Otherwise, let P be the statement that was
prepared.

3) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

4) P is executed.

5) Case:

a) If P is a <dynamic select statement> or a <dynamic single row select statement>, then
the General Rules of Subclause 5.4, ‘‘Implicit cursor’’, are applied to P and S as SELECT
SOURCE and ALLOCATED STATEMENT, respectively.

b) Otherwise:

i) The General Rules of Subclause 5.6, ‘‘Implicit EXECUTE USING and OPEN USING
clauses’’, are applied to ’EXECUTE’, P, and S, as TYPE, SOURCE, and ALLOCATED
STATEMENT, respectively.

ii) Case:

1) If P is a <preparable dynamic delete statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated
with CR.

B) All the General Rules in Subclause 15.21, "<preparable dynamic delete state-
ment: positioned>", in ISO/IEC 9075-5 apply to P. For the purposes of the
application of these Rules, the row in CR identified by SCR’s CURRENT OF
POSITION statement attribute is the current row of CR.

C) If the execution of P deleted the current row of CR, then the effect on the fetched
row, if any, associated with the allocated SQL-statement under which that
current row was established, is implementation-defined.

164 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.20 Execute

2) If P is a <preparable dynamic update statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated
with CR.

B) All the General Rules in Subclause 15.22, "<preparable dynamic update state-
ment: positioned>", in ISO/IEC 9075-5 apply to P. For the purposes of the
application of these Rules, the row in CR identified by SCR’s CURRENT OF
POSITION statement attribute is the current row of CR.

C) If the execution of P updated the current row of CR, then the effect on the
fetched row, if any, associated with the allocated SQL-statement under which
that current row was established, is implementation-defined.

3) Otherwise, the results of the execution are the same as if the statement were con-
tained in an <externally-invoked procedure> and executed; these are described in
Subclause 13.3, "<externally-invoked procedure>", in ISO/IEC 9075-2.

iii) If P is a <call statement>, then the General Rules of Subclause 5.7, ‘‘Implicit CALL
USING clause’’, are applied to P and S, as SOURCE and ALLOCATED STATEMENT,
respectively.

6) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

7) R becomes the row count associated with S.

8) If P executed successfully, then any executed statement associated with S is destroyed and P
becomes the executed statement associated with S.

SQL/CLI routines 165

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.21 Fetch

6.21 Fetch

Function
Fetch the next row of a cursor.

Definition

Fetch (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error.

3) If there is no open cursor associated with S, then an exception condition is raised: invalid cursor
state. Otherwise, let CR be the open cursor associated with S and let T be the table associated
with the open cursor.

4) Let ARD be the current application row descriptor for S and let N be the value of the TOP_
LEVEL_COUNT field of ARD.

5) For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor
areas of ARD, and for all of their subordinate descriptor areas, refer to a <target specification>
whose corresponding item descriptor area has a non-zero value of DATA_POINTER as a bound
target and refer to the corresponding <select list> column as a bound column.

6) Let IDA be the item descriptor area of ARD corresponding to the i-th bound target and let TT
be the value of the TYPE field of IDA.

7) If TT indicates DEFAULT, then:

a) Let IRD be the implementation row descriptor associated with S.

b) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the item descriptor area of IRD corresponding to the i-th bound column.

c) The data type, precision, and scale of the <target specification> described by IDA are ef-
fectively set to CT, P, and SC, respectively, for the purposes of this Fetch invocation only.

8) Let R be the rowset on which CR is positioned and let AS be the value of the ARRAY_SIZE field
in the header of the ARD for S.

9) If T is empty, or if R contains the last row of T, or if CR is positioned after the end of the result
set, then:

a) CR is positioned after the last row of T. An empty rowset becomes the fetched rowset
associated with CR.

b) No database values are assigned to bound targets.

166 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.21 Fetch

c) A completion condition is raised: no data and no further rules of this Subclause are ap-
plied.

10) Case:

a) If the position of CR is before the start of T, then:

i) If the number of rows in T is less than or equal to AS, then CR is positioned on the
rowset that has all the rows in T.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows of T.

b) Otherwise, let Tt be the table that contains all the rows of T that immediately follow the
last row of R, preserving their order in T.

Case:

i) If the number of rows in Tt is less than or equal to AS, then CR is positioned on the
rowset that has all the rows in Tt.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows of Tt.

11) Let NR be the rowset on which CR is positioned. Let ASP and RPP be the values of the ARRAY_
STATUS_POINTER and ROWS_PROCESSED_POINTER fields, respectively, in the header of
the IRD of S.

12) If RPP is not a null pointer, then set the value of the host variable addressed by RPP to zero.

13) Let RS be the number of rows in NR. For RN ranging from 1 (one) to RS:

a) Let RNR be the RN-th row of NR. Set ROWS_PROCESSED to 0 (zero).

Case:

i) If an exception condition is raised during derivation of any <derived column> associated
with RNR and ASP is not a null pointer, then set the RN-th element of ASP to 5 (indi-
cating Row error). For all diagnostic records that result from the application of this
rule, the ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is set to
the appropriate column number, if any.

ii) Otherwise, the row RNR is fetched and ROWS_PROCESSED is incremented by 1 (one).

14) Case:

a) If ROWS_PROCESSED is greater than 0 (zero), then:

i) Let SS be the select source associated with S.

ii) NR becomes the fetched rowset associated with S.

iii) Set ROWS_PROCESSED to 0 (zero).

iv) The General Rules of Subclause 5.8, ‘‘Implicit FETCH USING clause’’, are applied with
SS, RS, ROWS_PROCESSED, and S as SOURCE, ROWS, ROWS PROCESSED, and
ALLOCATED STATEMENT, respectively.

SQL/CLI routines 167

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.21 Fetch

Case:

1) If ROWS_PROCESSED is greater than 0 (zero), RN is less than AS, and ASP is not
a null pointer, then set the RN+1-th through AS-th elements of ASP to 3 (indicating
No row). If ROWS_PROCESSED is less than RN, then a completion condition is
raised: warning.

2) If ROWS_PROCESSED is 0 (zero), then the values of all bound targets are
implementation-dependent, and CR remains positioned on NR.

b) Otherwise, the values of all bound targets are implementation-dependent and CR remains
positioned on NR.

168 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.22 FetchScroll

6.22 FetchScroll

Function
Position a cursor on the specified row and retrieve values from that row.

Definition

FetchScroll (
StatementHandle IN INTEGER,
FetchOrientation IN SMALLINT,
FetchOffset IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error.

3) If there is no open cursor associated with S, then an exception condition is raised: invalid cursor
state; otherwise, let CR be the open cursor associated with S and let T be the table associated
with the open cursor.

4) If FetchOrientation is not one of the code values in Table 24, ‘‘Codes used for fetch orientation’’,
then an exception condition is raised: CLI-specific condition — invalid fetch orientation.

5) Let FO be the value of FetchOrientation.

6) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE, and FO does
not indicate NEXT, then an exception condition is raised: CLI-specific condition — invalid fetch
orientation.

7) Let ARD be the current application row descriptor for S and let N be the value of the TOP_
LEVEL_COUNT field of ARD.

8) For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor
areas of ARD, and for all of their subordinate descriptor areas, refer to a <target specification>
whose corresponding item descriptor area has a non-zero value of DATA_POINTER as a bound
target and refer to the corresponding <select list> column as a bound column.

9) Let IDA be the item descriptor area of ARD corresponding to the i-th bound target and let TT
be the value of the TYPE field of IDA.

10) If TT indicates DEFAULT, then:

a) Let IRD be the implementation row descriptor associated with S.

b) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the item descriptor area of IRD corresponding to the i-th bound column.

c) The data type, precision, and scale of the <target specification> described by IDA are effec-
tively set to CT, P, and SC, respectively, for the purposes of this fetch only.

SQL/CLI routines 169

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.22 FetchScroll

11) Case:

a) If FO indicates ABSOLUTE or RELATIVE, then let J be the value of FetchOffset.

b) If FO indicates NEXT or FIRST, then let J be +1.

c) If FO indicates PRIOR or LAST, then let J be �1.

12) Let R be the rowset on which CR is positioned and let AS be the value of the ARRAY_SIZE field
in the header of the ARD for S.

13) Let Tt be a table of the same degree as T.

Case:

a) If FO indicates ABSOLUTE, FIRST, or LAST, then let Tt contain all rows of T, preserving
their order in T.

b) If FO indicates NEXT or indicates RELATIVE with a positive value of J, then:

i) If the table T identified by cursor CR is empty or if R contains the last row of T, then let
Tt be a table of no rows.

ii) If CR is positioned before the start of the result set, then let Tt contain all rows of T,
preserving their order in T.

iii) Otherwise, let Tt contain all rows of T after the first row of R, preserving their order in
T.

c) If FO indicates PRIOR or indicates RELATIVE with a negative value of J, then:

i) If the table T identified by cursor CR is empty or if R contains the first row of T, then
let Tt be a table of no rows.

ii) If CR is positioned after the end of the result set, then let Tt contain all rows of T,
preserving their order in T.

iii) Otherwise, let Tt contain all rows of T before the first row of R, preserving their order in
T.

d) If FO indicates RELATIVE with a zero value of J, then:

i) If R is not empty, then let Tt be a table comprising all the rows in R, preserving their
order in R.

ii) Otherwise, let Tt be an empty table.

14) Let N be the number of rows in Tt. If J is positive, then let K be J. If J is negative, then let K
be N+J+1. If J is zero, then let K be 1 (one).

15) Case:

a) If K is greater than 0 (zero), then

Case:

i) If (K + AS - 1) is greater than N, then:

170 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.22 FetchScroll

Case:

1) If J is less than 0 (zero), then

Case:

A) If (K + AS - 1) is greater than the number of rows in T, then CR is positioned on
the rowset that has all the rows in T.

B) Otherwise, CR is positioned on the rowset whose first row is the K-th row of T;
that rowset has AS rows.

2) Otherwise, if K is less than N, then CR is positioned on the rowset that has all the
rows in Tt.

ii) Otherwise, CR is positioned on the rowset whose first row is the K-th row of Tt; that
rowset has AS rows.

b) If K is less than 0 (zero), but the absolute value of K is less than or equal to AS, then

Case:

i) If AS is greater than the number of rows in T, then CR is positioned on the rowset that
has all the rows in T.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows in T.

c) Otherwise, no SQL-data values are assigned and a completion condition is raised: no data.

Case:

i) If FO indicates RELATIVE with J equal to zero, then the position of CR is unchanged.

ii) If FO indicates NEXT, indicates ABSOLUTE or RELATIVE with K greater than N, or
indicates LAST, then CR is positioned after the last row.

iii) Otherwise, FO indicates PRIOR, FIRST, or ABSOLUTE or RELATIVE with K not
greater than N and CR is positioned before the first row.

No further rules of this Subclause are applied.

16) Let NR be the rowset on which CR is positioned. Let ASP and RPP be the values of the ARRAY_
STATUS_POINTER and ROWS_PROCESSED_POINTER fields respectively in the header of the
IRD of S.

17) If RPP is not a null pointer, then set the value of the host variable addressed by RPP to 0 (zero).

18) Let RS be the number of rows in NR. For RN ranging from 1 (one) to RS:

a) Let R be the RN-th row of NR. Set ROWS_PROCESSED to 0 (zero).

Case:

i) If an exception condition is raised during derivation of any <derived column> associated
with R and ASP is not a null pointer, then set the RN-th element of ASP to 5 (indicating
Row error). For all diagnostic records that result from the application of this Rule,
the ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is set to the
appropriate column number, if any.

SQL/CLI routines 171

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.22 FetchScroll

ii) Otherwise the row R is fetched and ROWS_PROCESSED is incremented by 1 (one).

19) Case:

a) If ROWS_PROCESSED is greater than 0 (zero), then:

i) Let SS be the select source associated with S.

ii) NR becomes the fetched rowset associated with S.

iii) Set ROWS_PROCESSED to 0 (zero).

iv) The general rules of Subclause 5.8, ‘‘Implicit FETCH USING clause’’, are applied with
SS, RS, ROWS_PROCESSED, and S as SOURCE, ROWS, ROWS PROCESSED, and
ALLOCATED STATEMENT, respectively.

Case:

1) If ROWS_PROCESSED is greater than 0 (zero), RN is less than AS, and ASP is
not 0 (zero), then set the RN+1-th through AS-th elements of ASP to 3 (indicating
No row). If ROWS_PROCESSED is less than RN, then a completion condition is
raised: warning.

2) If ROWS_PROCESSED is 0 (zero), then the values of all bound targets are
implementation-dependent and CR remains positioned on NR.

b) Otherwise, the values of all bound targets are implementation-dependent and CR remains
positioned on R.

172 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

6.23 ForeignKeys

Function
Return a result set that contains information about foreign keys either in or referencing a single
specified table stored in the Information Schema of the connected data source. The result set
contains information about either:

— The primary key of a single specified table together with the foreign keys in all other tables that
reference that primary key.

— The foreign keys of a single specified table together with the primary or unique keys to which
they refer.

Definition

ForeignKeys (
StatementHandle IN INTEGER,
PKCatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
PKSchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
PKTableName IN CHARACTER(L3),
NameLength3 IN SMALLINT,
FKCatalogName IN CHARACTER(L4),
NameLength4 IN SMALLINT,
FKSchemaName IN CHARACTER(L5),
NameLength5 IN SMALLINT,
FKTableName IN CHARACTER(L6),
NameLength6 IN SMALLINT)
RETURNS SMALLINT

where L1, L2, L3, L4, L5, and L6 are determined by the values of NameLength1, NameLength2,
NameLength3, NameLength4, NameLength5, and NameLength6 respectively and each of L1, L2,
L3, L4, L5, and L6 has a maximum value equal to the implementation-defined maximum length of
a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let FOREIGN_KEYS_QUERY be a table, with the definition:

CREATE TABLE FOREIGN_KEYS_QUERY (
UK_TABLE_CAT CHARACTER VARYING(128),
UK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
UK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
UK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

SQL/CLI routines 173

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.23 ForeignKeys

FK_TABLE_CAT CHARACTER VARYING(128),
FK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
FK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
FK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
ORDINAL_POSITION SMALLINT NOT NULL,
UPDATE_RULE SMALLINT,
DELETE_RULE SMALLINT,
FK_NAME CHARACTER VARYING(128),
UK_NAME CHARACTER VARYING(128),
DEFERABILITY SMALLINT,
UNIQUE_OR_PRIMARY CHARACTER(7))

6) Let PKN and FKN be the value of PKTableName and FKTableName, respectively.

7) Case:

a) If CHAR_LENGTH(PKN) = 0 (zero) and CHAR_LENGTH(FKN) 6= 0 (zero), then the result
set returned describes all the foreign keys (if any) of the specified table, and describes the
primary or unique keys to which they refer.

i) Let FKS represent the set of rows formed by a natural inner join on the values in
the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
columns between the rows in SS’s Information Schema REFERENTIAL_CONSTRAINTS
view and the matching rows in SS’s Information Schema TABLE_CONSTRAINTS view.

ii) Let UK represent the row in SS’s Information Schema TABLE_CONSTRAINTS view
that defines the primary or unique key referenced by an individual foreign key in FKS.
This row is obtained by matching the values in the UNIQUE_CONSTRAINT_CATALOG,
UNIQUE_CONSTRAINT_SCHEMA, and UNIQUE_CONSTRAINT_NAME columns in a
row of FKS to the values in the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,
and CONSTRAINT_NAME columns in TABLE_CONTSRAINTS.

iii) Let FK_COLS represent the set of rows in SS’s Information Schema KEY_COLUMN_
USAGE view that define the columns within an individual foreign key row in FKS.

iv) Let FKS_COLS represent the set of rows in the combination of all FK_COLS sets.

v) Let UK_COLS represent the set of rows in SS’s Information Schema KEY_COLUMN_
USAGE view that define the columns within an individual UK.

vi) Let UKS_COLS represent the set of rows in the combination of all UK_COLS sets.

vii) Let XKS_COLS represent the set of extended rows formed by a natural inner join on
the values in the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_
NAME, and ORDINAL_POSITION columns between the rows of FKS_COLS and UKS_
COLS.

Let FKS_COLS_NAME be the name of each column of FKS_COLS considered in turn;
the names of the columns of XKS_COLS originating from FKS_COLS are respectively
’F_’ || FKS_COLS_NAME.

Let UKS_COLS_NAME be the name of each column of UKS_COLS considered in turn;
the names of the columns of XKS_COLS originating from UKS_COLS are respectively
’U_’ || UKS_COLS_NAME.

174 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

viii) FOREIGN_KEYS_QUERY contains a row for each row in XKS_COLS where:

1) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

2) Case:

A) If the value of SUP is 1 (one), then FOREIGN_KEYS_QUERY contains a row for
each column of all the foreign keys within a specific table in SS’s Information
Schema TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS_QUERY contains a row for each column of all
the foreign keys within a specific table in SS’s Information Schema TABLE_
CONSTRAINTS view in accordance with implementation-defined authorization
criteria.

ix) For each row of FOREIGN_KEYS_QUERY:

1) If the implementation does not support catalog names, then UK_TABLE_CAT is set
to the null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS_
QUERY is the value of the U_TABLE_CATALOG column in XKS_COLS.

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
U_TABLE_SCHEMA column in XKS_COLS.

3) The value of UK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
U_TABLE_NAME column in XKS_COLS.

4) The value of UK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
U_COLUMN_NAME column in XKS_COLS.

5) If the implementation does not support catalog names, then UK_TABLE_CAT is set
to the null value; otherwise, the value of FK_TABLE_CAT in FOREIGN_KEYS_
QUERY is the value of the F_TABLE_CATALOG column in XKS_COLS.

6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_SCHEMA column in XKS_COLS.

7) The value of FK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_NAME column in XKS_COLS.

8) The value of FK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
F_COLUMN_NAME column in XKS_COLS.

9) The value of ORDINAL_POSITION in FOREIGN_KEYS_QUERY is the value of the
ORDINAL_POSITION column in XKS_COLS.

10) The value of UPDATE_RULE in FOREIGN_KEYS_QUERY is determined by the
value of the UPDATE_RULE column in XKS_COLS as follows:

A) Let UR be the value in the UPDATE_RULE column.

B) If UR is ’CASCADE’, then the value of UPDATE_RULE is the code for
CASCADE in Table 26, ‘‘Miscellaneous codes used in CLI’’.

SQL/CLI routines 175

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.23 ForeignKeys

C) If UR is ’RESTRICT’, then the value of UPDATE_RULE is the code for
RESTRICT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

D) If UR is ’SET NULL’, then the value of UPDATE_RULE is the code for SET
NULL in Table 26, ‘‘Miscellaneous codes used in CLI’’.

E) If UR is ’NO ACTION’, then the value of UPDATE_RULE is the code for NO
ACTION in Table 26, ‘‘Miscellaneous codes used in CLI’’.

F) If UR is ’SET DEFAULT’, then the value of UPDATE_RULE is the code for SET
DEFAULT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

11) The value of DELETE_RULE in FOREIGN_KEYS_QUERY is determined by the
value of the DELETE_RULE column in XKS_COLS as follows:

A) Let DR be the value in the DELETE_RULE column.

B) If DR is ’CASCADE’, then the value of DELETE_RULE is the code for CASCADE
in Table 26, ‘‘Miscellaneous codes used in CLI’’.

C) If DR is ’RESTRICT’, then the value of DELETE_RULE is the code for
RESTRICT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

D) If DR is ’SET NULL’, then the value of DELETE_RULE is the code for SET
NULL in Table 26, ‘‘Miscellaneous codes used in CLI’’.

E) If DR is ’NO ACTION’, then the value of DELETE_RULE is the code for NO
ACTION in Table 26, ‘‘Miscellaneous codes used in CLI’’.

F) If DR is ’SET DEFAULT’, then the value of DELETE_RULE is the code for SET
DEFAULT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

12) The value of FK_NAME in FOREIGN_KEYS_QUERY is the value of the CONSTRAINT_
NAME column in XKS_COLS.

13) The value of UK_NAME in FOREIGN_KEYS_QUERY is the value of the UNIQUE_
CONSTRAINT_NAME column in XKS_COLS.

14) If there are no implementation-defined mechanisms for setting the value of
DEFERABILITY in FOREIGN_KEYS_QUERY to the value of the code for
INITIALLY DEFERRED or to the value of the code for INITIALLY IMMEDIATE
in Table 26, ‘‘Miscellaneous codes used in CLI’’, then the value of DEFERABILITY
in FOREIGN_KEYS_QUERY is the code for NOT DEFERRABLE in Table 26,
‘‘Miscellaneous codes used in CLI’’; otherwise, the value of DEFERABILITY in
FOREIGN_KEYS_QUERY can be the code for INITIALLY DEFERRED, the value
of the code for INITIALLY IMMEDIATE, or the code for NOT DEFERRABLE in
Table 26, ‘‘Miscellaneous codes used in CLI’’.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS_QUERY is ’UNIQUE’
if the foreign key references a UNIQUE key and ’PRIMARY’ if the foreign key
references a primary key.

x) Let NL1, NL2, and NL3 be the values of NameLength4, NameLength5, and NameLength6,
respectively.

176 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

xi) Let CATVAL, SCHVAL, and TBLVAL be the values of FKCatalogName, FKSchemaName,
and FKTableName, respectively.

xii) If the METADATA ID attribute of S is TRUE, then:

1) If FKCatalogName is a null pointer and the value of the CATALOG NAME informa-
tion type from Table 28, ‘‘Codes and data types for implementation information’’, Y,
then an exception condition is raised: CLI-specific condition — invalid use of null
pointer.

2) If FKSchemaName is a null pointer or if FKTableName is a null pointer, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

xiii) If FKCatalogName is a null pointer, then NL1 is set to zero. If FKSchemaName is a
null pointer, then NL2 is set to zero. If FKTableName is a null pointer, then NL3 is set
to zero.

xiv) Case:

1) If NL1 is not negative, then let L be NL1.

2) If NL1 indicates NULL TERMINATED, then let L be the number of octets of
FKCatalogName that precede the implementation-defined null character that
terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

Let CATVAL be the first L octets of FKCatalogName.

xv) Case:

1) If NL2 is not negative, then let L be NL2.

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of
FKSchemaName that precede the implementation-defined null character that
terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

Let SCHVAL be the first L octets of FKSchemaName.

xvi) Case:

1) If NL3 is not negative, then let L be NL3.

2) If NL3 indicates NULL TERMINATED, then let L be the number of octets of
FKTableName that precede the implementation-defined null character that ter-
minates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

Let TBLVAL be the first L octets of FKTableName.

SQL/CLI routines 177

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.23 ForeignKeys

xvii) Case:

1) If the METADATA ID attribute of S is TRUE, then:

A) Case:

I) If the value of NL1 is zero, then let CATSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be
the value obtained from evaluating:

SUBSTRING(TRIM(CATVAL) FROM 2
FOR CHAR_LENGTH(TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

FK_TABLE_CAT = ’TEMPSTR’ AND

2) Otherwise, let CATSTR be the character string:

UPPER(FK_TABLE_CAT) = UPPER(’CATVAL’) AND

B) Case:

I) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be
the value obtained from evaluating:

SUBSTRING(TRIM(SCHVAL) FROM 2
FOR CHAR_LENGTH(TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

FK_TABLE_SCHEM = ’TEMPSTR’ AND

2) Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER(’SCHVAL’) AND

C) Case:

I) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

II) Otherwise,

178 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

Case:

1) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be
the value obtained from evaluating:

SUBSTRING(TRIM(TBLVAL) FROM 2
FOR CHAR_LENGTH(TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

FK_TABLE_NAME = ’TEMPSTR’ AND

2) Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER(’TBLVAL’) AND

2) Otherwise:

A) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise,
let CATSTR be the character string:

FK_TABLE_CAT = ’CATVAL’ AND

B) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise,
let SCHSTR be the character string:

FK_TABLE_SCHEM = ’SCHVAL’ AND

C) If the value of NL3 is zero, then let TBLSTR be a zero-length string. Otherwise,
let TBLSTR be the character string:

FK_TABLE_NAME = ’TBLVAL’ AND

xviii) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || 1=1

xix) Let STMT be the character string:

SELECT *
FROM FOREIGN_KEYS_QUERY
WHERE PRED
ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

xx) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the
value of StatementText, and the length of STMT as the value of TextLength.

b) If CHAR_LENGTH(PKN) 6= 0 (zero) and CHAR_LENGTH(FKN) = 0 (zero), then the result
set returned contains a description of the primary key (if any) of the specified table together
with the descriptions of foreign keys in all other tables that reference that primary key.

i) Let PKS represent the set of rows in SS’s Information Schema TABLE_CONSTRAINTS
view where the value of CONSTRAINT_TYPE is ’PRIMARY KEY’.

SQL/CLI routines 179

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.23 ForeignKeys

ii) Let X represent the set of rows formed by a natural inner join on the values in the
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
columns between the rows in SS’s Information Schema REFERENTIAL_CONSTRAINTS
view and the matching rows in SS’s Information Schema TABLE_CONSTRAINTS view.

iii) Let FKS represent the rows defining the foreign keys that reference an individual pri-
mary key in PKS. These rows are obtained by matching the values of CONSTRAINT_
CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns in a
row of PKS to the values in the UNIQUE_CONSTRAINT_CATALOG, UNIQUE_
CONSTRAINT_SCHEMA, and UNIQUE_CONSTRAINT_NAME columns in X.

iv) Let FKSS represent the set of rows in the combination of all FKS sets.

v) Let PK_COLS represent the set of rows in SS’s Information Schema KEY_COLUMN_
USAGE view that define the columns within an individual primary key row in PKS.

vi) Let PKS_COLS represent the set of rows in the combination of all PK_COLS sets.

vii) Let FK_COLS represent the set of rows in SS’s Information Schema KEY_COLUMN_
USAGE view that define the columns within an individual foreign key in FKSS.

viii) Let FKS_COLS represent the set of rows in the combination of all FK_COLS sets.

ix) Let XKS_COLS represent the set of extended rows formed by a natural inner join on
the values in the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_
NAME, and ORDINAL_POSITION columns between the rows of PKS_COLS and FKS_
COLS.

Let PKS_COLS_NAME be the name of each column of PKS_COLS considered in turn;
the names of the columns of XKS_COLS originating from PKS_COLS are respectively
’P_’ || UKS_COLS_NAME.

Let FKS_COLS_NAME be the name of each column of FKS_COLS considered in turn;
the names of the columns of XKS_COLS originating from FKS_COLS are respectively
’F_’ || FKS_COLS_NAME.

x) FOREIGN_KEYS_QUERY contains a row for each row in XKS_COLS where:

1) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

2) Case:

A) If the value of SUP is 1 (one), then FOREIGN_KEYS_QUERY contains one
or more rows describing the foreign keys that reference the primary key of a
specific table in SS’s information schema TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS_QUERY contains a row for each column of all the
foreign keys that reference the primary key of a specific table in SS’s informa-
tion schema TABLE_CONSTRAINTS view in accordance with implementation-
defined authorization criteria.

180 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

xi) For each row of FOREIGN_KEYS_QUERY:

1) If the implementation does not support catalog names, then UK_TABLE_CAT is set
to the null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS_
QUERY is the value of the P_TABLE_CATALOG column in XKS.

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
P_TABLE_SCHEMA column in XKS.

3) The value of UK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
P_TABLE_NAME column in XKS.

4) The value of UK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
P_COLUMN_NAME column in XKS.

5) If the implementation does not support catalog names, then UK_TABLE_CAT is set
to the null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS_
QUERY is the value of the F_TABLE_CATALOG column in XKS.

6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_SCHEMA column in XKS.

7) The value of FK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_NAME column in XKS.

8) The value of FK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
F_COLUMN_NAME column in XKS.

9) The value of ORDINAL_POSITION in FOREIGN_KEYS_QUERY is the value of the
ORDINAL_POSITION column in XKS.

10) The value of UPDATE_RULE in FOREIGN_KEYS_QUERY is determined by the
value of the UPDATE_RULE column in XKS as follows.

A) Let UR be the value in the UPDATE_RULE column.

B) If UR is ’CASCADE’, then the value of UPDATE_RULE is the code for
CASCADE in Table 26, ‘‘Miscellaneous codes used in CLI’’.

C) If UR is ’RESTRICT’, then the value of UPDATE_RULE is the code for
RESTRICT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

D) If UR is ’SET NULL’, then the value of UPDATE_RULE is the code for SET
NULL in Table 26, ‘‘Miscellaneous codes used in CLI’’.

E) If UR is ’NO ACTION’, then the value of UPDATE_RULE is the code for NO
ACTION in Table 26, ‘‘Miscellaneous codes used in CLI’’.

F) If UR is ’SET DEFAULT’, then the value of UPDATE_RULE is the code for SET
DEFAULT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

11) The value of DELETE_RULE in FOREIGN_KEYS_QUERY is determined by the
value of the DELETE_RULE column in XKS.

A) Let DR be the value in the DELETE_RULE column.

SQL/CLI routines 181

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.23 ForeignKeys

B) If DR is ’CASCADE’, then the value of DELETE_RULE is the code for CASCADE
in Table 26, ‘‘Miscellaneous codes used in CLI’’.

C) If DR is ’RESTRICT’, then the value of DELETE_RULE is the code for
RESTRICT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

D) If DR is ’SET NULL’, then the value of DELETE_RULE is the code for SET
NULL in Table 26, ‘‘Miscellaneous codes used in CLI’’.

E) If DR is ’NO ACTION’, then the value of DELETE_RULE is the code for NO
ACTION in Table 26, ‘‘Miscellaneous codes used in CLI’’.

F) If DR is ’SET DEFAULT’, then the value of DELETE_RULE is the code for SET
DEFAULT in Table 26, ‘‘Miscellaneous codes used in CLI’’.

12) The value of FK_NAME in FOREIGN_KEYS_QUERY is the value of the CONSTRAINT_
NAME column in XKS.

13) The value of UK_NAME in FOREIGN_KEYS_QUERY is the value of the UNIQUE_
CONSTRAINT_NAME column in XKS.

14) If there are no implementation-defined mechanisms for setting the value of
DEFERABILITY in FOREIGN_KEYS_QUERY to the value of the code for
INITIALLY DEFERRED or to the value of the code for INITIALLY IMMEDIATE
in Table 26, ‘‘Miscellaneous codes used in CLI’’, then the value of DEFERABILITY
in FOREIGN_KEYS_QUERY is the code for NOT DEFERRABLE in Table 26,
‘‘Miscellaneous codes used in CLI’’; otherwise, the value of DEFERABILITY in
FOREIGN_KEYS_QUERY can be the code for INITIALLY DEFERRED, the value
of the code for INITIALLY IMMEDIATE, or the code for NOT DEFERRABLE in
Table 26, ‘‘Miscellaneous codes used in CLI’’.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS_QUERY is ’PRIMARY’.

xii) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3,
respectively.

xiii) Let CATVAL, SCHVAL, and TBLVAL be the values of PKCatalogName, PKSchemaName,
and PKTableName, respectively.

xiv) If the METADATA ID attribute of S is TRUE, then:

1) If PKCatalogName is a null pointer and the value of the CATALOG NAME informa-
tion type from Table 28, ‘‘Codes and data types for implementation information’’, Y,
then an exception condition is raised: CLI-specific condition — invalid use of null
pointer.

2) If PKSchemaName is a null pointer or if PKTableName is a null pointer, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

xv) If PKCatalogName is a null pointer, then NL1 is set to zero. If PKSchemaName is a
null pointer, then NL2 is set to zero. If PKTableName is a null pointer, then NL3 is set
to zero.

xvi) Case:

1) If NL1 is not negative, then let L be NL1.

182 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

2) If NL1 indicates NULL TERMINATED, then let L be the number of octets of
PKCatalogName that precede the implementation-defined null character that
terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

Let CATVAL be the first L octets of PKCatalogName.

xvii) Case:

1) If NL2 is not negative, then let L be NL2.

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of
PKSchemaName that precede the implementation-defined null character that
terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

Let SCHVAL be the first L octets of PKSchemaName.

xviii) Case:

1) If NL3 is not negative, then let L be NL3.

2) If NL3 indicates NULL TERMINATED, then let L be the number of octets of
PKTableName that precede the implementation-defined null character that ter-
minates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

Let TBLVAL be the first L octets of PKTableName.

xix) Case:

1) If the METADATA ID attribute of S is TRUE, then:

A) Case:

I) If the value of NL1 is zero, then let CATSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be
the value obtained from evaluating:

SUBSTRING (TRIM(CATVAL) FROM 2
FOR CHAR_LENGTH (TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

FK_TABLE_CAT = ’TEMPSTR’ AND

SQL/CLI routines 183

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.23 ForeignKeys

2) Otherwise, let CATSTR be the character string:

UPPER(FK_TABLE_CAT) = UPPER(’CATVAL’) AND

B) Case:

I) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be
the value obtained from evaluating:

SUBSTRING (TRIM(SCHVAL) FROM 2
FOR CHAR_LENGTH (TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

FK_TABLE_SCHEM = ’TEMPSTR’ AND

2) Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER(’SCHVAL’) AND

C) Case:

I) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be
the value obtained from evaluating:

SUBSTRING (TRIM(TBLVAL) FROM 2
FOR CHAR_LENGTH (TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

FK_TABLE_NAME = ’TEMPSTR’ AND

2) Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER(’TBLVAL’) AND

2) Otherwise:

A) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise,
let CATSTR be the character string:

FK_TABLE_CAT = ’CATVAL’ AND

184 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.23 ForeignKeys

B) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise,
let SCHSTR be the character string:

FK_TABLE_SCHEM = ’SCHVAL’ AND

C) If the value of NL3 is zero, then let TBLSTR be a zero-length string. Otherwise,
let TBLSTR be the character string:

FK_TABLE_NAME = ’TBLVAL’ AND

xx) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || 1=1

xxi) Let STMT be the character string:

SELECT *
FROM FOREIGN_KEYS_QUERY
WHERE PRED
ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

xxii) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the
value of StatementText, and the length of STMT as the value of TextLength.

c) If CHAR_LENGTH(PKN) 6= 0 (zero) and CHAR_LENGTH(FKN) 6= 0 (zero), then the result
of the routine is implementation-defined.

SQL/CLI routines 185

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.24 FreeConnect

6.24 FreeConnect

Function
Deallocate an SQL-connection.

Definition

FreeConnect (
ConnectionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) FreeHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE and
with CH as the value of Handle.

186 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.25 FreeEnv

6.25 FreeEnv

Function
Deallocate an SQL-environment.

Definition

FreeEnv (
EnvironmentHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) FreeHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE and
with EH as the value of Handle.

SQL/CLI routines 187

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.26 FreeHandle

6.26 FreeHandle

Function
Free a resource.

Definition

FreeHandle (
HandleType IN SMALLINT,
Handle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 13, ‘‘Codes used for handle types’’, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i) If H does not identify an allocated SQL-environment, then an exception condition is
raised: CLI-specific condition — invalid handle.

ii) Let E be the allocated SQL-environment identified by H.

iii) The diagnostics area associated with E is emptied.

iv) If an allocated SQL-connection is associated with E, then an exception condition is
raised: CLI-specific condition — function sequence error.

v) E is deallocated and all its resources are freed.

b) If HT indicates CONNECTION HANDLE, then:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Let C be the allocated SQL-connection identified by H.

iii) The diagnostics area associated with C is emptied.

iv) If an established SQL-connection is associated with C, then an exception condition is
raised: CLI-specific condition — function sequence error.

v) C is deallocated and all its resources are freed.

c) If HT indicates STATEMENT HANDLE, then:

i) If H does not identify an allocated SQL-statement, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Let S be the allocated SQL-statement identified by H.

188 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.26 FreeHandle

iii) The diagnostics area associated with S is emptied.

iv) Let C be the allocated SQL-connection with which S is associated and let EC be the
established SQL-connection associated with C.

v) If EC is not the current connection, then the General Rules of Subclause 5.3, ‘‘Implicit
set connection’’, are applied to EC as the dormant connection.

vi) If there is a deferred parameter number associated with S, then an exception condition
is raised: CLI-specific condition — function sequence error.

vii) If there is an open cursor associated with S, then:

1) The open cursor associated with S is placed in the closed state and its copy of the
select source is destroyed.

2) Any fetched row associated with S is removed from association with S.

viii) The automatically allocated CLI descriptor areas associated with S are deallocated and
all their resources are freed.

ix) S is deallocated and all its resources are freed.

d) If HT indicates DESCRIPTOR HANDLE, then:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition — invalid handle.

ii) Let D be the allocated CLI descriptor area identified by H.

iii) The diagnostics area associated with D is emptied.

iv) Let C be the allocated SQL-connection with which D is associated and let EC be the
established SQL-connection associated with C.

v) If EC is not the current connection, then the General Rules of Subclause 5.3, ‘‘Implicit
set connection’’, are applied to EC as the dormant connection.

vi) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to D as
the DESCRIPTOR AREA.

vii) Let AT be the value of the ALLOC_TYPE field of D.

viii) If AT indicates AUTOMATIC, then an exception condition is raised: CLI-specific condi-
tion — invalid use of automatically-allocated descriptor handle.

ix) Let L1 be a list of allocated SQL-statements associated with C for which D is the current
application row descriptor. For each allocated SQL-statement S in L1, the automatically-
allocated application row descriptor associated with S becomes the current application
row descriptor for S.

x) Let L2 be a list of allocated SQL-statements associated with C for which D is the cur-
rent application parameter descriptor. For each allocated SQL-statement S in L2, the
automatically-allocated application parameter descriptor associated with S becomes the
current application parameter descriptor for S.

SQL/CLI routines 189

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.26 FreeHandle

xi) D is deallocated and all its resources are freed.

190 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.27 FreeStmt

6.27 FreeStmt

Function
Deallocate an SQL-statement.

Definition

FreeStmt (
StatementHandle IN INTEGER ,
Option IN SMALLINT)
RETURNS SMALLINT

General Rules

1) Let SH be the value of StatementHandle and let S be the allocated SQL-statement identified by
SH.

2) Let OPT be the value of Option.

3) If OPT is not one of the codes in Table 18, ‘‘Codes used for FreeStmt options’’, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

4) Let ARD be the current application row descriptor for S and let RC be the value of the COUNT
field of ARD.

5) Let APD be the current application parameter descriptor for S and let PC be the value of the
COUNT field of APD.

6) Case:

a) If OPT indicates CLOSE CURSOR and there is an open cursor associated with S, then:

i) The open cursor associated with S is placed in the closed state and its copy of the select
source is destroyed.

ii) Any fetched row associated with S is removed from association with S.

b) If OPT indicates FREE HANDLE, then FreeHandle is implicitly invoked with HandleType
indicating STATEMENT HANDLE and with SH as the value of Handle.

c) If OPT indicates UNBIND COLUMNS, then for each of the first RC item descriptor areas of
ARD, the value of the DATA_POINTER field is set to zero.

d) If OPT indicates UNBIND PARAMETERS, then for each of the first PC item descriptor
areas of APD, the value of the DATA_POINTER field is set to zero.

e) If OPT indicates REALLOCATE, then the following objects associated with S are destroyed:

i) Any prepared statement.

ii) Any cursor.

iii) Any select source.

SQL/CLI routines 191

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.27 FreeStmt

iv) Any executed statement.

and the original automatically allocated descriptors are associated with the allocated
SQL-statement with their original default values as described in the General Rules of
Subclause 6.3, ‘‘AllocHandle’’.

192 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.28 GetConnectAttr

6.28 GetConnectAttr

Function
Get the value of an SQL-connection attribute.

Definition

GetConnectAttr (
ConnectionHandle IN INTEGER,
Attribute IN INTEGER,
Value OUT ANY,
BufferLength IN INTEGER,
StringLength OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 16, ‘‘Codes used for connection attributes’’, then an
exception condition is raised: CLI-specific condition — invalid attribute identifier.

4) If A indicates POPULATE IPD, then:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist.

b) Otherwise:

i) If POPULATE IPD for C is true , then Value is set to 1 (one).

ii) If POPULATE IPD for C is false , then Value is set to 0 (zero).

5) If A indicates SAVEPOINT NAME, then:

a) Let BL be the value of BufferLength.

b) Let AV be the value of the SAVEPOINT NAME connection attribute.

c) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with Value, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 193

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.28 GetConnectAttr

6) If A indicates SAVEPOINT NUMBER, then Value is set to the value of the SAVEPOINT
NUMBER connection attribute.

7) If A specifies an implementation-defined connection attribute, then

Case:

a) If the data type for the connection attribute is specified in Table 19, ‘‘Data types of at-
tributes’’, as INTEGER, then Value is set to the value of the implementation-defined
connection attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined connection attribute.

iii) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
Value, AV, BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

194 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.29 GetCursorName

6.29 GetCursorName

Function
Get a cursor name.

Definition

GetCursorName (
StatementHandle IN INTEGER,
CursorName OUT CHARACTER(L),
BufferLength IN SMALLINT,
NameLength OUT SMALLINT)
RETURNS SMALLINT

where L is the value of BufferLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no cursor name associated with S, then a unique implementation-dependent name
that has the prefix ’SQLCUR’ or the prefix ’SQL_CUR’ becomes the cursor name associated
with S; let CN be that associated cursor name.

b) Otherwise, let CN be the cursor name associated with S.

3) Let BL be the value of BufferLength.

4) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with CursorName,
CN, BL, and NameLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 195

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.30 GetData

6.30 GetData

Function
Retrieve a column value.

Definition

GetData (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
TargetType IN SMALLINT,
TargetValue OUT ANY,
BufferLength IN INTEGER,
StrLen_or_Ind OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no fetched rowset associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

b) If the fetched rowset associated with S is empty, then a completion condition is raised: no
data, TargetValue and StrLen_or_Ind are set to implementation-dependent values, and no
further rules of this Subclause are applied.

c) Otherwise, let R be the fetched rowset associated with S.

3) Let ARD be the current application row descriptor for S and let N be the value of the TOP_
LEVEL_COUNT field of ARD.

4) Let AS be the value of the ARRAY_SIZE field in the header of ARD. Let P be the value of the
attribute CURRENT OF POSITION of S.

5) If P is greater than AS, the P-th row in R has not been fetched, or the value of the CURSOR
SCROLLABLE attribute of S is NONSCROLLABLE and AS is greater than 1 (one), then an
exception condition is raised: CLI-specific condition — invalid cursor position.

6) Let FR be the P-th row of R.

7) Let D be the degree of the table defined by the select source associated with S.

8) If N is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

9) Let CN be the value of ColumnNumber.

10) If CN is less than 1 (one) or greater than D, then an exception condition is raised: dynamic SQL
error — invalid descriptor index.

196 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.30 GetData

11) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of ARD for
which LEVEL is 0 (zero) and the value of TYPE is neither ROW nor ARRAY, then let BCN be
the column number associated with such an item descriptor area and let HBCN be the value of
MAX(BCN). Otherwise, let HBCN be zero.

12) Let IDA be the item descriptor area of ARD specified by CN. If the value of TYPE in IDA is
either ROW or ARRAY, or if the LEVEL of IDA is greater than 0 (zero), then an exception
condition is raised: dynamic SQL error — invalid descriptor index.
NOTE 29 – GetData cannot be called to retrieve the data corresponding to a subordinate descriptor
record such as, for example, from an individual field of a ROW type.

13) If CN is not greater than HBCN, then

Case:

a) If the DATA_POINTER field of IDA is not zero, then an exception condition is raised:
dynamic SQL error — invalid descriptor index.

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an
exception condition is raised: dynamic SQL error — invalid descriptor index.
NOTE 30 – This implementation-defined feature determines whether columns before the highest
bound column can be accessed by GetData.

14) If there is a fetched column number associated with FR, then let FCN be that column number;
otherwise, let FCN be zero.
NOTE 31 – ‘‘fetched column number’’ is the ColumnNumber value used with the previous invocation (if
any) of the GetData routine with FR. See the General Rules later in this Subclause where this value is
set.

15) Case:

a) If FCN is greater than zero and CN is not greater than FCN, then it is implementation-
defined whether an exception condition is raised: dynamic SQL error — invalid descriptor
index.
NOTE 32 – This implementation-defined feature determines whether GetData can only access
columns in ascending column number order.

b) If FCN is less than zero, then:

i) Let AFCN be the absolute value of FCN.

ii) Case:

1) If CN is less than AFCN, then it is implementation-defined whether an exception
condition is raised: dynamic SQL error — invalid descriptor index.
NOTE 33 – This implementation-defined feature determines whether GetData can only
access columns in ascending column number order.

2) If CN is greater than AFCN, then let FCN be AFCN.

16) Let T be the value of TargetType.

17) Let HL be the standard programming language of the invoking host program. Let operative
data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, ‘‘Data type correspondences’’. Refer to the two columns of the operative data
type correspondence table as the SQL data type column and the host data type column.

SQL/CLI routines 197

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.30 GetData

18) If either of the following is true, then an exception condition is raised: CLI-specific condition —
invalid data type in application descriptor.

a) T indicates neither DEFAULT nor ARD TYPE and is not one of the code values in Table 8,
‘‘Codes used for application data types in SQL/CLI’’.

b) T is one of the code values in Table 8, ‘‘Codes used for application data types in SQL/CLI’’,
but the row that contains the corresponding SQL data type in the SQL data type column of
the operative data type correspondence table contains ’None’ in the host data type column.

19) If T does not indicate ARD TYPE, then the data type of the <target specification> described by
IDA is set to T.

20) Let IRD be the implementation row descriptor associated with S.

21) If the value of the TYPE field of IDA indicates DEFAULT, then:

a) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the CN-th item descriptor area of IRD for which LEVEL is 0 (zero).

b) The data type, precision, and scale of the <target specification> described by IDA are set to
CT, P, and SC, respectively, for the purposes of this GetData invocation only.

22) If IDA is not valid as specified in Subclause 5.13, ‘‘Description of CLI item descriptor areas’’,
then an exception condition is raised: dynamic SQL error — using clause does not match target
specifications.

23) Let TT be the value of the TYPE field of IDA.

24) Case:

a) If TT indicates CHARACTER, then:

i) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, ‘‘Codes used for implementation data types in SQL/CLI’’.

ii) Let CL be the implementation-defined maximum length for a CHARACTER VARYING
data type.

b) Otherwise, let UT be TT and let CL be zero.

25) Case:

a) If FCN is less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, or BINARY
LARGE OBJECT, then AFCN becomes the fetched column number associated with the
fetched row associated with S and an exception condition is raised: dynamic SQL error
— invalid descriptor index.

ii) Otherwise, let FL, DV, and DL be the fetched length, data value and data length,
respectively, associated with FCN and let TV be the result of the <string value function>:

SUBSTRING#(DV FROM#(FL+1))

198 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.30 GetData

b) Otherwise:

i) Let FL be zero.

ii) Let SDT be the effective data type of the CN-th <select list> column as represented by
the values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_
CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_
CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in the CN-th item
descriptor area of IRD. Let SV be the value of the <select list> column, with data type
SDT.

iii) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the CN-th
<select list> column whose value is SV be represented by the values of the SPECIFIC_
TYPE_CATALOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in
the corresponding item descriptor area of IRD.

iv) Let TDT be the effective data type of the CN-th <target specification> as represented
by the type UT, the length value CL, and the values of the PRECISION, SCALE,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_
NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_
NAME fields of IDA.

v) Let LTDT be the data type on the last retrieval of the CN-th <target specification>,
if any. If any of the following is true, then it is implementation-defined whether or
not exception condition is raised: dynamic SQL error — restricted data type attribute
violation.

1) If LTDT and TDT both identify a binary large object type and only one of LTDT and
TDT is a binary large object locator.

2) If LTDT and TDT both identify a character large object type and only one of LTDT
and TDT is a character large object locator.

3) If LTDT and TDT both identify an array type and only one of LTDT and TDT is an
array locator.

4) If LTDT and TDT both identify a user-defined type and only one of LTDT and TDT
is a user-defined type locator.

vi) Case:

1) If TDT is a locator type, then;

A) If SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value TV of the CN-th <target specification> is set to an
implementation-dependent four-octet value that represents L.

B) Otherwise, the value TV of the CN-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then

SQL/CLI routines 199

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.30 GetData

Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, and there is an implementation-defined conversion from type
SDT to type TDT, then that implementation-defined conversion is effectively
performed, converting SV to type TDT, and the result is the value TV of the
CN-th <target specification>.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — restricted data type attribute violation.

II) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised in accor-
dance with the General Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2.

III) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and the result is the value TV of the CN-th <target
specification>.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined
name of DT, then let GN be that group name; otherwise, let GN be the default
transform group name associated with the current SQL-session.

C) The Syntax Rules of Subclause 10.15, "Determination of a from-sql function",
in ISO/IEC 9075-2, are applied with DT and GN as TYPE and GROUP, respec-
tively.

Case:

I) If there is an applicable from-sql function, then let FSF be that from-sql
function and let FSFRT be the <returns data type> of FSF.

Case:

1) If FSFRT is compatible with TDT, then the from-sql function TSF is
effectively invoked with SV as its input parameter and the <return
value> is the value TV of the CN-th <target specification>.

200 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.30 GetData

2) Otherwise, an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

26) CN becomes the fetched column number associated with the fetched row associated with S.

27) If TV is the null value, then

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception —
null value, no indicator parameter.

b) Otherwise, StrLen_or_Ind is set to the appropriate ’Code’ for SQL NULL DATA in Table 26,
‘‘Miscellaneous codes used in CLI’’, and the value of TargetValue is implementation-
dependent.

28) Let OL be the value of BufferLength.

29) If null termination is true for the current SQL-environment, then let NB be the length in octets
of a null terminator in the character set of the i-th bound target; otherwise let NB be 0 (zero).

30) If TV is not the null value, then:

a) StrLen_or_Ind is set to 0 (zero).

b) Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, or BINARY
LARGE OBJECT, then TargetValue is set to TV.

ii) Otherwise:

1) If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined whether
or not an exception condition is raised: data exception — zero-length character
string.

B) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied
with TargetValue, TV, OL, and StrLen_or_Ind as TARGET, VALUE, OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

2) If TT is BINARY LARGE OBJECT, then the General Rules of Subclause 5.10,
‘‘Binary large object string retrieval’’, are applied with TargetValue, TV, OL, and
StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

3) If FCN is not less than zero, then let DV be TV and let DL be the length of TV in
octets.

4) Let FL be (FL+OL�NB).

SQL/CLI routines 201

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.30 GetData

5) If FL is less than DL, then �CN becomes the fetched column number associated
with the fetched row associated with S and FL, DV and DL become the fetched
length, data value, and data length, respectively, associated with the fetched column
number.

202 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.31 GetDescField

6.31 GetDescField

Function
Get a field from a CLI descriptor area.

Definition

GetDescField (
DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
FieldIdentifier IN SMALLINT,
Value OUT ANY,
BufferLength IN INTEGER,
StringLength OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value
of the COUNT field of D.

2) Let FI be the value of FieldIdentifier.

3) If FI is not one of the code values in Table 20, ‘‘Codes used for descriptor fields’’, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

4) Let RN be the value of RecordNumber.

5) Let TYPE be the value of the Type column in the row of Table 20, ‘‘Codes used for descriptor
fields’’, that contains FI.

6) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to D as the
DESCRIPTOR AREA.

7) If TYPE is ’ITEM’, then:

a) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

b) If RN is greater than N, then a completion condition is raised: no data.

8) If D is an implementation row descriptor, then let S be the allocated SQL-statement associated
with D.

9) Let MBR be the value of the May Be Retrieved column in the row of Table 22, ‘‘Ability to
retrieve SQL/CLI descriptor fields’’, that contains FI and the column that contains the descriptor
type D.

10) If MBR is ’PS’ and there is no prepared or executed statement associated with S, then an
exception condition is raised: CLI-specific condition — associated statement is not prepared.

11) If MBR is ’No’, then an exception condition is raised: CLI-specific condition — invalid descriptor
field identifier.

SQL/CLI routines 203

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.31 GetDescField

12) If FI indicates a descriptor field whose value is the initially undefined value created when the
descriptor was created, then an exception condition is raised: CLI-specific condition — invalid
descriptor field identifier.

13) Let IDA be the item descriptor area of D specified by RN.

14) If TYPE is ’HEADER’, then header information from the descriptor area D is retrieved as
follows.

Case:

a) If FI indicates COUNT, then the value retrieved is N.

b) If FI indicates ALLOC_TYPE, then the value retrieved is the allocation type for D.

c) If FI indicates an implementation-defined descriptor header field, then the value retrieved is
the value of the implementation-defined descriptor header field identified by FI.

d) Otherwise, if FI indicates a descriptor header field defined in Table 20, ‘‘Codes used for de-
scriptor fields’’, then the value retrieved is the value of the descriptor header field identified
by FI.

15) If TYPE is ’ITEM’, then item information from the descriptor area D is retrieved as follows:

Case:

a) If FI indicates an implementation-defined descriptor item field, then the value retrieved is
the value of the implementation-defined descriptor item field of IDA identified by FI.

b) Otherwise, if FI indicates a descriptor item field defined in Table 20, ‘‘Codes used for descrip-
tor fields’’, then the value retrieved is the value of the descriptor item field of IDA identified
by FI.

16) Let V be the value retrieved.

17) If FI indicates a descriptor field whose row in Table 6, ‘‘Fields in SQL/CLI row and parameter
descriptor areas’’, contains a Data Type that is not CHARACTER VARYING, then Value is set
to V and no further rules of this Subclause are applied.

18) Let BL be the value of BufferLength.

19) If FI indicates a descriptor field whose row in Table 6, ‘‘Fields in SQL/CLI row and parameter
descriptor areas’’, contains a Data Type that is CHARACTER VARYING, then the General Rules
of Subclause 5.9, ‘‘Character string retrieval’’, are applied with Value, V, BL, and StringLength
as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH, respec-
tively.

204 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.32 GetDescRec

6.32 GetDescRec

Function
Get commonly-used fields from a CLI descriptor area.

Definition

GetDescRec (
DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Name OUT CHARACTER(L),
BufferLength IN SMALLINT,
NameLength OUT SMALLINT,
Type OUT SMALLINT,
SubType OUT SMALLINT,
Length OUT INTEGER,
Precision OUT SMALLINT,
Scale OUT SMALLINT,
Nullable OUT SMALLINT)
RETURNS SMALLINT

where L is the value of BufferLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value
of the COUNT field of D.

2) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to D as the
DESCRIPTOR AREA.

3) Let RN be the value of RecordNumber.

4) Case:

a) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

b) Otherwise, if RN is greater than N, then a completion condition is raised: no data.

5) If D is an implementation row descriptor associated with an allocated SQL-statement S and
there is no prepared or executed statement associated with S, then an exception condition is
raised: CLI-specific condition — associated statement is not prepared.

6) Let ITEM be the <dynamic parameter specification> or <select list> column (or part thereof, if
the item descriptor area of D is a subordinate descriptor) described by the item descriptor area
of D specified by RN.

7) Let BL be the value of BufferLength.

8) Information is retrieved from D:

a) If Type is not a null pointer, then Type is set to the value of the TYPE field of ITEM.

SQL/CLI routines 205

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.32 GetDescRec

b) If SubType is not a null pointer, then SubType is set to the value of the DATETIME_
INTERVAL_CODE field of ITEM.

c) If Length is not a null pointer, then Length is set to value of the OCTET_LENGTH field of
ITEM.

d) If Precision is not a null pointer, then Precision is set to the value of the PRECISION field
of ITEM.

e) If Scale is not a null pointer, then Scale is set to the value of the SCALE field of ITEM.

f) If Nullable is not a null pointer, then Nullable is set to the value of the NULLABLE field of
ITEM.

g) If Name is not a null pointer, then

Case:

i) If null termination is false for the current SQL-environment and BL is zero, then no
further rules of this Subclause are applied.

ii) Otherwise:

1) The value retrieved is the value of the NAME field of ITEM.

2) Let V be the value retrieved.

3) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
Name, V, BL, and NameLength as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

206 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.33 GetDiagField

6.33 GetDiagField

Function
Get information from a CLI diagnostics area.

Definition

GetDiagField (
HandleType IN SMALLINT,
Handle IN INTEGER,
RecordNumber IN SMALLINT,
DiagIdentifier IN SMALLINT,
DiagInfo OUT ANY,
BufferLength IN SMALLINT,
StringLength OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType.

2) If HT is not one of the code values in Table 13, ‘‘Codes used for handle types’’, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-
environment, then an exception condition is raised: CLI-specific condition — invalid handle.

b) If HT indicates CONNECTION HANDLE and Handle does not identify an allocated SQL-
connection, then an exception condition is raised: CLI-specific condition — invalid handle.

c) If HT indicates STATEMENT HANDLE and Handle does not identify an allocated SQL-
statement, then an exception condition is raised: CLI-specific condition — invalid handle.

d) If HT indicates DESCRIPTOR HANDLE and Handle does not identify an allocated CLI
descriptor area, then an exception condition is raised: CLI-specific condition — invalid
handle.

4) Let DI be the value of DiagIdentifier.

5) If DI is not one of the code values in Table 12, ‘‘Codes used for diagnostic fields’’, then an
exception condition is raised: CLI-specific condition — invalid attribute value.

6) Let TYPE be the value of the Type column in the row that contains DI in Table 12, ‘‘Codes used
for diagnostic fields’’.

7) Let RN be the value of RecordNumber.

SQL/CLI routines 207

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.33 GetDiagField

8) Let R be the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or
Error, for which Handle was passed as the value of an input handle and let N be the number of
status records generated by the execution of R.
NOTE 34 – The GetDiagRec, GetDiagField, and Error routines may cause exception or completion
conditions to be raised, but they do not cause diagnostic information to be generated.

9) If TYPE is ’STATUS’, then:

a) If RN is less than 1 (one), then an exception condition is raised: invalid condition number.

b) If RN is greater than N, then a completion condition is raised: no data, and no further rules
of this Subclause are applied.

10) If DI indicates ROW_COUNT and R is neither Execute nor ExecDirect, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

11) If TYPE is ’HEADER’, then header information from the diagnostics area associated with the
resource identified by Handle is retrieved.

a) If DI indicates NUMBER, then the value retrieved is N.

b) If DI indicates DYNAMIC_FUNCTION, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is a
zero-length string.

ii) Otherwise, the value retrieved is the character identifier of the SQL-statement being
prepared or executed by R. The value DYNAMIC_FUNCTION values are specified in
Table 26, "SQL-statement codes", in ISO/IEC 9075-2 and in Table 9, "SQL-statement
codes", in ISO/IEC 9075-5.
NOTE 35 – Additional valid DYNAMIC_FUNCTION values may be defined in other parts of
ISO/IEC 9075.

c) If DI indicates DYNAMIC_FUNCTION_CODE, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is 0
(zero).

ii) Otherwise, the value retrieved is the integer identifier of the SQL-statement being pre-
pared or executed by R. The value DYNAMIC_FUNCTION_CODE values are specified
in Table 26, "SQL-statement codes", in ISO/IEC 9075-2, and in Table 9, "SQL-statement
codes", in ISO/IEC 9075-5.
NOTE 36 – Additional valid DYNAMIC_FUNCTION_CODE values may be defined in other
parts of ISO/IEC 9075.

d) If DI indicates RETURNCODE, then the value retrieved is the code indicating the basic
result of the execution of R. Subclause 4.2, ‘‘Return codes’’, specifies the code values and
their meanings.
NOTE 37 – The value retrieved will never indicate Invalid handle or Data needed, since no
diagnostic information is generated if this is the basic result of the execution of R.

208 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.33 GetDiagField

e) If DI indicates ROW_COUNT, the value retrieved is the number of rows affected as the re-
sult of executing a <delete statement: searched>, <insert statement> or <update statement:
searched> as a direct result of the execution of the SQL-statement executed by R. Let S be
the <delete statement: searched>, <insert statement> or <update statement: searched>.
Let T be the table identified by the <table name> directly contained in S.

Case:

i) If S is an <insert statement>, then the value retrieved is the number of rows inserted
into T.

ii) If S is not an <insert statement> and does not contain a <search condition>, then the
value retrieved is the cardinality of T before the execution of S.

iii) Otherwise, let SC be the <search condition> directly contained in S. The value retrieved
is effectively derived by executing the statement:

SELECT COUNT(*)
FROM T
WHERE SC

before the execution of S.

The value retrieved following the execution by R of an SQL-statement that does not
directly result in the execution of a <delete statement: searched>, <insert statement> or
<update statement: searched> is implementation-dependent.

f) If DI indicates MORE, then the value retrieved is

Case:

i) If more conditions were raised during execution of R than have been stored in the
diagnostics area, then 1 (one).

ii) If all the conditions that were raised during execution of R have been stored in the
diagnostics area, then 0 (zero).

g) If DI indicates TRANSACTIONS_COMMITTED, then the value retrieved is the number
of SQL-transactions that have been committed since the most recent time at which the
diagnostics area for HT was emptied.
NOTE 38 – See the General Rules of Subclause 13.3, "<externally-invoked procedure>", and
Subclause 13.4, "Calls to an <externally-invoked procedure>", in ISO/IEC 9075-2. TRANSACTIONS_
COMMITTED indicates the number of SQL-transactions that were committed during the invocation
of an external routine.

h) If DI indicates TRANSACTIONS_ROLLED_BACK, then the value retrieved is the number
of SQL-transactions that have been rolled back since the most recent time at which the
diagnostics area for HT was emptied.
NOTE 39 – See the General Rules of Subclause 13.3, "<externally-invoked procedure>", and
Subclause 13.4, "Calls to an <externally-invoked procedure>", in ISO/IEC 9075-2. TRANSACTIONS_
ROLLED_BACK indicates the number of SQL-transactions that were rolled back during the invoca-
tion of an external routine.

SQL/CLI routines 209

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.33 GetDiagField

i) If DI indicates TRANSACTION_ACTIVE, then the value retrieved is 1 (one) if an SQL-
transaction is currently active and is 0 (zero) if an SQL-transaction is not currently active.

NOTE 40 – TRANSACTION_ACTIVE indicates whether an SQL-transaction is active upon return
from an external routine.

j) If DI indicates an implementation-defined diagnostics header field, then the value retrieved
is the value of the implementation-defined diagnostics header field.

12) If TYPE is ’STATUS’, then information from the RN-th status record in the diagnostics area
associated with the resource identified by Handle is retrieved.

a) If DI indicates CONDITION_NUMBER, then the value retrieved is RN.

b) If DI indicates SQLSTATE, then the value retrieved is the SQLSTATE value corresponding
to the status condition.

c) If DI indicates NATIVE_CODE, then the value retrieved is the implementation-defined
native error code corresponding to the status condition.

d) If DI indicates MESSAGE_TEXT, then the value retrieved is

Case:

i) If the value of SQLSTATE corresponds to external routine invocation exception, external
routine exception, or warning, then the message text item of the SQL-invoked routine
that raised the exception condition.

ii) Otherwise, an implementation-defined character string.
NOTE 41 – An implementation may provide <space>s or a zero-length string or a character
string that describes the status condition.

e) If DI indicates MESSAGE_LENGTH, then the value retrieved is the length in characters of
the character string value of MESSAGE_TEXT corresponding to the status condition.

f) If DI indicates MESSAGE_OCTET_LENGTH, then the value retrieved is the length in
octets of the character string value of MESSAGE_TEXT corresponding to the status condi-
tion.

g) If DI indicates CLASS_ORIGIN, then the value retrieved is the identification of the naming
authority that defined the class value of the SQLSTATE value corresponding to the status
condition. That value shall be ’ISO 9075’ if the class value is fully defined in Subclause 22.1,
"SQLSTATE", in ISO/IEC 9075-2 or Subclause 5.12, ‘‘CLI-specific status codes’’, and shall be
an implementation-defined character string other than ’ISO 9075’ for any implementation-
defined class value.

h) If DI indicates SUBCLASS_ORIGIN, then the value retrieved is the identification of the
naming authority that defined the subclass value of the SQLSTATE value corresponding to
the status condition. That value shall be ’ISO 9075’ if the subclass value is fully defined in
Subclause 22.1, "SQLSTATE", in ISO/IEC 9075-2, or Subclause 5.12, ‘‘CLI-specific status
codes’’, and shall be an implementation-defined character string other than ’ISO 9075’ for
any implementation-defined subclass value.

210 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.33 GetDiagField

i) If DI indicates CURSOR_NAME, CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,
CONSTRAINT_NAME, CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_
NAME, PARAMETER_MODE, PARAMETER_NAME, PARAMETER_ORDINAL_POSITION,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME, SPECIFIC_NAME,
TRIGGER_CATALOG, TRIGGER_SCHEMA, or TRIGGER_NAME, then the values retrieved
are

Case:

i) If the value of SQLSTATE corresponds to warning — cursor operation conflict, then the
value of CURSOR_NAME is the name of the cursor that caused the completion condition
to be raised.

ii) If the value of SQLSTATE corresponds to integrity constraint violation, transaction
rollback — integrity constraint violation, or triggered data change violation, then:

1) The values of CONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the
<catalog name> and the <unqualified schema name> of the <schema name> of the
schema containing the constraint or assertion. The value of CONSTRAINT_NAME
is the <qualified identifier> of the constraint or assertion.

2) Case:

A) If the violated integrity constraint is a table constraint, then the values of
CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog
name>, the <unqualified schema name> of the <schema name>, and the <quali-
fied identifier> or <local table name>, respectively, of the table in which the table
constraint is contained.

B) If the violated integrity constraint is an assertion and if only one table referenced
by the assertion has been modified as a result of executing the SQL-statement,
then the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME
are the <catalog name>, the <unqualified schema name> of the <schema name>,
and the <qualified identifier> or <local table name>, respectively, of the modified
table.

C) Otherwise, the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_
NAME are <space>s.

If the value of TABLE_NAME identifies a declared local temporary table, then
the value of CATALOG_NAME is <space>s and the value of SCHEMA_NAME is
’MODULE’.

iii) If the value of SQLSTATE corresponds to syntax error or access rule violation, then:

1) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the
<catalog name>, the <unqualified schema name> of the <schema name> of the
schema that contains the table that caused the syntax error or the access rule
violation and the <qualified identifier> or <local table name>, respectively. If
TABLE_NAME refers to a declared local temporary table, then CATALOG_NAME is
<space>s and SCHEMA_NAME contains ’MODULE’.

2) If the syntax error or the access rule violation was for an inaccessible column, then
the value of COLUMN_NAME is the <column name> of that column. Otherwise, the
value of COLUMN_NAME is <space>s.

SQL/CLI routines 211

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.33 GetDiagField

iv) If the value of SQLSTATE corresponds to invalid cursor state, then the value of
CURSOR_NAME is the name of the cursor that is in the invalid state.

v) If the value of SQLSTATE corresponds to with check option violation, then the values
of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>
and the <unqualified schema name> of the <schema name> of the schema that contains
the view that caused the violation of the WITH CHECK OPTION, and the <qualified
identifier> of that view, respectively.

vi) If the value of SQLSTATE does not correspond to syntax error or access rule violation,
then:

1) If the values of CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, and
COLUMN_NAME identify a column for which no privileges are granted to the
enabled authorization identifiers, then the value of COLUMN_NAME is replaced by
a zero-length string.

2) If the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME identify
a table for which no privileges are granted to the enabled authorization identifiers,
then the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are
replaced by a zero-length string.

3) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and
CONSTRAINT_NAME identify a <table constraint> for some table T and if no
privileges for T are granted to the enabled authorization identifiers, then the values
of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
are replaced by a zero-length string.

4) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and
CONSTRAINT_NAME identify an assertion contained in some schema S and if the
owner of S is not included in the set of enabled authorization identifiers, then the
values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_
NAME are replaced by a zero-length string.

vii) If the value of SQLSTATE corresponds to triggered action exception, to transaction
rollback — triggered action exception, or to triggered data change violation that was
caused by a trigger, then:

1) The values of TRIGGER_CATALOG and TRIGGER_SCHEMA are the <catalog
name> and the <unqualified schema name>, respectively, of the <schema name> of
the schema containing the trigger. The value of TRIGGER_NAME is the <qualified
identifier> of the <trigger name> of the trigger.

2) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the
<catalog name>, the <unqualified schema name> of the <schema name>, and the
<qualified identifier> of the <table name>, respectively, of the table on which the
trigger is defined.

viii) If the value of SQLSTATE corresponds to external routine invocation exception, or to
external routine exception, then:

1) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog
name> and the <unqualified schema name>, respectively,of the <schema name> of
the schema containing the SQL-invoked routine.

212 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.33 GetDiagField

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name> of the SQL-invoked
routine, respectively.

3) Case:

A) If the condition is related to some parameter Pi of the SQL-invoked routine,
then:

I) The value of PARAMETER_MODE is the <parameter mode> of Pi.

II) The value of PARAMETER_ORDINAL_POSITION is the value of i.

III) The value of PARAMETER_NAME is a zero-length string.

B) Otherwise:

I) The value of PARAMETER_MODE is a zero-length string.

II) The value of PARAMETER_ORDINAL_POSITION is 0 (zero).

III) The value of PARAMETER_NAME is a zero-length string.

ix) If the value of SQLSTATE corresponds to data exception — numeric value out of range,
data exception — invalid character value for cast, data exception — string data, right
truncation, data exception — interval field overflow, integrity constraint violation, warn-
ing — string data, right truncation, or warning — implicit zero-bit padding, and the
condition was raised as the result of an assignment to an SQL parameter during an
SQL-invoked routine invocation, then:

1) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog
name> and <unqualified schema name>, respectively, of the <schema name> of the
schema containing the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name>, respectively, of the
SQL-invoked routine.

3) If the condition is related to some parameter Pi of the SQL-invoked routine, then:

A) The value of PARAMETER_MODE is the <parameter mode> of Pi.

B) The value of PARAMETER_ORDINAL_POSITION is the value of i.

C) If an <SQL parameter name> was specified for the SQL parameter when the
SQL-invoked routine was created, then the value of PARAMETER_NAME is
the <SQL parameter name> of that SQL parameter, Pi; otherwise, the value of
PARAMETER_NAME is a zero-length string.

j) If DI indicates SERVER_NAME or CONNECTION_NAME, then the values retrieved are

Case:

i) If R is Connect, then the name of the SQL-server explicitly or implicitly referenced by
R and the implementation-defined connection name associated with that SQL-server
reference, respectively.

SQL/CLI routines 213

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.33 GetDiagField

ii) If R is Disconnect, then the name of the SQL-server and the associated implementation-
defined connection name, respectively, associated with the allocated SQL-connection
referenced by R.

iii) If the status condition was caused by the application of the General Rules of
Subclause 5.3, ‘‘Implicit set connection’’, then the name of the SQL-server and the
implementation-defined connection name, respectively, associated with the dormant
connection specified in the application of that Subclause.

iv) If the status condition was raised in an SQL-session, then the name of the SQL-server
and the implementation-defined connection name, respectively, associated with the
SQL-session in which the status condition was raised.

v) Otherwise, zero-length strings.

k) If DI indicates CONDITION_IDENTIFIER, then the value retrieved is

Case:

i) If the value of SQLSTATE corresponds to unhandled user-defined exception, then the
<condition name> of the user-defined exception.

ii) Otherwise, a zero-length string.

l) If FI indicates ROW_NUMBER, then the value retrieved is the number of the row in the
rowset to which this diagnostic record corresponds. If the diagnostic record does not corre-
spond to any particular row, then the value retrieved is 0 (zero).

m) If FI indicates COLUMN_NUMBER, then the value retrieved is the number of the column
to which this diagnostic record corresponds. If the diagnostic record does not correspond to
any particular column, then the value retrieved is 0 (zero).

n) If DI indicates an implementation-defined diagnostics status field, then the value retrieved
is the value of the implementation-defined diagnostics status field.

13) Let V be the value retrieved.

14) If DI indicates a diagnostics field whose row in Table 2, ‘‘Fields in SQL/CLI diagnostics areas’’,
contains a Data Type that is neither CHARACTER nor CHARACTER VARYING, then DiagInfo
is set to V and no further rules of this Subclause are applied.

15) Let BL be the value of BufferLength.

16) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition —
invalid string length or buffer length.

17) Let L be the length in octets of V.

18) If StringLength is not a null pointer, then StringLength is set to L.

19) Case:

a) If null termination is false for the current SQL-environment, then:

i) If L is not greater than BL, then the first L octets of DiagInfo are set to V and the values
of the remaining octets of DiagInfo are implementation-dependent.

214 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.33 GetDiagField

ii) Otherwise, DiagInfo is set to the first BL octets of V.

b) Otherwise, let k be the number of octets in a null terminator in the character set of DiagInfo
and let the phrase ‘‘implementation-defined null character that terminates a C character
string’’ imply k octets, all of whose bits are zero.

i) If L is not greater than (BL�k), then the first (L+k) octets of DiagInfo are set to V con-
catenated with a single implementation-defined null character that terminates a C char-
acter string. The values of the remaining characters of DiagInfo are implementation-
dependent.

ii) Otherwise, DiagInfo is set to the first (BL�k) octets of V concatenated with a single
implementation-defined null character that terminates a C character string.

SQL/CLI routines 215

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.34 GetDiagRec

6.34 GetDiagRec

Function
Get commonly-used information from a CLI diagnostics area.

Definition

GetDiagRec (
HandleType IN SMALLINT,
Handle IN INTEGER,
RecordNumber IN SMALLINT,
Sqlstate OUT CHARACTER(5),
NativeError OUT INTEGER,
MessageText OUT CHARACTER(L),
BufferLength IN SMALLINT,
TextLength OUT SMALLINT)
RETURNS SMALLINT

where L is the value of BufferLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) Let HT be the value of HandleType.

2) If HT is not one of the code values in Table 13, ‘‘Codes used for handle types’’, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-
environment, then an exception condition is raised: CLI-specific condition — invalid handle.

b) If HT indicates CONNECTION HANDLE and Handle does not identify an allocated SQL-
connection, then an exception condition is raised: CLI-specific condition — invalid handle.

c) If HT indicates STATEMENT HANDLE and Handle does not identify an allocated SQL-
statement, then an exception condition is raised: CLI-specific condition — invalid handle.

d) If HT indicates DESCRIPTOR HANDLE and Handle does not identify an allocated CLI
descriptor area, then an exception condition is raised: CLI-specific condition — invalid
handle.

4) Let RN be the value of RecordNumber.

5) Let R be the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or
Error, for which Handle was passed as the value of an input handle and let N be the number of
status records generated by the execution of R.
NOTE 42 – The GetDiagRec, GetDiagField, and Error routines may cause exception or completion
conditions to be raised, but they do not cause diagnostic information to be generated.

6) If RN is less than 1 (one), then an exception condition is raised: invalid condition number.

216 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.34 GetDiagRec

7) If RN is greater than N, then a completion condition is raised: no data, and no further rules of
this Subclause are applied.

8) Let BL be the value of BufferLength.

9) Information from the RN-th status record in the diagnostics area associated with the resource
identified by Handle is retrieved.

a) If Sqlstate is not a null pointer, then Sqlstate is set to the SQLSTATE value corresponding
to the status condition.

b) If NativeError is not a null pointer, then NativeError is set to the implementation-defined
native error code corresponding to the status condition.

c) If MessageText is not a null pointer, then

Case:

i) If null termination is false for the current SQL-environment and BL is zero, then no
further rules of this Subclause are applied.

ii) Otherwise, an implementation-defined character string is retrieved. Let MT be the
implementation-defined character string that is retrieved and let L be the length in
octets of MT. If BL is not greater than zero, then an exception condition is raised: CLI-
specific condition — invalid string length or buffer length. If TextLength is not a null
pointer, then TextLength is set to L.

Case:

1) If null termination is false for the current SQL-environment, then:

A) If L is not greater than BL, then the first L octets of MessageText are set to
MT and the values of the remaining octets of MessageText are implementation-
dependent.

B) Otherwise, MessageText is set to the first BL octets of MT.

2) Otherwise, let k the number of octets in a null terminator in the character set
of MessageText and let the phrase ‘‘implementation-defined null character that
terminates a C character string’’ imply k octets, all of whose bits are zero.

A) If L is not greater than (BL�k), then the first (L+k) octets of MessageText are
set to MT concatenated with a single implementation-defined null character
that terminates a C character string. The values of the remaining characters of
MessageText are implementation-dependent.

B) Otherwise, MessageText is set to the first (BL�k) octets of MT concatenated with
a single implementation-defined null character that terminates a C character
string.

NOTE 43 – An implementation may provide <space>s or a zero-length string or a character
string that describes the status condition.

SQL/CLI routines 217

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.35 GetEnvAttr

6.35 GetEnvAttr

Function
Get the value of an SQL-environment attribute.

Definition

GetEnvAttr (
EnvironmentHandle IN INTEGER,
Attribute IN INTEGER,
Value OUT ANY,
BufferLength IN INTEGER,
StringLength OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Case:

a) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies
an allocated skeleton SQL-environment, then an exception condition is raised: CLI-specific
condition — invalid handle.

b) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.

ii) The diagnostics area associated with E is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 15, ‘‘Codes used for environment attributes’’, then an
exception condition is raised: CLI-specific condition — invalid attribute identifier.

4) If A indicates NULL TERMINATION, then

Case:

a) If null termination for E is true , then Value is set to 1 (one).

b) If null termination for E is false , then Value is set to 0 (zero).

5) If A specifies an implementation-defined environment attribute, then

Case:

a) If the data type for the environment attribute is specified in Table 19, ‘‘Data types of
attributes’’, as INTEGER, then Value is set to the value of the implementation-defined
environment attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined environment attribute.

218 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.35 GetEnvAttr

iii) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
Value, AV, BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

SQL/CLI routines 219

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.36 GetFeatureInfo

6.36 GetFeatureInfo

Function
Get information about features supported by the CLI implementation.

Definition

GetFeatureInfo (
ConnectionHandle IN INTEGER,
FeatureType IN CHARACTER(L1),
FeatureTypeLength IN SMALLINT,
FeatureId IN CHARACTER(L2),
FeatureIdLength IN SMALLINT,
SubFeatureId IN CHARACTER(L3),
SubFeatureIdLength IN SMALLINT,
Supported OUT SMALLINT)
RETURNS SMALLINT

where L1, L2, and L3 are determined by the values of FeatureTypeLength, FeatureIdLength, and
SubFeatureIdLength, respectively, and each of L1, L2, and L3 has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, ‘‘Implicit set
connection’’, are applied to EC as the dormant SQL-connection.

4) Let FTL be the value of FeatureTypeLength.

5) Case:

a) If FTL is not negative, then let L be FTL.

b) If FTL indicates NULL TERMINATED, then let L be the number of octets of FeatureType
that precede the implementation-defined null character that terminates a C character string.

220 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.36 GetFeatureInfo

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

6) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

b) Otherwise, let FTV be the first L octets of FeatureType and let FT be the value of

TRIM (BOTH ’ ’ FROM FTV)

7) If FT is other than ’FEATURE’, ’SUBFEATURE’, or ’PACKAGE’, then an exception condition is
raised: CLI-specific condition — invalid attribute value.

8) Let FIL be the value of FeatureIdIdLength.

9) Case:

a) If FIL is not negative, then let L be FIL.

b) If FIL indicates NULL TERMINATED, then let L be the number of octets of FeatureId that
precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

10) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

b) Otherwise, let FIV be the first L octets of FeatureId and let FI be the value of

TRIM (BOTH ’ ’ FROM FIV)

11) Case:

a) If FT is ’SUBFEATURE’, then:

i) Let SFIL be the value of SubFeatureIdLength.

ii) Case:

1) If SFIL is not negative, then let L be SFIL.

2) If SFIL indicates NULL TERMINATED, then let L be the number of octets of
SubFeatureId that precede the implementation-defined null character that termi-
nates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

SQL/CLI routines 221

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.36 GetFeatureInfo

iii) Case:

1) If L is zero, then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

2) Otherwise, let SFIV be the first L octets of SubFeatureId and let SFI be the value
of

TRIM (BOTH ’ ’ FROM SFIV)

b) Otherwise, let SFI be a character string consisting of a single space.

12) If there is no row in the INFORMATION_SCHEMA.SQL_FEATURES view with FEATURE_
SUBFEATURE_PACKAGE_CODE equal to FT, FEATURE_ID equal to FI, and SUB_
FEATURE_ID equal SFI, then an exception condition is raised: CLI-specific condition — invalid
attribute value.

13) Let SH be an allocated statement handle on C.

14) Let STMT be the character string:

SELECT IS_SUPPORTED
FROM INFORMATION_SCHEMA.SQL_FEATURES
WHERE FEATURE_SUBFEATURE_PACKAGE_CODE = ’FT’
AND FEATURE_ID = ’FI’
AND SUB_FEATURE_ID = ’SFI’

15) Let IS be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT
as the value of TextLength.

16) If any status condition, such as connection failure, is caused by the implicit execution of
ExecDirect, then:

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetFeatureInfo returns the same return code that was returned by the
implicit invocation of ExecDirect and no further Rules of this Subclause are applied.

17) If the value of IS is ’YES’, then Supported is set to 1 (one); otherwise, Supported is set to 0
(zero).

222 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.37 GetFunctions

6.37 GetFunctions

Function
Determine whether a CLI routine is supported.

Definition

GetFunctions (
ConnectionHandle IN INTEGER,
FunctionId IN SMALLINT,
Supported OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, ‘‘Implicit set
connection’’, are applied to EC as the dormant SQL-connection.

4) Let FI be the value of FunctionId.

5) If FI is not one of the codes in Table 27, ‘‘Codes used to identify SQL/CLI routines’’, then an
exception condition is raised: CLI-specific condition — invalid FunctionId specified.

6) If FI identifies a CLI routine that is supported by the implementation, then Supported is set
to 1 (one); otherwise, Supported is set to 0 (zero). Table 27, ‘‘Codes used to identify SQL/CLI
routines’’, specifies the codes used to identify the CLI routines defined in this part of ISO/IEC
9075.

SQL/CLI routines 223

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.38 GetInfo

6.38 GetInfo

Function
Get information about the implementation.

Definition

GetInfo (
ConnectionHandle IN INTEGER,
InfoType IN SMALLINT,
InfoValue OUT ANY,
BufferLength IN SMALLINT,
StringLength OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, ‘‘Implicit set
connection’’, are applied to EC as the dormant SQL-connection.

4) Several General Rules in this Subclause cause implicit invocation of ExecDirect. If any status
condition, such as a connection failure, is caused by such implicit invocation of ExecDirect, then:

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetInfo returns the same return code that was returned by the implicit
invocation of ExecDirect and no further Rules of this Subclause are applied.

5) Let IT be the value of InfoType.

6) If IT is not one of the codes in Table 28, ‘‘Codes and data types for implementation information’’,
then an exception condition is raised: CLI-specific condition — invalid information type.

7) Let SS be the SQL-server associated with EC.

224 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.38 GetInfo

8) Refer to a component of the SQL-client that is responsible for communicating with one or more
SQL-servers as a driver.

9) Let SH be an allocated statement handle on C.

10) Case:

a) If IT indicates any of the following:

— MAXIMUM COLUMN NAME LENGTH

— MAXIMUM COLUMNS IN GROUP BY

— MAXIMUM COLUMNS IN ORDER BY

— MAXIMUM COLUMNS IN SELECT

— MAXIMUM COLUMNS IN TABLE

— MAXIMUM CONCURRENT ACTIVITIES

— MAXIMUM CURSOR NAME LENGTH

— MAXIMUM DRIVER CONNECTIONS

— MAXIMUM IDENTIFIER LENGTH

— MAXIMUM SCHEMA NAME LENGTH

— MAXIMUM STATEMENT OCTETS DATA

— MAXIMUM STATEMENT OCTETS SCHEMA

— MAXIMUM STATEMENT OCTETS

— MAXIMUM TABLE NAME LENGTH

— MAXIMUM TABLES IN SELECT

— MAXIMUM USER NAME LENGTH

— MAXIMUM CATALOG NAME LENGTH

then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE SIZING_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the
length of STMT as the value of TextLength.

b) If IT indicates any of the following:

— CATALOG NAME

SQL/CLI routines 225

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.38 GetInfo

— COLLATING SEQUENCE

— CURSOR COMMIT BEHAVIOR

— DATA SOURCE NAME

— DBMS NAME

— DBMS VERSION

— NULL COLLATION

— SEARCH PATTERN ESCAPE

— SERVER NAME

— SPECIAL CHARACTERS

then:

i) Let STMT be the character string;

SELECT CHARACTER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the
length of STMT as the value of TextLength.

c) If IT indicates any of the following:

— DEFAULT TRANSACTION ISOLATION

— IDENTIFIER CASE

— TRANSACTION CAPABLE

then:

i) Let STMT be the character string;

SELECT INTEGER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the
length of STMT as the value of TextLength.

d) If IT indicates ALTER TABLE, then:

i) Let V be 0 (zero).

ii) If SS supports the <add column definition> clause on the <alter table statement>, then
add the numeric value for ADD COLUMN from Table 30, ‘‘Values for ALTER TABLE
with GetInfo’’ to V.

226 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.38 GetInfo

iii) If SS supports the <drop column definition> clause on the <alter table statement>, then
add the numeric value for DROP COLUMN from Table 30, ‘‘Values for ALTER TABLE
with GetInfo’’ to V.

iv) If SS supports the <alter column definition> clause on the <alter table statement>, then
add the numeric value for ALTER COLUMN from Table 30, ‘‘Values for ALTER TABLE
with GetInfo’’ to V.

v) If SS supports the <add table constraint definition> clause on the <alter table state-
ment>, then add the numeric value for ADD CONSTRAINT from Table 30, ‘‘Values for
ALTER TABLE with GetInfo’’ to V.

vi) If SS supports the <drop table constraint definition> clause on the <alter table state-
ment>, then add the numeric value for DROP CONSTRAINT from Table 30, ‘‘Values for
ALTER TABLE with GetInfo’’ to V.

NOTE 44 – The ability to specify ALTER TABLE in GetInfo is deprecated. This capability is
replaced with the ability to invoke GetFeatureInfo using FeatureId and SubFeatureId combinations
that indicate Features F031-03, F381-01, F381-02, and F381-03, and FeatureId to indicate Feature
F033.

e) If IT indicates CURSOR SENSITIVITY, then let V be set as follows to indicate support for
cursor sensitivity at SS:

i) If SS supports both the behavior associated with the INSENSITIVE keyword and the
behavior associated with the SENSITIVE keyword in Clause 14, "Data manipulation", in
ISO/IEC 9075-2, then let V be the value of SENSITIVE for the CURSOR SENSITIVITY
attribute from Table 26, ‘‘Miscellaneous codes used in CLI’’.

ii) If SS supports the behavior associated with the INSENSITIVE keyword in Clause
14, "Data manipulation", in ISO/IEC 9075-2 but not the behavior associated with the
SENSITIVE keyword in Clause 14, "Data manipulation", in ISO/IEC 9075-2, then let V
be the value of INSENSITIVE for the CURSOR SENSITIVITY attribute from Table 26,
‘‘Miscellaneous codes used in CLI’’.

iii) If SS supports the behavior of associated with the ASENSITIVE keyword in Clause 14,
"Data manipulation", in ISO/IEC 9075-2, then let V be the value of ASENSITIVE for the
CURSOR SENSITIVITY attribute from Table 26, ‘‘Miscellaneous codes used in CLI’’.

NOTE 45 – The ability to specify CURSOR SENSITIVITY in GetInfo is deprecated. This capability
is replaced with the ability to invoke GetFeatureInfo using FeatureId to indicate Feature F791 or
T231.

f) If IT indicates DATA SOURCE READ ONLY, then:

i) If the data from SS can be read but not modified, then let V be ’Y’.

ii) Otherwise, let V be ’N’.
NOTE 46 – The ability to specify DATA SOURCE READ ONLY in GetInfo is deprecated. This
capability is replaced with the ability to invoke GetFeatureInfo using FeatureId to indicate Feature
C081.

g) If IT indicates DESCRIBE PARAMETER, then:

i) If SS is capable of describing <dynamic parameter specification>s, then let V be ’Y’.

SQL/CLI routines 227

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.38 GetInfo

ii) Otherwise, let V be ’N’.
NOTE 47 – The ability to specify DESCRIBE PARAMETER in GetInfo is deprecated. This capa-
bility is replaced with the ability to invoke GetFeatureInfo using the FeatureId and SubFeatureId
combination to indicate Feature B032-01.

h) If IT indicates FETCH DIRECTION, then:

i) Let V be 0 (zero).

ii) If SS supports the behavior specified in Subclause 14.3, "<fetch statement>", in ISO/IEC
9075-2, associated with a <fetch orientation> that specifies ABSOLUTE, then add the
numeric value for FETCH ABSOLUTE from Table 31, ‘‘Values for FETCH DIRECTION
with GetInfo’’, to V.

iii) If SS supports the behavior specified in Subclause 14.3, "<fetch statement>", in ISO/IEC
9075-2, associated with a <fetch orientation> that specifies FIRST, then add the numeric
value for FETCH FIRST from Table 31, ‘‘Values for FETCH DIRECTION with GetInfo’’,
to V.

iv) If SS supports the behavior specified in Subclause 14.3, "<fetch statement>", in ISO/IEC
9075-2, associated with a <fetch orientation> that specifies LAST, then add the numeric
value for FETCH LAST from Table 31, ‘‘Values for FETCH DIRECTION with GetInfo’’,
to V.

v) If SS supports the behavior specified in Subclause 14.3, "<fetch statement>", in ISO/IEC
9075-2, associated with a <fetch orientation> that specifies NEXT, then add the numeric
value for FETCH NEXT from Table 31, ‘‘Values for FETCH DIRECTION with GetInfo’’,
to V.

vi) If SS supports the behavior specified in Subclause 14.3, "<fetch statement>", in ISO/IEC
9075-2, associated with a <fetch orientation> that specifies PRIOR, then add the nu-
meric value for FETCH PRIOR from Table 31, ‘‘Values for FETCH DIRECTION with
GetInfo’’, to V.

vii) If SS supports the behavior specified in Subclause 14.3, "<fetch statement>", in ISO/IEC
9075-2, associated with a <fetch orientation> that specifies RELATIVE, then add the
numeric value for FETCH RELATIVE from Table 31, ‘‘Values for FETCH DIRECTION
with GetInfo’’, to V.

NOTE 48 – The ability to specify FETCH DIRECTION in GetInfo is deprecated. This capability
is replaced with the ability to invoke GetFeatureInfo using FeatureId and SubFeatureId to indicate
Feature F341 with any of its subfeatures.

i) If IT indicates GETDATA EXTENSIONS, then V is set as follows to indicate whether the
implementation supports certain extensions to the GetData routine:

i) Let V be 0 (zero).

ii) If GetData can be called to obtain columns that precede the last bound column, then
add the numeric value for ANY COLUMN from Table 32, ‘‘Values for GETDATA
EXTENSIONS with GetInfo’’, to V.

iii) If GetData can be called for columns in any order, then add the numeric value for ANY
ORDER from Table 32, ‘‘Values for GETDATA EXTENSIONS with GetInfo’’, to V.
NOTE 49 – This also means that a column can be accessed by GetData even though previous
GetData calls retrieved all the data for that column.

228 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.38 GetInfo

NOTE 50 – The ability to specify GETDATA EXTENSIONS in GetInfo is deprecated. This capa-
bility is replaced with the ability to invoke GetFeatureInfo using FeatureId and SubFeatureId to
indicate Feature C051 with any of its subfeatures.

j) If IT indicates OUTER JOIN CAPABILITIES, then:

i) Let V be 0 (zero).

ii) If SS supports the behavior for an <outer join type> specified as LEFT as specified in
Subclause 7.7, "<joined table>", in ISO/IEC 9075-2, then add the numeric value for
LEFT from Table 33, ‘‘Values for OUTER JOIN CAPABILITIES with GetInfo’’, to V.

iii) If SS supports the behavior for an <outer join type> specified as RIGHT as specified
in Subclause 7.7, "<joined table>", in ISO/IEC 9075-2, then add the numeric value for
RIGHT from Table 33, ‘‘Values for OUTER JOIN CAPABILITIES with GetInfo’’, to V.

iv) If SS supports the behavior for an <outer join type> specified as FULL as specified
in Subclause 7.7, "<joined table>", in ISO/IEC 9075-2, then add the numeric value for
FULL from Table 33, ‘‘Values for OUTER JOIN CAPABILITIES with GetInfo’’, to V.

v) If SS supports nested outer joins, then add the numeric value for NESTED from
Table 33, ‘‘Values for OUTER JOIN CAPABILITIES with GetInfo’’, to V.

vi) If SS supports join operations where the order of tables in the ON clause need not be the
same as the order of the tables within the associated JOIN clause, then add the numeric
value for NOT ORDERED from Table 33, ‘‘Values for OUTER JOIN CAPABILITIES
with GetInfo’’, to V.

vii) If SS permits an inner table to be the result of a INNER JOIN, then add the nu-
meric value for INNER from Table 33, ‘‘Values for OUTER JOIN CAPABILITIES with
GetInfo’’, to V.

viii) If SS supports any predicate within an ON clause of an OUTER JOIN, then add the
numeric value for ALL COMPARISON OPS from Table 33, ‘‘Values for OUTER JOIN
CAPABILITIES with GetInfo’’, to V.

NOTE 51 – The ability to specify OUTER JOIN CAPABILITIES in GetInfo is deprecated. This
capability is replaced with the ability to invoke GetFeatureInfo using FeatureId and SubFeatureId to
indicate Feature F041 with any of its subfeatures.

k) If IT indicates ORDER BY COLUMNS IN SELECT, then:

i) If SS requires that columns in the ORDER BY clause also appear in the associated
<select list>, then let V be ’Y’.

ii) Otherwise, let V be ’N’.
NOTE 52 – The ability to specify ORDER BY COLUMNS IN SELECT in GetInfo is depre-
cated. This capability is replaced with the ability to invoke GetFeatureInfo using FeatureId and
SubFeatureId to indicate Feature F121-02.

l) If IT indicates SCROLL CONCURRENCY, then:

i) Let V be 0 (zero).

ii) If SS supports read-only scrollable cursors, then add the numeric value for READ ONLY
from Table 34, ‘‘Values for SCROLL CONCURRENCY with GetInfo’’, to V.

SQL/CLI routines 229

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.38 GetInfo

iii) If SS supports scrollable cursors and allows this with the lowest level of locking that
ensures that the row can be updated, then add the numeric value for LOCK from
Table 34, ‘‘Values for SCROLL CONCURRENCY with GetInfo’’, to V.

iv) If SS supports scrollable cursors and allows this with optimistic concurrency using row
identifiers or timestamps, add the numeric value for OPT ROWVER from Table 34,
‘‘Values for SCROLL CONCURRENCY with GetInfo’’, to V.

v) If SS supports scrollable cursors and allows this with optimistic concurrency by compar-
ing values, add the numeric value for OPT VALUES from Table 34, ‘‘Values for SCROLL
CONCURRENCY with GetInfo’’, to V.

NOTE 53 – The ability to specify SCROLL CONCURRENCY in GetInfo is deprecated. This ca-
pability is replaced with the ability to invoke GetFeatureInfo using FeatureId and SubFeatureId to
indicate Feature C071 with any of its subfeatures.

m) If IT indicates TRANSACTION ISOLATION OPTION, then:

i) Let V be 0 (zero).

ii) If SS supports the READ UNCOMMITTED isolation level, then add the numeric value
for READ UNCOMMITTED from Table 35, ‘‘Values for TRANSACTION ISOLATION
OPTION with GetInfo and StartTran’’, to V.

iii) If SS supports the READ COMMITTED isolation level, then add the numeric value for
READ COMMITTED from Table 35, ‘‘Values for TRANSACTION ISOLATION OPTION
with GetInfo and StartTran’’, to V.

iv) If SS supports the REPEATABLE READ isolation level, then add the numeric value for
REPEATABLE READ from Table 35, ‘‘Values for TRANSACTION ISOLATION OPTION
with GetInfo and StartTran’’, to V.

v) If SS supports the SERIALIZABLE isolation level, then add the numeric value for
SERIALIZABLE from Table 35, ‘‘Values for TRANSACTION ISOLATION OPTION with
GetInfo and StartTran’’, to V.

NOTE 54 – The ability to specify TRANSACTION ISOLATION OPTION in GetInfo is depre-
cated. This capability is replaced with the ability to invoke GetFeatureInfo using FeatureId and
SubFeatureId to indicate Features E151-01, F111-01, F111-02, and F111-03.

n) If IT indicates USER NAME, then let V be the value of CURRENT_USER.
NOTE 55 – The ability to specify USER NAME in GetInfo is deprecated. This capability is replaced
with the ability to invoke GetSessionInfo using the InfoType value that indicates CURRENT USER.

o) If IT indicates INTEGRITY, then:

i) If SS supports feature E141 (Basic integrity constraints), then let V be ’Y’.

ii) Otherwise, let V be ’N’.
NOTE 56 – The ability to specify INTEGRITY in GetInfo is deprecated. This capability is replaced
with the ability to invoke GetFeatureInfo using FeatureId to indicate Feature E141.

p) If IT � 21000 and IT � 24999, or if IT � 11000 and IT � 14999, then:

i) Let STMT be the character string;

230 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.38 GetInfo

SELECT COALESCE (CHARACTER_VALUE, INTEGER_VALUE)
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the
length of STMT as the value of TextLength.

q) If IT � 25000 and IT � 29999, or if IT � 15000 and IT � 19999, then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the
length of STMT as the value of TextLength.

11) Let BL be the value of BufferLength.

12) Case:

a) If the data type of V is character string, then the General Rules of Subclause 5.9, ‘‘Character
string retrieval’’, are applied with InfoValue, V, BL, and StringLength as TARGET, VALUE,
TARGET LENGTH, and RETURNED LENGTH, respectively.

b) Otherwise, InfoValue is set to V.

SQL/CLI routines 231

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.39 GetLength

6.39 GetLength

Function
Retrieve the length of the string value represented by a Large Object locator.

Definition

GetLength(
StatementHandle IN INTEGER,
LocatorType IN SMALLINT,
Locator IN INTEGER,
StringLength OUT INTEGER,
IndicatorValue OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR
or BINARY LARGE OBJECT LOCATOR from Table 8, ‘‘Codes used for application data types
in SQL/CLI’’, then an exception condition is raised: CLI-specific condition — invalid attribute
value.

4) Let LL be the Large Object locator value in Locator.

5) If LL is not a valid Large Object locator, then an exception condition is raised: locator exception
— invalid specification.

6) Let TL be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with TL (e.g., a CHARACTER LARGE OBJECT
LOCATOR for a BINARY LARGE OBJECT value), then an exception condition is raised: dy-
namic SQL error — restricted data type attribute violation.

8) Let SV be the string value that is represented by LL.

9) Case:

a) If SV contains the null value, then:

Case:

i) If IndicatorValue is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter.

ii) Otherwise:

1) IndicatorValue is set to the appropriate ’Code’ for SQL NULL DATA in Table 26,
‘‘Miscellaneous codes used in CLI’’.

2) The value of StringLength is implementation-dependent.

232 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.39 GetLength

b) Otherwise:

i) IndicatorValue is set to 0 (zero).

ii) If TL is CHARACTER LARGE OBJECT, then StringLength is set to the length in
characters of SV.

iii) If TL is BINARY LARGE OBJECT, then StringLength is set to the length in octets of
SV.

SQL/CLI routines 233

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.40 GetParamData

6.40 GetParamData

Function
Retrieve the value of a dynamic output parameter.

Definition

GetParamData (
StatementHandle IN INTEGER,
ParameterNumber IN SMALLINT,
TargetType IN SMALLINT,
TargetValue OUT ANY,
BufferLength IN INTEGER,
StrLen_or_Ind OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed SQL-statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error; otherwise, let P be the SQL-statement that
was prepared.

3) If P is not a <call statement>, then an exception condition is raised: CLI-specific condition —
function sequence error.

4) Let APD be the current application parameter descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of APD.

5) If N is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

6) Let PN be the value of ParameterNumber.

7) If PN is less than 1 (one) or greater than N, then an exception condition is raised: dynamic SQL
error — invalid descriptor index.

8) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of APD for
which the TYPE value is neither ROW nor ARRAY, then let BPN be the parameter number as-
sociated with such an item descriptor area and let HBPN be the value of MAX(BPN). Otherwise,
let HBPN be 0 (zero).

9) Let IDA be the item descriptor area of APD specified by PN. if the value of TYPE of IDA is
either ROW or ARRAY, or if LEVEL of IDA is greater than 0 (zero), then an exception condition
is raised: dynamic SQL error — invalid descriptor index.
NOTE 57 – GetParamData cannot be called to retrieve the data corresponding to a subordinate descrip-
tor record such as, for example, from an individual field of a ROW type.

10) Let IDA1 be the item descriptor area of IPD specified by PN.

11) Let PM be the value of PARAMETER_MODE in IDA1.

234 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.40 GetParamData

12) If PM is PARAM MODE IN then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

13) If PN is not greater than HBPN, then

Case:

a) If the DATA_POINTER field of IDA is not zero, then an exception condition is raised:
dynamic SQL error — invalid descriptor index.

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an
exception condition is raised: dynamic SQL error — invalid descriptor index.
NOTE 58 – This implementation-defined feature determines whether parameters before the highest
bound parameter can be accessed by GetParamData.

14) If there is a fetched parameter number associated with S, then let FPN be that parameter
number; otherwise, let FPN be zero.
NOTE 59 – ‘‘fetched parameter number’’ is the ParameterNumber value used with the previous invoca-
tion (if any) of the GetParamData routine with S. See the General Rules later in this Subclause where
this value is set.

15) Case:

a) If FPN is greater than zero and PN is not greater than FPN, then it is implementation-
defined whether an exception condition is raised: dynamic SQL error — invalid descriptor
index.
NOTE 60 – This implementation-defined feature determines whether GetParam Data can only
access parameters in ascending parameter number order.

b) If FPN is less than zero, then:

i) Let AFPN be the absolute value of FPN.

ii) Case:

1) If PN is less than AFPN, then it is implementation-defined whether an exception
condition is raised: dynamic SQL error — invalid descriptor index.
NOTE 61 – This implementation-defined feature determines whether GetParamData can
only access parameters in ascending parameter number order.

2) If PN is greater than AFPN, then let FPN be AFPN.

16) Let T be the value of TargetType.

17) Let HL be the standard programming language of the invoking host program. Let operative
data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, ‘‘Data type correspondences’’. Refer to the two columns of the operative data
type correspondence table as the SQL data type column and the host data type column.

18) If either of the following is true, then an exception condition is raised: CLI-specific condition —
invalid data type in application descriptor.

a) T indicates neither DEFAULT nor APD TYPE and is not one of the code values in Table 8,
‘‘Codes used for application data types in SQL/CLI’’.

SQL/CLI routines 235

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.40 GetParamData

b) T is one of the code values in Table 8, ‘‘Codes used for application data types in SQL/CLI’’,
but the row that contains the corresponding SQL data type in the SQL data type column of
the operative data type correspondence table contains ’None’ in the host data type column.

19) If T does not indicate APD TYPE, then the data type of the <target specification> described by
IDA is set to T.

20) Let IPD be the implementation parameter descriptor associated with S.

21) If the value of the TYPE field of IDA indicates DEFAULT, then:

a) Let PT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the PN-th item descriptor area of IPD for which LEVEL is 0 (zero).

b) The data type, precision, and scale of the <target specification> described by IDA are set to
PT, P, and SC, respectively, for the purposes of this GetParamData invocation only.

22) If IDA is not valid as specified in Subclause 5.13, ‘‘Description of CLI item descriptor areas’’,
then an exception condition is raised: dynamic SQL error — using clause does not match target
specifications.

23) Let TT be the value of the TYPE field of IDA.

24) Case:

a) If TT indicates CHARACTER, then:

i) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, ‘‘Codes used for implementation data types in SQL/CLI’’.

ii) Let CL be the implementation-defined maximum length for a CHARACTER VARYING
data type.

b) Otherwise, let UT be TT and let CL be zero.

25) Case:

a) If FPN is less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, or BINARY
LARGE OBJECT, then AFPN becomes the fetched parameter number associated with S
and an exception condition is raised: dynamic SQL error — invalid descriptor index.

ii) Otherwise, let FL, DV, and DL be the fetched length, data value and data length,
respectively, associated with FPN and let TV be the result of the <string value function>:

SUBSTRING (DV FROM (FL+1))

b) Otherwise:

i) Let FL be zero.

236 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.40 GetParamData

ii) Let SDT be the effective data type of the PCN-th <select list> column as represented by
the values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_
CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_
CATALOG, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME
fields in the PN-th item descriptor area of IPD. Let SV be the value of the parameter,
with data type SDT.

iii) Let TDT be the effective data type of the PN-th <target specification> as represented
by the type UT, the length value CL, and the values of the PRECISION, SCALE,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_
NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME fields of IDA.

iv) Case:

1) If TDT is a locator type, then;

A) If SV is not the null value, then a locator L that uniquely identifies SV is gen-
erated and the value of TV of the i-th bound target is set to an implementation-
dependent four-octet value that represents L.

B) Otherwise, the value TV of the PN-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then

Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, and there is an implementation-defined conversion from type
SDT to type TDT, then that implementation-defined conversion is effectively
performed, converting SV to type TDT, and the result is the value TV of the
PN-th <target specification>.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — restricted data type attribute violation.

II) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.22, "<cast specifica-
tion>", in ISO/IEC 9075-2, then an exception condition is raised in accor-
dance with the General Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2.

SQL/CLI routines 237

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.40 GetParamData

III) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and is the value TV of the PN-th <target specifica-
tion>.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined
name of DT, then let GN be that group name; otherwise, let GN be the default
transform group name associated with the current SQL-session.

C) The Syntax Rules of Subclause 10.15, "Determination of a from-sql function",
in ISO/IEC 9075-2, are applied with DT and GN as TYPE and GROUP, respec-
tively.

Case:

I) If there is an applicable from-sql function, then let FSF be that from-sql
function and let FSFRT be the <returns data type> of FSF.

Case:

1) If FSFPT is compatible with TDT, then the from-sql function TSF is
effectively invoked with SV as its input parameter and the <return
value> is the value TV of the CN-th <target specification>.

2) Otherwise, an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

26) PN becomes the fetched parameter number associated with S.

27) If TV is the null value, then

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception —
null value, no indicator parameter.

b) Otherwise, StrLen_or_Ind is set to the appropriate ’Code’ for SQL NULL DATA in Table 26,
‘‘Miscellaneous codes used in CLI’’, and the value of TargetValue is implementation-
dependent.

28) Let OL be the value of BufferLength.

29) If null termination is true for the current SQL-environment, then let NB be the length in octets
of a null terminator in the character set of the i-th bound target; otherwise let NB be 0 (zero).

30) If TV is not the null value, then:

a) StrLen_or_Ind is set to 0 (zero).

238 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.40 GetParamData

b) Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, or BINARY
LARGE OBJECT, then TargetValue is set to TV.

ii) Otherwise:

1) If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined whether
or not an exception condition is raised: data exception — zero-length character
string.

B) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied
with TargetValue, TV, OL, and StrLen_or_Ind as TARGET, VALUE, OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

2) If TT is BINARY LARGE OBJECT, then the General Rules of Subclause 5.10,
‘‘Binary large object string retrieval’’, are applied with TargetValue, TV, OL, and
StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

3) If FCN is not less than zero, then let DV be TV and let DL be the length of TV in
octets.

4) Let FL be (FL+OL�NB).

5) If FL is less than DL, then �PN becomes the fetched parameter number associated
with the fetched parameter associated with S and FL, DV and DL become the
fetched length, data value, and data length, respectively, associated with the fetched
parameter number.

SQL/CLI routines 239

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.41 GetPosition

6.41 GetPosition

Function
Retrieve the starting position of a string value within another string value, where the second string
value is represented by a Large Object locator.

Definition

GetPosition(
StatementHandle IN INTEGER,
LocatorType IN SMALLINT,
SourceLocator IN INTEGER,
SearchLocator IN INTEGER,
SearchLiteral IN ANY,
SearchLiteralLength IN INTEGER,
FromPosition IN INTEGER,
LocatedAt OUT INTEGER,
IndicatorValue OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR
or BINARY LARGE OBJECT LOCATOR from Table 8, ‘‘Codes used for application data types
in SQL/CLI’’, then an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

4) Let SRCL be the Large Object locator value in SourceLocator.

5) If SRCL is not a valid Large Object locator, then an exception condition is raised: locator
exception — invalid specification.

6) Let SRCT be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with SRCT (e.g., a CHARACTER LARGE OBJECT
LOCATOR for a BINARY LARGE OBJECT value), then an exception condition is raised: dy-
namic SQL error — restricted data type attribute violation.

8) Case:

a) If SRCL represents the null value, then

Case:

i) If IndicatorValue is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter.

ii) Otherwise, IndicatorValue is set to the appropriate ’Code’ for SQL NULL DATA in
Table 26, ‘‘Miscellaneous codes used in CLI’’, the value of all other output arguments is
implementation-dependent, and no further rules of this Subclause are applied.

240 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.41 GetPosition

b) Otherwise:

i) IndicatorValue is set to 0 (zero).

ii) Let SRCV be the actual value that is represented by SRCL.

9) Let SLL be the value of SearchLiteralLength.

10) Case:

a) If SLL is equal to zero, then:

i) Let SCHL be the Large Object locator value in SearchLocator.

ii) If SCHL is not a valid Large Object locator, then an exception condition is raised: locator
exception — invalid specification.

iii) Let SCHT be the actual data type of the Large Object string on the server.

iv) If the value of LocatorType is not consistent with SCHT, then an exception condition is
raised: dynamic SQL error — restricted data type attribute violation.

v) If SCHL represents the null value, then an exception condition is raised: CLI-specific
condition — invalid attribute value.

vi) Let SCHV be the actual value that is represented by SCHL.

b) Otherwise,

Case:

i) If SearchLiteral is a null pointer, then an exception condition is raised: CLI-specific
condition — invalid attribute value.

ii) Otherwise, let SCHV be the value of that literal.

11) Let FP be the value of FromPosition. Let SRCVL be the length of SRCV (in characters if SRCV
is a character string and in octets if SRCV is a binary string).

12) If FP is less than 1 (one) or greater than SRCVL, then an exception condition is raised: CLI-
specific condition — invalid attribute value.

13) If FP is greater than 1 (one), then let SRCV be the value of

SUBSTRING (SRCV FROM FP)

14) Case:

a) If SRCV contains a string MV of contiguous characters (if SRCV is a character string) or
contiguous octets (if SRCV is a binary string) that is the same as the string of characters or
octets (as appropriate) in SCHV then LocatedAt is set to the starting position (in characters
or octets, as appropriate) of the first occurrence of MV within SRCV.

b) Otherwise, LocatedAt is set to 0 (zero).

SQL/CLI routines 241

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.42 GetSessionInfo

6.42 GetSessionInfo

Function
Get information about <general value specification>s supported by the implementation.

Definition

GetSessionInfo(
ConnectionHandle IN INTEGER,
InfoType IN SMALLINT,
InfoValue OUT ANY,
BufferLength IN SMALLINT,
StringLength OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, ‘‘Implicit set
connection’’, are applied to EC as the dormant SQL-connection.

4) Let IT be the value of InfoType.

5) If IT is not one of the codes in Table 29, ‘‘Codes and data types for session implementation
information’’, then an exception condition is raised: CLI-specific condition — invalid information
type.

6) Let GVS be the value of <general value specification> in the same row as IT in Table 29, ‘‘Codes
and data types for session implementation information’’.

7) Let SH be an allocated statement handle on C.

8) Let STMT be the character string:

242 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.42 GetSessionInfo

SELECT UNIQUE GVS
FROM INFORMATION_SCHEMA.TABLES -- Any table would do
WHERE 1 = 1 ---Any predicate that is TRUE would do

9) V is set to the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT
as the value of TextLength.

10) If any status condition, such as connection failure, is caused by the implicit invocation of
ExecDirect, then:

a) The status records returned by ExecDirect on SH are returned on ConnectionHandle.

b) This invocation of GetSessionInfo returns the same return code that was returned by the
implicit invocation of ExecDirect and no further Rules of this Subclause are applied.

11) Let BL be the value of BufferLength.

12) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with InfoValue,
V, BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 243

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.43 GetStmtAttr

6.43 GetStmtAttr

Function
Get the value of an SQL-statement attribute.

Definition

GetStmtAttr (
StatementHandle IN INTEGER,
Attribute IN INTEGER,
Value OUT ANY,
BufferLength IN INTEGER,
StringLength OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 17, ‘‘Codes used for statement attributes’’, then an
exception condition is raised: CLI-specific condition — invalid attribute identifier.

4) Case:

a) If A indicates APD_HANDLE, then Value is set to the handle of the current application
parameter descriptor for S.

b) If A indicates ARD_HANDLE, then Value is set to the handle of the current application row
descriptor for S.

c) If A indicates IPD_HANDLE, then Value is set to the handle of the implementation parame-
ter descriptor associated with S.

d) If A indicates IRD_HANDLE, then Value is set to the handle of the implementation row
descriptor associated with S.

e) If A indicates CURSOR SCROLLABLE, then

Case:

i) If the implementation supports scrollable cursors, then

Case:

1) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE,
then Value is set to the code value for NONSCROLLABLE from Table 26,
‘‘Miscellaneous codes used in CLI’’.

2) If the value of the CURSOR SCROLLABLE attribute of S is SCROLLABLE, then
Value is set to the code value for SCROLLABLE from Table 26, ‘‘Miscellaneous codes
used in CLI’’.

244 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.43 GetStmtAttr

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature
not implemented.

f) If A indicates CURSOR SENSITIVITY, then

Case:

i) If the implementation supports cursor sensitivity, then

Case:

1) If the value of the CURSOR SENSITIVITY attribute of S is ASENSITIVE, then
Value is set to the code value for ASENSITIVE from Table 26, ‘‘Miscellaneous codes
used in CLI’’.

2) If the value of the CURSOR SENSITIVITY attribute of S is INSENSITIVE, then
Value is set to the code value for INSENSITIVE from Table 26, ‘‘Miscellaneous codes
used in CLI’’.

3) If the value of the CURSOR SENSITIVITY attribute of S is SENSITIVE, then Value
is set to the code value for SENSITIVE from Table 26, ‘‘Miscellaneous codes used in
CLI’’.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature
not implemented.

g) If A indicates METADATA ID, then

Case:

i) If the METADATA ID attribute for S has been set by the SetStmtAttr routine, then
Value is set to the code value of that attribute from Table 19, ‘‘Data types of attributes’’.

ii) Otherwise, Value is set to the code value for FALSE from Table 26, ‘‘Miscellaneous codes
used in CLI’’.

h) If A indicates CURSOR HOLDABLE, then

Case:

i) If the implementation supports cursor holdability, then

Case:

1) If the value of the CURSOR HOLDABLE attribute of S is NONHOLDABLE, then
the Value is set to the code value for NONHOLDABLE from Table 26, ‘‘Miscellaneous
codes used in CLI’’.

2) If the value of the CURSOR HOLDABLE attribute of S is HOLDABLE, then the
Value is set to the code value for HOLDABLE from Table 26, ‘‘Miscellaneous codes
used in CLI’’.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid at-
tribute value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature
not implemented.

SQL/CLI routines 245

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.43 GetStmtAttr

i) If A indicates CURRENT OF POSITION, then

Case:

i) If there is no fetched rowset associated with S, then an exception condition is raised:
CLI-specific condition — invalid cursor state.

ii) Otherwise, Value is set to the current position within the fetched rowset associated with
S.

j) If A indicates NEST DESCRIPTOR, then

Case:

i) If the NEST DESCRIPTOR attribute for S has been set by the SetStmtAttr routine, then
Value is set to the code value of that attribute from Table 19, ‘‘Data types of attributes’’.

ii) Otherwise, VALUE is set to the code value for FALSE from Table 26, ‘‘Miscellaneous
codes used in CLI’’.

5) If A specifies an implementation-defined statement attribute, then

Case:

a) If the data type for the statement attribute is specified in Table 19, ‘‘Data types of at-
tributes’’, as INTEGER, then Value is set to the value of the implementation-defined
statement attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined statement attribute.

iii) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied with
Value, AV, BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

246 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.44 GetSubString

6.44 GetSubString

Function
Either retrieve a portion of a string value that is represented by a Large Object locator or create a
Large Object value at the server and retrieve a Large Object locator for that value.

Definition

GetSubString(
StatementHandle IN INTEGER,
LocatorType IN SMALLINT,
SourceLocator IN INTEGER,
FromPosition IN INTEGER,
ForLength IN INTEGER,
TargetType IN SMALLINT,
TargetValue OUT ANY,
BufferLength IN INTEGER,
StringLength OUT INTEGER,
IndicatorValue OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR
or BINARY LARGE OBJECT LOCATOR from Table 8, ‘‘Codes used for application data types
in SQL/CLI’’, then an exception condition is raised: CLI-specific condition — invalid attribute
value.

4) Let SRCL be the Large Object locator value in SourceLocator.

5) If SRCL is not a valid Large Object locator, then an exception condition is raised: locator
exception — invalid specification.

6) Let SRCT be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with SRCT (e.g., a CHARACTER LARGE OBJECT
LOCATOR for a BINARY LARGE OBJECT value), then an exception condition is raised: dy-
namic SQL error — restricted data type attribute violation.

8) Let TT be the value of TargetType.

9) If TT is not equal to one of the values for CHARACTER, CHARACTER LARGE OBJECT,
BINARY LARGE OBJECT, CHARACTER LARGE OBJECT LOCATOR, or BINARY LARGE
OBJECT LOCATOR from Table 8, ‘‘Codes used for application data types in SQL/CLI’’, then an
exception condition is raised: CLI-specific condition — invalid attribute value.

10) If SRCL is the null value, then

SQL/CLI routines 247

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.44 GetSubString

Case:

a) If IndicatorValue is a null pointer, then an exception condition is raised: data exception —
null value, no indicator parameter.

b) Otherwise, IndicatorValue is set to the value of the ’Code’ for SQL NULL DATA from
Table 26, ‘‘Miscellaneous codes used in CLI’’, the values of all other output arguments
are implementation-dependent, and no further rules of this Subclause are applied.

11) Let OL be the value of BufferLength.

12) If SRCL is not the null value, then:

a) IndicatorValue is set to 0 (zero).

b) Let SRCV be the large object value that is represented by SRCL.

c) If SRCV is a character string, then let SRCVL be the length of SRCV in characters; if SRCV
is a binary string, then let SRCVL be the length of SRCV in octets.

d) Let FP be the value of FromPosition and let FL be the value of ForLength.

e) If any of the following is true, then an exception condition is raised: CLI-specific condition
— invalid attribute value.

i) FP is less than 1 (one).

ii) FL is less than 1 (one).

iii) FP+FL�1 is greater than SRCVL.

f) Let RV be the value of the string that starts at position FP and ends at position FP+FL�1
in SRCV (where the positions are in characters or octets, as appropriate).

g) Let RVL be the number of octets in RV.

h) Case:

i) If TT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TV is a zero-length character string, then it is implementation-defined whether or
not an exception condition is raised: data exception — zero-length character string.

2) The General Rules of Subclause 5.9, ‘‘Character string retrieval’’, are applied
with TargetValue, RV, OL, and RVL as TARGET, VALUE, OCTET LENGTH and
RETURNED OCTET LENGTH, respectively.

ii) If TT indicates BINARY LARGE OBJECT, then the General Rules of Subclause 5.10,
‘‘Binary large object string retrieval’’, are applied with TargetValue, RV, OL, and RVL as
TARGET, VALUE, OCTET LENGTH and RETURNED OCTET LENGTH, respectively.

iii) Otherwise, set TargetValue to the value of a Large Object locator that represents the
value RV at the server.

248 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.45 GetTypeInfo

6.45 GetTypeInfo

Function
Get information about one or all of the predefined data types supported by the implementation.

Definition

GetTypeInfo (
StatementHandle IN INTEGER,
DataType IN SMALLINT)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let D be the value of DataType.

4) If D is not the code value corresponding to ALL TYPES in Table 26, ‘‘Miscellaneous codes used
in CLI’’, and is not one of the code values in Table 37, ‘‘Codes used for concise data types’’, then
an exception condition is raised: CLI-specific condition — invalid data type.

5) Let C be the allocated SQL-connection with which S is associated.

6) Let EC be the established SQL-connection associated with C and let SS be the SQL-server
associated with EC.

7) Let TYPE_INFO be a table, with a definition and description as specified below, that contains
a row for each predefined data type supported by SS. For all supported predefined data types
for which more than one name is supported, it is implementation-defined whether TYPE_INFO
contains a single row or a row for each supported name.

CREATE TABLE TYPE_INFO (
TYPE_NAME CHARACTER VARYING(128) NOT NULL
PRIMARY KEY,

DATA_TYPE SMALLINT NOT NULL,
COLUMN_SIZE INTEGER,
LITERAL_PREFIX CHARACTER VARYING(128),
LITERAL_SUFFIX CHARACTER VARYING(128),
CREATE_PARAMS CHARACTER VARYING(128)
CHARACTER SET SQL_TEXT,

NULLABLE SMALLINT NOT NULL
CHECK (NULLABLE IN (0, 1, 2)),

CASE_SENSITIVE SMALLINT NOT NULL
CHECK (CASE_SENSITIVE IN (0, 1)),

SEARCHABLE SMALLINT NOT NULL
CHECK (SEARCHABLE IN (0, 1, 2, 3)),

UNSIGNED_ATTRIBUTE SMALLINT
CHECK (UNSIGNED_ATTRIBUTE IN (O, 1)

OR UNSIGNED_ATTRIBUTE IS NULL),
FIXED_PREC_SCALE SMALLINT NOT NULL
CHECK (FIXED_PREC_SCALE IN (O, 1)),

AUTO_UNIQUE_VALUE SMALLINT NOT NULL
CHECK (AUTO_UNIQUE_VALUE IN (O, 1)),

SQL/CLI routines 249

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.45 GetTypeInfo

LOCAL_TYPE_NAME CHARACTER VARYING(128)
CHARACTER SET SQL_TEXT,

MINIMUM_SCALE INTEGER,
MAXIMUM_SCALE INTEGER,
SQL_DATA_TYPE SMALLINT NOT NULL,
SQL_DATETIME_SUB SMALLINT
CHECK (SQL_DATETIME_SUB IN (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

OR SQL_DATETIME_SUB IS NULL),
NUM_PREC_RADIX INTEGER,
INTERVAL_PRECISION SMALLINT)

8) The description of the table TYPE_INFO is:

a) The value of TYPE_NAME is the name of the data type. If multiple names are supported
for this data type and TYPE_INFO contains only a single row for this data type, then it is
implementation-defined which of the names is in TYPE_NAME.

b) The value of DATA_TYPE is the code value for the predefined data type as defined in
Table 37, ‘‘Codes used for concise data types’’.

c) The value of COLUMN_SIZE is:

i) The null value if the data type has neither a length nor a precision.

ii) The maximum length in characters for a character string data type.

iii) The maximum length in bits for a bit string data type.

iv) The maximum or fixed precision, as appropriate, for a numeric data type.

v) The maximum or fixed length in positions, as appropriate, for a datetime or interval
data type.

vi) An implementation-defined value for an implementation-defined data type that has a
length or a precision.

d) The value of LITERAL_PREFIX is the character string that must precede the data type
value when a <literal> of this data type is specified. The value of LITERAL_PREFIX is the
null value if no such string is required.

e) The value of LITERAL_SUFFIX is the character string that must follow the data type value
when a <literal> of this data type is specified. The value of LITERAL_SUFFIX is the null
value if no such string is required.

f) The value of CREATE_PARAMS is a comma-separated list of specifiable attributes for the
data type in the order in which the attributes may be specified. The attributes <length>,
<precision>, <scale>, and <time fractional seconds precision> appear in the list as LENGTH,
PRECISION, SCALE, and PRECISION, respectively. The appearance of attributes in
implementation-defined data types is implementation-defined.

g) The value of NULLABLE is 1 (one).

h) The value of CASE_SENSITIVE is 1 (one) if the data type is a character string type and the
default collation for its implementation-defined implicit character repertoire would result in
a case sensitive comparison when two values with this data type are compared. Otherwise,
the value of CASE_SENSITIVE is 0 (zero).

250 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.45 GetTypeInfo

i) Refer to the <comparison predicate>, <between predicate>, <in predicate>, <null predicate>,
<quantified comparison predicate>, and <match predicate> as the basic predicates. If the
data type can be the data type of an operand in the <like predicate>, then let V1 be 1 (one);
otherwise let V1 be 0 (zero). If the data type can be the data type of a column of a <row
value constructor> immediately contained in a basic predicate, then let V2 be 2; otherwise
let V2 be 0 (zero). The value of SEARCHABLE is (V1+V2).

j) The value of UNSIGNED_ATTRIBUTE is

Case:

i) If the data type is unsigned, then 1 (one).

ii) If the data type is signed, then 0 (zero).

iii) If a sign is not applicable to the data type, then the null value.

k) The value of FIXED_PREC_SCALE is

Case:

i) If the data type is an exact numeric with a fixed precision and scale, then 1 (one).

ii) Otherwise, 0 (zero).

l) The value of AUTO_UNIQUE_VALUE is

Case:

i) If a column of this data type is set to a value unique among all rows of that column
when a row is inserted, then 1 (one).

ii) Otherwise, 0 (zero).

m) The value of LOCAL_TYPE_NAME is an implementation-defined localized representation of
the name of the data type, intended primarily for display purposes. The value of LOCAL_
TYPE_NAME is the null value if a localized representation is not supported.

n) The value of MINIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.

ii) The minimum value of the scale for a data type that has a scale.

iii) The minimum value of the fractional seconds precision for a data type that has a frac-
tional seconds precision.

o) The value of MAXIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.

ii) The maximum value of the scale for a data type that has a scale.

iii) The maximum value of the fractional seconds precision for a data type that has a
fractional seconds precision.

p) The value of SQL_DATA_TYPE is the code value for the predefined data type as defined in
Table 7, ‘‘Codes used for implementation data types in SQL/CLI’’.

SQL/CLI routines 251

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.45 GetTypeInfo

q) The value of SQL_DATETIME_SUB is

Case:

i) If the data type is a datetime type, then the code value for the datetime type as defined
in Table 9, ‘‘Codes associated with datetime data types in SQL/CLI’’.

ii) If the data type is an interval type, then the code value for the interval type as defined
in Table 10, ‘‘Codes associated with <interval qualifier> in SQL/CLI’’.

iii) Otherwise, the null value.

r) The value of NUM_PREC_RADIX is

Case:

i) If the value of PRECISION is the value of a precision, then the radix of that precision.

ii) Otherwise, the null value.

s) The value of SQL_INTERVAL_PRECISION is

Case:

i) If the data type is an interval type, then <interval leading field precision>.

ii) Otherwise, the null value.

9) Case:

a) If D is the code value corresponding to ALL TYPES in Table 26, ‘‘Miscellaneous codes used
in CLI’’, then let P be the character string

SELECT *
FROM TYPE_INFO
ORDER BY DATA_TYPE

b) Otherwise, let P be the character string

SELECT *
FROM TYPE_INFO
WHERE DATA_TYPE = d

10) ExecDirect is implicitly invoked with S as the value of StatementHandle, P as the value of
StatementText, and the length of P as the value of TextLength.

252 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.46 MoreResults

6.46 MoreResults

Function
Determine whether there are more result sets available on a statement handle and, if there are,
initialize processing for those result sets.

Definition

MoreResults (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed SQL-statement associated with S, then a completion condition is raised:
no data — no additional dynamic result sets returned.

3) Case:

a) If there is no cursor associated with S and there exists an implementation-defined capability
to support that situation, then implementation-defined rules are evaluated and no further
General Rules of this Subclause are evaluated.

b) If there is no cursor associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error.

c) Otherwise, let CR be the cursor associated with S.

4) If CR is currently open, then:

a) CR is placed in the closed state.

b) Any fetched row associated with S is removed from association with S.

5) Case:

a) If there is another result set that was returned for the executed statement associated with
S, then:

i) Let SS be the <dynamic select statement> or <dynamic single row select statement>
that was used to create the result set.

ii) The General Rules of Subclause 5.5, ‘‘Implicit DESCRIBE USING clause’’, are applied
with SS and S as SOURCE and ALLOCATED STATEMENT, respectively.

iii) CR is opened on that result set and positioned before the first row.

iv) A completion condition is raised: successful completion.

b) Otherwise, a completion condition is raised: no data — no additional dynamic result sets
returned.

SQL/CLI routines 253

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.47 NextResult

6.47 NextResult

Function
Determine whether there are more result sets available on a statement handle and, if there are,
initialize processing for the next result set on a separate statement handle.

Definition

NextResult (
StatementHandle1 IN INTEGER,
StatementHandle2 IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S1 be the allocated SQL-statement identified by StatementHandle1.

2) If there is no executed SQL-statement associated with S1, then a completion condition is raised:
no data — no additional dynamic result sets returned.

3) Let S2 be the allocated SQL-statement identified by StatementHandle2.

4) If there is a prepared statement associated with S2, then an exception condition is raised:
CLI-specific condition — function sequence error.

5) Case:

a) If there is another result set that was returned for the executed statement associated with
S1, then:

i) A cursor CR is associated with S2.

ii) Let SS be the <dynamic select statement> or <dynamic single row select statement>
that was used to create the result set.

iii) The General Rules of Subclause 5.5, ‘‘Implicit DESCRIBE USING clause’’, are applied
with SS and S2 as SOURCE and ALLOCATED STATEMENT, respectively.

iv) CR is opened on that result set and positioned before the first row.

v) A completion condition is raised: successful completion.

b) Otherwise, a completion condition is raised: no data — no additional dynamic result sets
returned.

254 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.48 NumResultCols

6.48 NumResultCols

Function
Get the number of result columns.

Definition

NumResultCols (
StatementHandle IN INTEGER,
ColumnCount OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no prepared or executed statement associated with S, then an exception condition
is raised: CLI-specific condition — function sequence error.

b) Otherwise, let D be the implementation row descriptor associated with S and let N be the
value of the TOP_LEVEL_COUNT field of D.

3) ColumnCount is set to N.

SQL/CLI routines 255

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.49 ParamData

6.49 ParamData

Function
Process a deferred parameter value.

Definition

ParamData (
StatementHandle IN INTEGER,
Value OUT ANY)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no deferred parameter number associated with S, then an exception condition is
raised: CLI-specific condition — function sequence error.

b) Otherwise, let DPN be the deferred parameter number associated with S.

3) Let APD be the current application parameter descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of APD.

4) For each item descriptor area for which DEFERRED is true in the first N item descriptor
areas of APD for which LEVEL is 0 (zero), refer to the corresponding <dynamic parameter
specification> value as a deferred parameter value.

5) Let IDA be the DPN-th item descriptor area of APD and let PT and DP be the values of the
TYPE and DATA_POINTER fields, respectively, of IDA.

6) If there is no parameter value associated with DPN, then

Case:

a) If there is a DATA_POINTER value associated with DPN, then an exception condition is
raised: CLI-specific condition — function sequence error.

b) Otherwise:

i) Value is set to DP.

ii) DP becomes the DATA_POINTER value associated with DPN.

iii) An exception condition is raised: CLI-specific condition — dynamic parameter value
needed.

7) Let IPD be the implementation parameter descriptor associated with S.

8) Let C be the allocated SQL-connection with which S is associated.

9) Let V be the parameter value associated with DPN.

256 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.49 ParamData

10) Case:

a) If V is not the null value, then:

i) Case:

1) If PT indicates CHARACTER, then:

A) Let LO be the parameter length associated with DPN and let L be the number
of characters of V wholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined maximum length value for the
CHARACTER data type, then an exception condition is raised: CLI-specific
condition — invalid string length or buffer length.

2) If PT indicates CHARACTER LARGE OBJECT, then:

A) Let LO be the parameter length associated with DPN and let L be the number
of characters of V wholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined maximum length value for the
CHARACTER LARGE OBJECT data type, then an exception condition is raised:
CLI-specific condition — invalid string length or buffer length.

3) If PT indicates BINARY LARGE OBJECT, then:

A) Let LO be the parameter length associated with DPN and let L be the number
of characters of V wholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined maximum length value for the BINARY
LARGE OBJECT data type, then an exception condition is raised: CLI-specific
condition — invalid string length or buffer length.

4) Otherwise, let L be zero.

ii) Let SV be V with effective data type SDT as represented by the length value L and by
the values of the TYPE, PRECISION, and SCALE fields of IDA.

b) Otherwise, let SV be the null value.

11) Let TDT be the effective data type of the DPN-th <dynamic parameter specification> as repre-
sented by the values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_
CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_
SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_
SCHEMA, and SCOPE_NAME fields of the DPN-th item descriptor area of IPD.

12) Let SDT be the effective data type of the DPN-th parameter as represented by the values
of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_
INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_
SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields in the corresponding item descriptor area of APD.

13) Case:

a) If SDT is a locator type, then let TV be the value SV.

SQL/CLI routines 257

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.49 ParamData

b) If SDT and TDT are predefined types, then

i) Case:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT
to type TDT, then that implementation-defined conversion is effectively performed,
converting SV to type TDT, and the result is the value TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

B) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised in accordance with the
General Rules of Subclause 6.22, "<cast specification>", in ISO/IEC 9075-2.

C) Let TV be the value obtained, with data type TDT, by effectively performing the
<cast specification>

CAST (SV AS TDT)

NOTE 62 – It is implementation-dependent whether the establishment of TV occurs at
this time or during the preceding invocation of PutData.

ii) Let UDT be the effective data type of the actual DPN-th <dynamic parameter
specification>, defined to be the data type represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_
INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_
SCHEMA, CHARACTER_SET_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would automatically be set in the DPN-th item descriptor
area of IPD if POPULATE IPD was true for C.

iii) Case:

1) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>", in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT
to type UDT, then that implementation-defined conversion is effectively performed,
converting SV to type UDT, and the result is the value TV of the i-th bound target.

258 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.49 ParamData

2) Otherwise:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

B) If the <cast specification>

CAST (TV AS UDT)

does not conform to the General Rules of Subclause 6.22, "<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised in accordance with the
General Rules of Subclause 6.22, "<cast specification>", in ISO/IEC 9075-2.

C) The <cast specification>

CAST (TV AS UDT)

is effectively performed and is the value of the DPN-th dynamic parameter.

14) Let PN be the parameter number associated with a deferred parameter value and let HPN be
the value of MAX(PN).

15) If DPN is not equal to HPN, then:

a) Let NPN be the lowest value of PN for which DPN < NPN � HPN.

b) Let DP be the value of the DATA_POINTER field of the NPN-th item descriptor area of APD
for which LEVEL is 0 (zero).

c) NPN becomes the deferred parameter number associated with S and DP becomes the DATA_
POINTER value associated with the deferred parameter number.

d) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.

16) If DPN is equal to HPN, then:

a) DPN is removed from association with S.

b) Case:

i) If there is a select source associated with S, then:

1) Let SS be the select source associated with S.

2) If the value of the CURSOR SCROLLABLE attribute of S is SCROLLABLE, then let
CT be ’SCROLL’; otherwise, let CT be an empty string.

3) Case:

A) If the value of the CURSOR SENSITIVITY attribute of S is INSENSITIVE, then
let CS be ’INSENSITIVE’.

B) If the value of the CURSOR SENSITIVITY attribute of S is SENSITIVE, then
let CS be ’SENSITIVE’.

SQL/CLI routines 259

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.49 ParamData

C) Otherwise, let CS be ’ASENSITIVE’.

4) If the value of the CURSOR HOLDABLE attribute of S is HOLDABLE, then let CH
be ’WITH HOLD’; otherwise, let CH be an empty string.

5) Let CN be the name of the cursor associated with S and let CR be the following
<declare cursor>:

DECLARE CN CS CT CURSOR CH FOR SS

6) A copy of SS is effectively created in which:

A) Each <dynamic parameter specification> is replaced by the value of the corre-
sponding dynamic parameter.

B) Each <value specification> generally contained in SS that is CURRENT_USER,
CURRENT_ROLE, SESSION_USER, or SYSTEM_USER is replaced by the
value resulting from evaluation of CURRENT_USER, CURRENT_ROLE,
SESSION_USER, or SYSTEM_USER, respectively, with all such evaluations
effectively done at the same instant in time.

C) Each <datetime value function> generally contained in SS is replaced by the
value resulting from evaluation of that <datetime value function>, with all
evaluations effectively done at the same instant in time.

D) Each <value specification> generally contained in S that is CURRENT_PATH is
replaced by the value resulting from evaluation of CURRENT_PATH, with all
such evaluations effectively done at the same instant in time.

7) Let T be the table specified by the copy of SS.

8) A table descriptor for T is effectively created.

9) The General Rules of Subclause 14.1, "<declare cursor>", in ISO/IEC 9075-2, are
applied to CR.

10) Case:

A) If CR specifies INSENSITIVE, then a copy of T is effectively created and the
cursor identified by CN is placed in the open state and its position is before the
first row of the copy of T.

B) Otherwise, the cursor identified by CN is placed in the open state and its posi-
tion is before the first row of T.

11) If CR specifies INSENSITIVE, and the implementation is unable to guarantee that
significant changes will be invisible through CR during the SQL-transaction in
which CR is opened and every subsequent SQL-transaction during which it may
be held open, then an exception condition is raised: cursor sensitivity exception —
request rejected.

12) If CR specifies SENSITIVE, and the implementation is unable to guarantee that
significant changes will be visible through CR during the SQL-transaction in which
CR is opened, then an exception condition is raised: cursor sensitivity exception —
request rejected.
NOTE 63 – The visibility of significant changes through a sensitive holdable cursor during
a subsequent SQL-transaction is implementation-defined.

260 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.49 ParamData

13) Whether an implementation is able to disallow significant changes that would not be
visible through a currently open cursor is implementation-defined.

ii) Otherwise:

1) Let SS be the statement source associated with S.

2) SS is removed from association with S.

3) Case:

A) If SS is a <preparable dynamic delete statement: positioned>, then:

I) Let CR be the cursor referenced by SS.

II) The General Rules in Subclause 15.21, "<preparable dynamic delete state-
ment: positioned>", in ISO/IEC 9075-5 are applied to SS.

III) If the execution of SS deleted the current row of CR, then the effect on the
fetched row, if any, associated with the allocated SQL-statement under which
that current row was established, is implementation-defined.

B) If SS is a <preparable dynamic update statement: positioned>, then:

I) Let CR be the cursor referenced by SS.

II) All the General Rules in Subclause 15.22, "<preparable dynamic update
statement: positioned>", in ISO/IEC 9075-5 apply to SS.

III) If the execution of SS updated the current row of CR, then the effect on the
fetched row, if any, associated with the allocated SQL-statement under which
that current row was established, is implementation-defined.

C) Otherwise, the results of the execution are the same as if the statement were
contained in an <externally-invoked procedure> and executed; these are de-
scribed in Subclause 10.4, "<routine invocation>", in ISO/IEC 9075-2.

4) If SS is a <call statement>, then the General Rules of Subclause 5.7, ‘‘Implicit
CALL USING clause’’, are applied with SS and S as SOURCE and ALLOCATED
STATEMENT, respectively.

c) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

d) R becomes the row count associated with S.

e) If P executed successfully, then any executed statement associated with S is destroyed and
SS becomes the executed statement associated with S.

SQL/CLI routines 261

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.50 Prepare

6.50 Prepare

Function
Prepare a statement.

Definition

Prepare (
StatementHandle IN INTEGER,
StatementText IN CHARACTER(L),
TextLength IN INTEGER)
RETURNS SMALLINT

where L is determined by the value of TextLength and has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let TL be the value of TextLength.

4) Case:

a) If TL is not negative, then let L be TL.

b) If TL indicates NULL TERMINATED, then let L be the number of octets of StatementText
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

b) Otherwise, let P be the first L octets of StatementText.

6) If P is a <preparable dynamic delete statement: positioned> or a <preparable dynamic update
statement: positioned>, then let CN be the cursor name referenced by P. Let C be the allocated
SQL-connection with which S is associated. If CN is not the name of a cursor associated with
another allocated SQL-statement associated with C, then an exception condition is raised:
invalid cursor name.

262 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.50 Prepare

7) If one or more of the following are true, then an exception condition is raised: syntax error or
access rule violation.

a) P does not conform to the Format, Syntax Rules or Access Rules for a <preparable state-
ment> or P is a <start transaction statement>, a <commit statement>, a a <rollback
statement>, or a <release savepoint statement>.
NOTE 64 – See Table 26, "SQL-statement codes", in ISO/IEC 9075-2 and Table 9, "SQL-statement
codes", in ISO/IEC 9075-5 for the list of <preparable statement>s. Other parts of ISO/IEC 9075 may
have corresponding tables that define additional codes representing statements defined by those parts
of ISO/IEC 9075.

b) P contains a <simple comment>.

c) P contains a <dynamic parameter specification> whose data type is undefined as determined
by the rules specified in Subclause 15.6, "<prepare statement>", in ISO/IEC 9075-5.

8) The data type of any <dynamic parameter specification> contained in P is determined by the
rules specified in Subclause 15.6, "<prepare statement>", in ISO/IEC 9075-5.

9) Let DTGN be the default transform group name and TFL be the list of user-defined type name—
transform group name pairs used to identify the group of transform functions for every user-
defined type that is referenced in P. DTGN and TFL are not affected by the execution of a <set
transform group statement> after P is prepared.

10) The following objects associated with S are destroyed:

a) Any prepared statement.

b) Any cursor.

c) Any select source.

d) Any executed statement.

If a cursor associated with S is destroyed, then so are any prepared statements that reference
that cursor.

11) P is prepared and the prepared statement is associated with S.

12) If P is a <dynamic select statement> or a <dynamic single row select statement>, then:

a) P becomes the select source associated with S.

b) If there is no cursor name associated with S, then a unique implementation-dependent name
that has the prefix ’SQLCUR’ or the prefix ’SQL_CUR’ becomes the cursor name associated
with S.

13) The General Rules of Subclause 5.5, ‘‘Implicit DESCRIBE USING clause’’, are applied with SS
and S as SOURCE and ALLOCATED STATEMENT, respectively.

14) The validity of a prepared statement in an SQL-transaction different from the one in which the
statement was prepared is implementation-dependent.

SQL/CLI routines 263

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.51 PrimaryKeys

6.51 PrimaryKeys

Function
Return a result set that contains a list of the column names that comprise the primary key for a
single specified table stored in the information schemas of the connected data source.

Definition

PrimaryKeys (
StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
SchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
TableName IN CHARACTER(L3),
NameLength3 IN SMALLINT)
RETURNS SMALLINT

where L1, L2, and L3 are determined by the values of NameLength1, NameLength2, and
NameLength3 respectively and each of L1, L2, and L3 has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let PRIMARY_KEYS_QUERY be a table, with the definition:

CREATE TABLE PRIMARY_KEYS_QUERY (
TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
ORDINAL_POSITION SMALLINT NOT NULL,
PK_NAME CHARACTER VARYING(128))

6) Let PKS represent the set of rows in SS’s Information Schema TABLE_CONSTRAINTS view
where the value of CONSTRAINT_TYPE is ’PRIMARY KEY’.

7) Let PK_COLS represent the set of rows that define the columns within an individual pri-
mary key row in PKS. These rows are formed by a natural inner join on the values in the
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns be-
tween a row in PKS and the matching row or rows in SS’s Information Schema KEY_COLUMN_
USAGE view.

264 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.51 PrimaryKeys

8) Let PKS_COLS represent the set of rows in the combination of all PK_COLS sets.

9) PRIMARY_KEYS_QUERY contains a row for each row in PKS_COLS where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

b) Case:

i) If the value of SUP is 1 (one), then PRIMARY_KEYS_QUERY contains a row for each
column of the primary key for a specific table in SS’s Information Schema TABLE_
CONSTRAINTS view.

ii) Otherwise, PRIMARY_KEYS_QUERY contains a row for each column of the primary
key for a specific table in SS’s Information Schema TABLE_CONSTRAINTS view in
accordance with implementation-defined authorization criteria.

10) For each row of PRIMARY_KEYS_QUERY:

a) If the implementation does not support catalog names, then TABLE_CAT is set to the null
value; otherwise, the value of TABLE_CAT in PRIMARY_KEYS_QUERY is the value of the
TABLE_CATALOG column in PKS.

b) The value of TABLE_SCHEM in PRIMARY_KEYS_QUERY is the value of the TABLE_
SCHEMA column in PKS.

c) The value of TABLE_NAME in PRIMARY_KEYS_QUERY is the value of the TABLE_NAME
column in PKS.

d) The value of COLUMN_NAME in PRIMARY_KEYS_QUERY is the value of the COLUMN_
NAME column in PKS_COLS.

e) The value of ORDINAL_POSITION in PRIMARY_KEYS_QUERY is the value of the
ORDINAL_POSITION column in PKS_COLS.

f) The value of PK_NAME in PRIMARY_KEYS_QUERY is the value of the CONSTRAINT_
NAME column in PKS.

11) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3,
respectively.

12) Let CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and
TableName, respectively.

13) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type
from Table 28, ‘‘Codes and data types for implementation information’’, Y, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condi-
tion — invalid use of null pointer.

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition —
invalid use of null pointer.

SQL/CLI routines 265

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.51 PrimaryKeys

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then
NL2 is set to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of CatalogName.

17) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of SchemaName.

18) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of TableName.

19) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(CATVAL) FROM 2

266 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.51 PrimaryKeys

FOR CHAR_LENGTH(TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

TABLE_CAT = ’TEMPSTR’ AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER(’CATVAL’) AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(SCHVAL) FROM 2

FOR CHAR_LENGTH(TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = ’TEMPSTR’ AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER(’SCHVAL’) AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(TBLVAL) FROM 2

FOR CHAR_LENGTH(TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = ’TEMPSTR’ AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER(’TBLVAL’) AND

b) Otherwise,

i) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

TABLE_CAT = ’CATVAL’ AND

SQL/CLI routines 267

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.51 PrimaryKeys

ii) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

TABLE_SCHEM = ’SCHVAL’ AND

iii) If the value of NL3 is zero, then let TBLSTR be a zero-length string. Otherwise, let
TBLSTR be the character string:

TABLE_NAME = ’TBLVAL’ AND

20) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || 1=1

21) Let STMT be the character string:

SELECT *
FROM PRIMARY_KEYS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

22) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

268 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.52 PutData

6.52 PutData

Function
Provide a deferred parameter value.

Definition

PutData (
StatementHandle IN INTEGER,
Data IN ANY,
StrLen_or_Ind IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no deferred parameter number associated with S, then an exception condition is
raised: CLI-specific condition — function sequence error.

b) Otherwise, let DPN be the deferred parameter number associated with S.

3) If there is no DATA_POINTER value associated with DPN, then an exception condition is raised:
CLI-specific condition — function sequence error.

4) Let APD be the current application parameter descriptor for S.

5) Let PT be the value of the TYPE field of the DPN-th item descriptor area of APD for which
LEVEL is 0 (zero).

6) Let IV be the value of StrLen_or_Ind.

7) If there is a parameter value associated with DPN and PT does not indicate CHARACTER,
CHARACTER LARGE OBJECT, or BINARY LARGE OBJECT, then an exception is raised:
CLI-specific condition — non-string data cannot be sent in pieces.

8) Case:

a) If IV is the appropriate ’Code’ for SQL NULL DATA in Table 26, ‘‘Miscellaneous codes used
in CLI’’, then let V be the null value.

b) If PT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

i) Case:

1) If IV is not negative, then let L be IV.

2) If IV indicates NULL TERMINATED, then let L be the number of octets in the
characters of Data that precede the implementation-defined null character that
terminates a C character string.

SQL/CLI routines 269

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.52 PutData

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

ii) Let V be the first L octets of Data.

c) If PT indicates BINARY LARGE OBJECT, then:

i) Case:

1) If IV is not negative, then let L be IV.

2) Otherwise, an exception condition is raised: CLI-specific condition — invalid at-
tribute value.

ii) Let V be the first L octets of Data.

d) Otherwise, let V be the value of Data.

9) If V is not a valid value of the data type indicated by PT, then an exception condition is raised:
dynamic SQL error — using clause does not match dynamic parameter specifications.

10) If there is no parameter value associated with DPN, then:

a) V becomes the parameter value associated with DPN.

b) If V is not the null value and PT indicates CHARACTER, CHARACTER LARGE OBJECT,
or BINARY LARGE OBJECT, then L becomes the parameter length associated with DPN.

11) If there is a parameter value associated with DPN, then

Case:

a) If V is the null value, then:

i) DPN is removed from association with S.

ii) Any statement source associated with S is removed from association with S.

iii) An exception condition is raised: CLI-specific condition — attempt to concatenate a null
value.

b) Otherwise:

i) Let PV be the parameter value associated with DPN.

ii) Case:

1) If PV is the null value, then:

A) DPN is removed from association with S.

B) Any statement source associated with S is removed from association with S.

C) An exception condition is raised: CLI-specific condition — attempt to concatenate
a null value.

2) Otherwise:

A) Let PL be the parameter length associated with DPN.

270 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.52 PutData

B) Let NV be the result of the <string value function>

PV k V

C) NV becomes the parameter value associated with DPN and (PL+L) becomes the
parameter length associated with DPN.

SQL/CLI routines 271

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.53 RowCount

6.53 RowCount

Function
Get the row count.

Definition

RowCount (
StatementHandle IN INTEGER,
RowCount OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error.

3) RowCount is set to the value of the row count associated with S.

272 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.54 SetConnectAttr

6.54 SetConnectAttr

Function
Set the value of an SQL-connection attribute.

Definition

SetConnectAttr(
ConnectionHandle IN INTEGER,
Attribute IN INTEGER,
Value IN ANY,
StringLength IN INTEGER)
RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception
condition is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 16, ‘‘Codes used for connection attributes’’, or if A
is one of the code values in Table 16, ‘‘Codes used for connection attributes’’, but the row that
contains A contains ’No’ in the ’May be set’ column, then an exception condition is raised:
CLI-specific condition — invalid attribute identifier.

4) If A indicates SAVEPOINT NAME, then:

a) Let SL be the value of StringLength.

b) Case:

i) If SL is not negative, then let L be SL.

ii) If SL indicates NULL TERMINATED, then let L be the number of octets of Value that
precede the implementation-defined null character that terminates a C character string.

iii) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

c) The SAVEPOINT NAME attribute of C is set to the first L octets of Value.

5) If A indicates SAVEPOINT NUMBER, then the SAVEPOINT NUMBER attribute of C is set to
the value of Value.

6) If A specifies an implementation-defined connection attribute, then

SQL/CLI routines 273

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.54 SetConnectAttr

Case:

a) If the data type for the connection attribute is specified as INTEGER in Table 19, ‘‘Data
types of attributes’’, then the connection attribute is set to the value of Value.

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value
that precede the implementation-defined null character that terminates a C charac-
ter string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

iii) The connection attribute is set to the first L octets of Value.

274 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.55 SetCursorName

6.55 SetCursorName

Function
Set a cursor name.

Definition

SetCursorName (
StatementHandle IN INTEGER,
CursorName IN CHARACTER(L),
NameLength IN SMALLINT)
RETURNS SMALLINT

where L is determined by the value of NameLength and has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let NL be the value of NameLength.

4) Case:

a) If NL is not negative, then let L be NL.

b) If NL indicates NULL TERMINATED, then let L be the number of octets of CursorName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

b) Otherwise:

i) Let N be the number of whole characters in the first L octets of CursorName and let NO
be the number of octets occupied by those N characters. If NO 6= L, then an exception
condition is raised: invalid cursor name.

ii) Otherwise, let CV be the first L octets of CursorName and let TCN be the value of

TRIM (BOTH ’ ’ FROM CV)

6) Let ML be the maximum length in characters allowed for an <identifier> as specified in the
Syntax Rules of Subclause 5.4, "Names and identifiers", in ISO/IEC 9075-2, and let TCNL be
the length in characters of TCN.

SQL/CLI routines 275

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.55 SetCursorName

7) Case:

a) If TCNL is greater than ML, then CN is set to the first ML characters of TCN and a com-
pletion condition is raised: warning — string data, right truncation.

b) Otherwise, CN is set to TCN.

8) If CN does not conform to the Format and Syntax Rules of an <identifier>, then an exception
condition is raised: invalid cursor name.

9) Let C be the allocated SQL-connection with which S is associated and let SC be the <search
condition>:

CN LIKE ’SQL_CUR%’ ESCAPE ’\’ OR CN LIKE ’SQLCUR%’

If SC is true or if CN is identical to the value of any cursor name associated with an allocated
SQL-statement associated with C, then an exception condition is raised: invalid cursor name.

10) CN becomes the cursor name associated with S.

276 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.56 SetDescField

6.56 SetDescField

Function
Set a field in a CLI descriptor area.

Definition

SetDescField (
DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
FieldIdentifier IN SMALLINT,
Value IN ANY,
BufferLength IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value
of the COUNT field of D.

2) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to D as the
DESCRIPTOR AREA.

3) Let FI be the value of FieldIdentifier.

4) If FI is not one of the code values in Table 20, ‘‘Codes used for descriptor fields’’, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

5) Case:

a) If the ALLOC_TYPE field of descriptor D is USER and D is not being used as the current
ARD or current APD of any statement handle, then let DT be ARD.

b) Otherwise, let DT be the type of the descriptor D.

6) Let MBS be the value of the May Be Set column in the row of Table 21, ‘‘Ability to set SQL/CLI
descriptor fields’’, that contains FI and in the column that contains the descriptor type DT.

7) If MBS is ’No’, then an exception condition is raised: CLI-specific condition — invalid descriptor
field identifier.

8) Let RN be the value of RecordNumber.

9) Let TYPE be the value of the Type column in the row of Table 20, ‘‘Codes used for descriptor
fields’’, that contains FI.

10) If TYPE is ’ITEM’ and RN is less than 1 (one), then an exception condition is raised: dynamic
SQL error — invalid descriptor index.

11) Let IDA be the item descriptor area of D specified by RN.

12) If an exception condition is raised in any of the following General Rules, then all fields of
IDA for which specific values were provided in the invocation of SetDescField are set to
implementation-dependent values and the value of COUNT for D is unchanged.

SQL/CLI routines 277

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.56 SetDescField

13) Information is set in D:

Case:

a) If FI indicates COUNT, then

Case:

i) If the memory requirements to manage the CLI descriptor area cannot be satisfied, then
an exception condition is raised: CLI-specific condition — memory allocation error.

ii) Otherwise, the count of the number of item descriptor areas is set to the value of Value.

b) If FI indicates ARRAY_SIZE, then the value of the ARRAY_SIZE header field of descriptor
D is set to Value.

c) If FI indicates ARRAY_STATUS_POINTER, then the value of the ARRAY_STATUS_
POINTER header field of descriptor D is set to the address of Value. If Value is a null
pointer, then the address is set to 0 (zero).

d) If FI indicates ROWS_PROCESSED_POINTER, then the value of the ROWS_PROCESSED_
POINTER header field of descriptor D is set to the address of Value. If Value is a null
pointer, then the address is set to 0 (zero).

e) If FI indicates OCTET_LENGTH_POINTER, then the value of the OCTET_LENGTH_
POINTER field of IDA is set to the address of Value.

f) If FI indicates DATA_POINTER, then the value of the DATA_POINTER field of IDA is set
to the address of Value. If Value is a null pointer, then the address is set to 0 (zero).

g) If FI indicates INDICATOR_POINTER, then the value of the INDICATOR_POINTER field
of IDA is set to the address of Value.

h) If FI indicates RETURNED_CARDINALITY_POINTER, then the value fo the RETURNED_
CARDINALITY_POINTER field of IDA is set to the address of Value.

i) If FI indicates CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, or CHARACTER_
SET_NAME, then:

i) Let BL be the value of BufferLength.

ii) Case:

1) If BL is not negative, then let L be BL.

2) If BL indicates NULL TERMINATED, then let L be the number of octets of Value
that precedes the implementation-defined null character that terminates a C charac-
ter string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

iii) Case:

1) If L is zero, then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

278 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.56 SetDescField

2) Otherwise, let FV be the first l octets of Value and let TFV be the value of

TRIM (BOTH ’ ’ FROM FV)

iv) Let ML be the maximum length in characters allowed for an <identifier> as specified in
the Syntax Rules of Subclause 5.4, "Names and identifiers", in ISO/IEC 9075-2, and let
TFVL be the length in characters of TFV.

v) Case:

1) If TFVL is greater than ML, then FV is set to the first ML characters of TFV and a
completion condition is raised: warning — string data, right truncation.

2) Otherwise, FV is set to TFV.

vi) Case:

1) If FI indicates CHARACTER_SET_CATALOG and FV does not conform to the
Format and Syntax Rules of an <identifier>, then an exception condition is raised:
invalid catalog name.

2) If FI indicates CHARACTER_SET_SCHEMA and FV does not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid
schema name.

3) If FI indicates CHARACTER_SET_NAME and FV does not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid
character set name.

vii) The value of the field of IDA identified by FI is set to the value of FV.

j) Otherwise, the value of the field of IDA identified by FI is set to the value of Value.

14) If FI indicates LEVEL, then:

a) If RI is 1 (one) and value is not 0 (zero), then an exception condition is raised: dynamic SQL
error — invalid LEVEL value.

b) If RI is greater than 1 (one), then let PIDA be IDA’s immediately preceding item descriptor
area and let K be its LEVEL value.

i) If Value is K+1 and TYPE in PIDA does not indicate ROW ARRAY, or ARRAY
LOCATOR, then an exception condition is raised: dynamic SQL error — invalid LEVEL
value.

ii) If Value is greater than K+1, then an exception condition is raised: dynamic SQL error
— invalid LEVEL value.

iii) If value is less than K+1, then let OIDAi be the i-th item descriptor area to which
PIDA is subordinate and whose TYPE field indicates ROW. Let NSi be the number of
immediately subordinate descriptor areas of OIDAi between OIDAi and IDA, and let Di
be the value of DEGREE of OIDAi.

1) For each OIDAi whose LEVEL value is greater than V, if Di is not equal to NSi,
then an exception condition is raised: dynamic SQL error — invalid LEVEL value.

SQL/CLI routines 279

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.56 SetDescField

2) If K is not 0 (zero), then let OIDAi be the OIDAj whose LEVEL value is K. If there
exists no such OIDAj or Dj is not greater than NSj, then an exception condition is
raised: dynamic SQL error — invalid LEVEL value.

c) The value of LEVEL in IDA is set to Value.

15) If TYPE is ’ITEM’ and RN is greater than N, then the COUNT field of D is set to RN.

16) If FI indicates TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_
INTERVAL_CODE, DATETIME_INTERVAL_PRECISON, PARAMETER_MODE, PARAMETER_
ORDINAL_POSITION, PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_
SCHEMA, PARAMETER_SPECIFIC_NAME, CHARACTER_SET_CATALOG, CHARACTER_
SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_
SCHEMA, or SCOPE_NAME, then the DATA_POINTER field of IDA is set to zero.

17) If FI indicates DATA_POINTER, and Value is not a null pointer, and IDA is not consistent
as specified in Subclause 5.13, ‘‘Description of CLI item descriptor areas’’, then an exception
condition is raised: CLI-specific condition — inconsistent descriptor information.

18) Let V be the value of Value.

19) If FI indicates TYPE, then:

a) All the other fields of IDA are set to implementation-dependent values.

b) Case:

i) If V indicates CHARACTER, CHARACTER VARYING or CHARACTER LARGE
OBJECT then the CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and
CHARACTER_SET_NAME fields of IDA are set to the values for the default character
set name for the SQL-session and the LENGTH field of IDA is set to the maximum
possible length in characters of the indicated data type.

ii) If V indicates BIT or BIT VARYING, then the LENGTH field of IDA is set to the maxi-
mum possible length in bits of the indicated data type.

iii) If V indicates BINARY LARGE OBJECT, then the LENGTH field of IDA is set to the
maximum possible length in octets of the indicated data type.

iv) If V indicates a <datetime type>, then the PRECISION field of IDA is set to 0 (zero).

v) If V indicates INTERVAL, then the DATETIME_INTERVAL_PRECISION field of IDA is
set to 2.

vi) If V indicates NUMERIC or DECIMAL, then the SCALE field of IDA is set to 0 (zero)
and the PRECISION field of IDA is set to the implementation-defined default value for
the precision of the NUMERIC or DECIMAL data types, respectively.

vii) If V indicates SMALLINT or INTEGER, then the SCALE field of IDA is set to 0 (zero)
and the PRECISION field of IDA is set to the implementation-defined value for the
precision of the SMALLINT or INTEGER data types, respectively.

viii) If V indicates FLOAT, then the PRECISION field of IDA is set to the implementation-
defined default value for the precision of the FLOAT data type.

280 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.56 SetDescField

ix) If V indicates REAL or DOUBLE PRECISION, then the PRECISION field of IDA is
set to the implementation-defined value for the precision of the REAL or DOUBLE
PRECISION data types, respectively.

x) If V indicates an implementation-defined data type, then an implementation-defined set
of fields of IDA are set to implementation-defined default values.

xi) Otherwise, an exception condition is raised: CLI-specific condition — invalid data type.

20) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a <datetime
type>, then:

a) All the fields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to
implementation-dependent values.

b) Case:

i) If V indicates DATE, TIME, or TIME WITH TIME ZONE, then the PRECISION field of
IDA is set to 0 (zero).

ii) If V indicates TIMESTAMP or TIMESTAMP WITH TIME ZONE, then the PRECISION
field of IDA is set to 6.

21) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates INTERVAL,
then the DATETIME_INTERVAL_PRECISION field of IDA is set to 2 and

a) If V indicates DAY TO SECOND, HOUR TO SECOND, MINUTE TO SECOND, or
SECOND, then the PRECISION field of IDA is set to 6.

b) Otherwise, the PRECISION field of IDA is set to 0 (zero).

22) Restrictions on the differences allowed between implementation and application parameter de-
scriptors are implementation-defined, except as specified in the General Rules of Subclause 5.6,
‘‘Implicit EXECUTE USING and OPEN USING clauses’’, in the General Rules of Subclause 5.7,
‘‘Implicit CALL USING clause’’, and in the General Rules of Subclause 6.49, ‘‘ParamData’’.
Restrictions on the differences between the implementation and application row descriptors are
implementation-defined, except as specified in the General Rules of Subclause 5.8, ‘‘Implicit
FETCH USING clause’’, and the General Rules of Subclause 6.30, ‘‘GetData’’.

SQL/CLI routines 281

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.57 SetDescRec

6.57 SetDescRec

Function
Set commonly-used fields in a CLI descriptor area.

Definition

SetDescRec (
DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Type IN SMALLINT,
SubType IN SMALLINT,
Length IN INTEGER,
Precision IN SMALLINT,
Scale IN SMALLINT,
Data DEF ANY,
StringLength DEF INTEGER,
Indicator DEF INTEGER)
RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value
of the COUNT field of D.

2) The General Rules of Subclause 5.11, ‘‘Deferred parameter check’’, are applied to D as the
DESCRIPTOR AREA.

3) If D is an implementation row descriptor, then an exception condition is raised: CLI-specific
condition — cannot modify an implementation row descriptor.

4) Let RN be the value of RecordNumber.

5) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

6) If RN is greater than N, then

Case:

a) If the memory requirements to manage the larger CLI descriptor area cannot be satisfied,
then an exception condition is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the COUNT field of D is set to RN.

7) Let IDA be the item descriptor area of D specified by RN.

8) Information is set in D as follows:

a) The data type, precision, scale, and datetime data type of the item described by IDA are set
to the values of Type, Precision, Scale, and SubType, respectively.

282 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.57 SetDescRec

b) Case:

i) If D is an implementation parameter descriptor, then the length (in characters, bits, or
positions, as appropriate) of the item described by IDA is set to the value of Length.

ii) Otherwise, the length in octets of the item described by IDA is set to the value of Length.

c) If StringLength is not a null pointer, then the address of the host variable that is to provide
the length of the item described by IDA, or that is to receive the returned length in octets of
the item described by IDA, is set to the address of StringLength.

d) The address of the host variable that is to provide a value for the item described by IDA,
or that is to receive a value for the item described by IDA, is set to the address of Data. If
Data is a null pointer, then the address is set to 0 (zero).

e) If Indicator is not a null pointer, then the address of the <indicator variable> associated
with the item described by IDA is set to the address of Indicator.

9) If Data is not a null pointer and IDA is not consistent as specified in Subclause 5.13,
‘‘Description of CLI item descriptor areas’’, then an exception condition is raised: CLI-specific
condition — inconsistent descriptor information.

10) If an exception condition is raised, then all fields of IDA for which specific values were provided
in the invocation of SetDescRec are set to implementation-dependent values and the value of
the COUNT field of D is unchanged.

11) Restrictions on the differences allowed between implementation and application parameter de-
scriptors are implementation-defined, except as specified in the General Rules of Subclause 5.6,
‘‘Implicit EXECUTE USING and OPEN USING clauses’’, in the General Rules of Subclause 5.7,
‘‘Implicit CALL USING clause’’, and in the General Rules of Subclause 6.49, ‘‘ParamData’’.
Restrictions on the differences between the implementation and application row descriptors are
implementation-defined, except as specified in the General Rules of Subclause 5.8, ‘‘Implicit
FETCH USING clause’’, and the General Rules of Subclause 6.30, ‘‘GetData’’.

SQL/CLI routines 283

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.58 SetEnvAttr

6.58 SetEnvAttr

Function
Set the value of an SQL-environment attribute.

Definition

SetEnvAttr (
EnvironmentHandle IN INTEGER,
Attribute IN INTEGER,
Value IN ANY,
StringLength IN INTEGER)
RETURNS SMALLINT

General Rules

1) Case:

a) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies
an allocated skeleton SQL-environment, then an exception condition is raised: CLI-specific
condition — invalid handle.

b) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.

ii) The diagnostics area associated with E is emptied.

2) If there are any allocated SQL-connections associated with E, then an exception condition is
raised: CLI-specific condition — attribute cannot be set now.

3) Let A be the value of Attribute.

4) If A is not one of the code values in Table 15, ‘‘Codes used for environment attributes’’, then an
exception condition is raised: CLI-specific condition — invalid attribute identifier.

5) If A indicates NULL TERMINATION, then

Case:

a) If Value indicates TRUE, then null termination for E is set to true .

b) If Value indicates FALSE, then null termination for E is set to false .

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

6) If A specifies an implementation-defined environment attribute, then

Case:

a) If the data type for the environment attribute is specified as INTEGER in Table 19, ‘‘Data
types of attributes’’, then the environment attribute is set to the value of Value.

284 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.58 SetEnvAttr

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value
that precede the implementation-defined null character that terminates a C charac-
ter string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

iii) The environment attribute is set to the first L octets of Value.

SQL/CLI routines 285

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.59 SetStmtAttr

6.59 SetStmtAttr

Function
Set the value of an SQL-statement attribute.

Definition

SetStmtAttr (
StatementHandle IN INTEGER,
Attribute IN INTEGER,
Value IN ANY,
StringLength IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 17, ‘‘Codes used for statement attributes’’, or if A
is one of the code values in Table 17, ‘‘Codes used for statement attributes’’, but the row that
contains A contains ’No’ in the ’May be set’ column, then an exception condition is raised:
CLI-specific condition — invalid attribute identifier.

4) Let V be the value of Value.

5) Case:

a) If A indicates APD_HANDLE, then:

i) Case:

1) If V does not identify an allocated CLI descriptor area, then an exception condition
is raised: CLI-specific condition — invalid attribute value.

2) Otherwise, let DA be the CLI descriptor area identified by V and let AT be the value
of the ALLOC_TYPE field for DA.

ii) Case:

1) If AT indicates AUTOMATIC but DA is not the application parameter descriptor
associated with S, then an exception condition is raised: CLI-specific condition —
invalid use of automatically-allocated descriptor handle.

2) Otherwise, DA becomes the current application parameter descriptor for S.

b) If A indicates ARD_HANDLE, then:

i) Case:

1) If V does not identify an allocated CLI descriptor area, then an exception condition
is raised: CLI-specific condition — invalid attribute value.

286 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.59 SetStmtAttr

2) Otherwise, let DA be the CLI descriptor area identified by V and let AT be the value
of the ALLOC_TYPE field for DA.

ii) Case:

1) If AT indicates AUTOMATIC but DA is not the application row descriptor associated
with S, then an exception condition is raised: CLI-specific condition — invalid use of
automatically-allocated descriptor handle.

2) Otherwise, DA becomes the current application row descriptor for S.

c) If A indicates CURSOR SCROLLABLE, then

Case:

i) If the implementation supports scrollable cursors, then:

1) If an open cursor is associated with S, then an exception condition is raised: CLI-
specific condition — attribute cannot be set now.

2) Case:

A) If V indicates NONSCROLLABLE, then the CURSOR SCROLLABLE attribute
of S is set to NONSCROLLABLE.

B) If V indicates SCROLLABLE, then the CURSOR SCROLLABLE attribute of S is
set to SCROLLABLE.

C) Otherwise, an exception condition is raised: CLI-specific condition — invalid
attribute value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature
not implemented.

d) If A indicates CURSOR SENSITIVITY, then

Case:

i) If the implementation supports cursor sensitivity, then

Case:

1) If an open cursor is associated with S, then an exception condition is raised: CLI-
specific condition — attribute cannot be set now.

2) Case:

A) If V indicates ASENSITIVE, then the CURSOR SENSITIVITY attribute of S is
set to ASENSITIVE.

B) If V indicates INSENSITIVE, then the CURSOR SENSITIVITY attribute of S is
set to INSENSITIVE.

C) If V indicates SENSITIVE, then the CURSOR SENSITIVITY attribute of S is
set to SENSITIVE.

D) Otherwise, an exception condition is raised: CLI-specific condition — invalid
attribute value.

SQL/CLI routines 287

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.59 SetStmtAttr

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature
not implemented.

e) If A indicates METADATA ID, then

Case:

i) If V indicates FALSE, then the METADATA ID attribute of S is set to FALSE.

ii) If V indicates TRUE, then the METADATA ID attribute of S is set to TRUE.

iii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
value.

f) If A indicates CURSOR HOLDABLE, then

Case:

i) If the implementation supports cursor holdability, then

Case:

1) If an open cursor is associated with S, then an exception condition is raised: CLI-
specific condition — attribute cannot be set now.

2) Case:

A) If V indicates NONHOLDABLE, then the CURSOR HOLDABLE attribute of S
is set to NONHOLDABLE.

B) If V indicates HOLDABLE, then the CURSOR HOLDABLE attribute of S is set
to HOLDABLE.

C) Otherwise, an exception condition is raised: CLI-specific condition — invalid
attribute value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature
not implemented.

g) If A indicates CURRENT OF POSITION, then

Case:

i) If there is no open cursor associated with S, then an exception condition is raised:
CLI-specific condition — Invalid cursor state.

ii) If V is greater than the ARRAY_SIZE field of the application row descriptor associated
with S, then an exception condition is raised: CLI-specific condition — row value out of
range.

iii) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE, then
an exception condition is raised: CLI-specific condition — invalid cursor position.

iv) Otherwise, the current row within the fetched rowset associated with S is set to V.

h) If A indicates NEST DESCRIPTOR, then

288 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.59 SetStmtAttr

Case:

i) If there is a prepared statement associated with StatementHandle, then an exception
condition is raised: CLI-specific condition — function sequence error.

ii) Otherwise,

Case:

1) If V indicates FALSE, then the NEST DESCRIPTOR attribute of S is set to FALSE.

2) If V indicates TRUE, then the NEST DESCRIPTOR attribute of S is set to TRUE.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid at-
tribute value.

6) If A specifies an implementation-defined statement attribute, then

Case:

a) If the data type for the statement attribute is specified as INTEGER in Table 19, ‘‘Data
types of attributes’’, then the statement attribute is set to the value of Value.

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value
that precede the implementation-defined null character that terminates a C charac-
ter string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

iii) The statement attribute is set to the first L octets of Value.

SQL/CLI routines 289

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.60 SpecialColumns

6.60 SpecialColumns

Function
Return a result set that contains a list of columns the combined values of which can uniquely iden-
tify any row within a single specified table described by the Information Schemas of the connected
data source.

Definition

SpecialColumns (
StatementHandle IN INTEGER,
IdentifierType IN SMALLINT,
CatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
SchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
TableName IN CHARACTER(L3),
NameLength3 IN SMALLINT,
Scope IN SMALLINT,
Nullable IN SMALLINT)
RETURNS SMALLINT

where L1, L2, and L3 are determined by the values of NameLength1, NameLength2, and
NameLength3 respectively and each of L1, L2, and L3 has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let SPECIAL_COLUMNS_QUERY be a table, with the definition:

CREATE TABLE SPECIAL_COLUMNS_QUERY (
SCOPE SMALLINT,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
DATA_TYPE SMALLINT NOT NULL,
TYPE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_SIZE INTEGER,
BUFFER_LENGTH INTEGER,
DECIMAL_DIGITS SMALLINT,
PSEUDO_COLUMN SMALLINT)

6) SPECIAL_COLUMNS_QUERY contains a row for each column that is part of a set of columns
that can be used to best uniquely identify a row within the tables listed in SS’s Information
Schema TABLES view. Some tables may not have such a set of columns. Some tables may
have more than one such set, in which case it is implementation-dependent as to which set of

290 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.60 SpecialColumns

columns is chosen. It is implementation-dependent as to whether a column identified for a given
table is a pseudo-column.

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

b) Case:

i) If the value of SUP is 1 (one), then Table 28, ‘‘Codes and data types for implementation
information’’, is ’Y’, then SPECIAL_COLUMNS_QUERY contains a row for each iden-
tifying column in SS’s Information Schema COLUMNS view and each implementation-
dependent pseudo-column.

ii) Otherwise, SPECIAL_COLUMNS_QUERY contains a row for each identifying column
in SS’s Information Schema COLUMNS view and each implementation-dependent
pseudo-column in accordance with implementation-defined authorization criteria.

7) If the value of IdentifierType is other than the code for BEST ROWID in Table 43, ‘‘Column
types and scopes used with SpecialColumns’’, or an implementation-defined extension to that
table, then an exception condition is raised: CLI-specific condition — column type out of range.

8) If the value of Scope is other than the code SCOPE CURRENT ROW, SCOPE TRANSACTION,
or SCOPE SESSION in Table 43, ‘‘Column types and scopes used with SpecialColumns’’, or
an implementation-defined extension to that table, then an exception condition is raised: CLI-
specific condition — scope out of range.

9) If the value of Nullable is other than the code for NO NULLS or NULLABLE in Table 43,
‘‘Column types and scopes used with SpecialColumns’’, then an exception condition is raised:
CLI-specific condition — nullable type out of range.

10) For each row of SPECIAL_COLUMNS_QUERY:

a) The value of SCOPE in SPECIAL_COLUMNS_QUERY is either the code for one of SCOPE
CURRENT ROW, SCOPE TRANSACTION, or SCOPE SESSION from Table 43, ‘‘Column
types and scopes used with SpecialColumns’’, or it is an implementation-defined value,
determined as follows:

Case:

i) If the value that uniquely identifies a row is only guaranteed to be valid while positioned
on that row, then the code is that for SCOPE CURRENT ROW.

ii) If the value that uniquely identifies a row is only guaranteed to be valid for the current
transaction, then the code is that for SCOPE TRANSACTION.

iii) If the value that uniquely identifies a row is only guaranteed to be valid for the current
session, then the code is that for SCOPE SESSION.

iv) Otherwise, the value is implementation-defined.

b) The value of COLUMN_NAME in SPECIAL_COLUMNS_QUERY is the value of the
COLUMN_NAME column in the COLUMNS view.

c) The value of DATA_TYPE in SPECIAL_COLUMNS_QUERY is derived from the values of
the DATA_TYPE and INTERVAL_TYPE columns in the COLUMNS view as follows:

SQL/CLI routines 291

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.60 SpecialColumns

Case:

i) If the value of DATA_TYPE in the COLUMNS view is ’INTERVAL’, then the value
of DATA_TYPE in (SPECIAL_COLUMNS_QUERY) is the appropriate Code from
Table 37, ‘‘Codes used for concise data types’’, that matches the interval specified in
the INTERVAL_TYPE column in the COLUMNS view.

ii) Otherwise, the value of DATA_TYPE in SPECIAL_COLUMNS_QUERY is the appropri-
ate Code from Table 37, ‘‘Codes used for concise data types’’, that matches the interval
specified in the DATA_TYPE column in the COLUMNS view.

d) The value of TYPE_NAME in SPECIAL_COLUMNS_QUERY is an implementation-defined
value that is the character string by which the data type is known at the data source.

e) The value of COLUMN_SIZE in SPECIAL_COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is ’CHARACTER’, ’CHARACTER
VARYING’, ’CHARACTER LARGE OBJECT’, or ’BINARY LARGE OBJECT’, then
the value is that of the CHARACTER_MAXIMUM_LENGTH in the same row of the
COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is ’BIT’ or ’BIT VARYING’, then
the value is that of the CHARACTER_MAXIMUM_LENGTH in the same row of the
COLUMNS view.

iii) If the value of DATA_TYPE in the COLUMNS view is ’DECIMAL’ or ’NUMERIC’,
then the value is that of the NUMERIC_PRECISION column in the same row of the
COLUMNS view.

iv) If the value of DATA_TYPE in the COLUMNS view is ’SMALLINT’, ’INTEGER’, ’REAL’,
’DOUBLE PRECISION’, or ’FLOAT’, then the value is implementation-defined.

v) If the value of DATA_TYPE in the COLUMNS view is ’DATE’, ’TIME’, ’TIMESTAMP’,
’TIME WITH TIME ZONE’, or ’TIMESTAMP WITH TIME ZONE’, then the value of
COLUMN_SIZE is that derived from Syntax Rule 33), in Subclause 6.1, "<data type>",
of ISO/IEC 9075-2, where the value of <time fractional seconds precision> is the value of
the NUMERIC_PRECISION column in the same row of the COLUMNS view.

vi) If the value of DATA_TYPE in the COLUMNS view is ’INTERVAL’, then the value of
COLUMN_SIZE is that derived from the General Rules of Subclause 10.1, "<interval
qualifier>", of ISO/IEC 9075-2, where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in the
same row of the COLUMNS view.

2) The value of <interval leading field precision> is the value of the INTERVAL_
PRECISION column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the NUMERIC_
PRECISION column in the same row of the COLUMNS view.

vii) If the value of DATA_TYPE in the COLUMNS view is ’REF’, then the value is the length
in octets of the reference type.

viii) Otherwise, the value is implementation-dependent.

292 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.60 SpecialColumns

f) The value of BUFFER_LENGTH in SPECIAL_COLUMNS_QUERY is implementation-
defined.
NOTE 65 – The purpose of BUFFER_LENGTH is to record the number of octets transferred for the
column with a Fetch routine, a FetchScroll routine, or a GetData routine when the TYPE field in the
application row descriptor indicates DEFAULT. This length excludes any null terminator.

g) The value of DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is:

Case:

i) If the value of DATA_TYPE in the COLUMNS view is one of ’DATE’, ’TIME’,
’TIMESTAMP’, ’TIME WITH TIME ZONE’, or ’TIMESTAMP WITH TIME ZONE’,
then the value of DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is the value of
the DATETIME_PRECISION column in the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is one of ’DECIMAL’, ’INTEGER’,
’NUMERIC’, or ’SMALLINT’, then the value of DECIMAL_DIGITS in SPECIAL_
COLUMNS_QUERY is the value of the NUMERIC_SCALE column in the COLUMNS
view.

iii) Otherwise, the value of DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is the
null value.

h) The value of PSEUDO_COLUMN in SPECIAL_COLUMNS_QUERY is the code for one
of PSEUDO UNKNOWN, NOT PSEUDO, or PSEUDO from Table 43, ‘‘Column types and
scopes used with SpecialColumns’’. The algorithm used to set this value is implementation-
dependent.

11) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3,
respectively.

12) Let CATVAL, SCHVAL, TBLVAL, SCPVAL, and NULVAL be the values of CatalogName,
SchemaName, and TableName, Scope, and Nullable respectively.

13) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type
from Table 28, ‘‘Codes and data types for implementation information’’, is ’Y’, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condi-
tion — invalid use of null pointer.

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition —
invalid use of null pointer.

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then
NL2 is set to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName
that precede the implementation-defined null character that terminates a C character string.

SQL/CLI routines 293

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.60 SpecialColumns

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of CatalogName.

17) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of SchemaName.

18) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of TableName.

19) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(CATVAL) FROM 2

FOR CHAR_LENGTH(TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

TABLE_CAT = ’TEMPSTR’ AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER(’CATVAL’) AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

294 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.60 SpecialColumns

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’ and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(SCHVAL) FROM 2

FOR CHAR_LENGTH(TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = ’TEMPSTR’ AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER(’SCHVAL’) AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(TBLVAL) FROM 2

FOR CHAR_LENGTH(TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = ’TEMPSTR’ AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER(’TBLVAL’) AND

b) Otherwise:

i) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

TABLE_CAT = ’CATVAL’ AND

ii) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

TABLE_SCHEM = ’SCHVAL’ AND

iii) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

TABLE_NAME = ’TBLVAL’ AND

20) Let the value of SCPSTR be the character string:

SCOPE >= SCPVAL

SQL/CLI routines 295

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.60 SpecialColumns

21) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || SCPSTR

22) Case:

a) If NULVAL is equal to the code for NO NULLS in Table 26, ‘‘Miscellaneous codes used in
CLI’’, and any of the rows selected by the above query would describe a column for which
the value of IS_NULLABLE column in the COLUMNS view is ’YES’, then let STMT be the
character string:

SELECT *
FROM SPECIAL_COLUMNS_QUERY
WHERE 1 = 2 -- select no rows
ORDER BY SCOPE

b) Otherwise, let STMT be the character string:

SELECT *
FROM SPECIAL_COLUMNS_QUERY
WHERE PRED
ORDER BY SCOPE

23) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

296 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.61 StartTran

6.61 StartTran

Function
Explicitly start an SQL-transaction and set its characteristics.

Definition

StartTran (
HandleType IN SMALLINT,
Handle IN INTEGER,
AccessMode IN INTEGER,
IsolationLevel IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 13, ‘‘Codes used for handle types’’, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates STATEMENT HANDLE, then:

i) If H does not identify an allocated SQL-statement, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

b) If HT indicates DESCRIPTOR HANDLE, then:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

c) If HT indicates CONNECTION HANDLE, then:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise:

1) Let C be the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

3) Case:

A) If there is no established SQL-connection associated with C, then an exception
condition is raised: connection exception — connection does not exist.

SQL/CLI routines 297

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.61 StartTran

B) Otherwise, let EC be the established SQL-connection associated with C.

4) If C has an associated established SQL-connection that is active, then let L1 be a
list containing EC; otherwise, let L1 be an empty list.

d) If HT indicates ENVIRONMENT HANDLE, then:

i) If H does not identify an allocated SQL-environment or if it identifies an allocated SQL-
environment that is a skeleton SQL-environment, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) Let L be a list of the allocated SQL-connections associated with E. Let L1 be a list
of the allocated SQL-connections in L that have an associated established SQL-
connection that is active.

4) If an SQL-transaction is currently active on any of the SQL-connections contained in L1, then
an exception condition is raised: invalid transaction state — active SQL-transaction.

5) Let AM be the value for AccessMode. If AM is not one of the codes in Table 36, ‘‘Values for
TRANSACTION ACCESS MODE with StartTran’’, then an exception condition is raised: CLI-
specific condition — invalid attribute identifier.

6) Let IL be the value for IsolationLevel. If IL is not one of the codes in Table 35, ‘‘Values for
TRANSACTION ISOLATION OPTION with GetInfo and StartTran’’, then an exception condi-
tion is raised: CLI-specific condition — invalid attribute identifier.

7) Let TXN be the SQL-transaction that is started by this invocation of the StartTran routine.

8) If READ ONLY is specified by AM, then the access mode of TXN is set to read-only. If READ
WRITE is specified by AM, then the access mode of TXN is set to read-write.

9) The isolation level of TXN is set to an implementation-defined isolation level that will not
exhibit any of the phenomena that the isolation level indicated by TIL would not exhibit, as
specified in Table 10, "SQL-transaction isolation levels and the three phenomena", in ISO/IEC
9075-2.

10) TXN is started in each SQL-connection contained in L1.

298 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.62 TablePrivileges

6.62 TablePrivileges

Function
Return a result set that contains a list of the privileges held on the tables whose names adhere to
the requested pattern(s) within tables described by the Information Schemas of the connected data
source.

Definition

TablePrivileges (
StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
SchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
TableName IN CHARACTER(L3),
NameLength3 IN SMALLINT)
RETURNS SMALLINT

where L1, L2, and L3 are determined by the values of NameLength1, NameLength2, and
NameLength3, respectively and each of L1, L2, and L3 has a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let TABLE_PRIVILEGES_QUERY be a table, with the definition:

CREATE TABLE TABLE_PRIVILEGES_QUERY (
TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
GRANTOR CHARACTER VARYING(128) NOT NULL,
GRANTEE CHARACTER VARYING(128) NOT NULL,
PRIVILEGE CHARACTER VARYING(128) NOT NULL,
IS_GRANTABLE CHARACTER VARYING(3) NOT NULL,
WITH_HIERARCHY CHARACTER VARYING(254) NOT NULL)

6) TABLE_PRIVILEGES_QUERY contains a row for each privilege in SS’s Information Schema
TABLE_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

SQL/CLI routines 299

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.62 TablePrivileges

b) Case:

i) If the value of SUP is 1 (one), then TABLE_PRIVILEGES_QUERY contains a row for
each privilege in SS’s Information Schema TABLE_PRIVILEGES view.

ii) Otherwise, TABLE_PRIVILEGES_QUERY contains a row for each privilege in SS’s
Information Schema TABLE_PRIVILEGES view that meets implementation-defined
authorization criteria.

7) For each row of TABLE_PRIVILEGES_QUERY:

a) If the implementation does not support catalog names, then TABLE_CAT is the null value;
otherwise, the value of TABLE_CAT in TABLE_PRIVILEGES_QUERY is the value of the
TABLE_CATALOG column in the TABLE_PRIVILEGES view in the information schema.

b) The value of TABLE_SCHEM in TABLE_PRIVILEGES_QUERY is the value of the TABLE_
SCHEMA column in the TABLE_PRIVILEGES view.

c) The value of TABLE_NAME in TABLE_PRIVILEGES_QUERY is the value of the TABLE_
NAME column in the TABLE_PRIVILEGES view.

d) The value of GRANTOR in TABLE_PRIVILEGES_QUERY is the value of the GRANTOR
column in the TABLE_PRIVILEGES view.

e) The value of GRANTEE in TABLE_PRIVILEGES_QUERY is the value of the GRANTEE
column in the TABLE_PRIVILEGES view.

f) The value of PRIVILEGE in TABLE_PRIVILEGES_QUERY is the value of the PRIVILEGE_
TYPE column in the TABLE_PRIVILEGES view.

g) The value of IS_GRANTABLE in TABLE_PRIVILEGES_QUERY is the value of the IS_
GRANTABLE column in the TABLE_PRIVILEGES view.

h) The value of WITH_HIERARCHY in TABLE_PRIVILEGES_QUERY is the value of the
WITH_HIERARCHY column in the TABLE_PRIVILEGES veiw.

8) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3,
respectively.

9) Let CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and
TableName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type
from Table 28, ‘‘Codes and data types for implementation information’’, is ’Y’, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer or if TableName is a null pointer, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then
NL2 is set to zero. If TableName is a null pointer, then NL3 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

300 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.62 TablePrivileges

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(CATVAL) FROM 2

FOR CHAR_LENGTH(TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

TABLE_CAT = ’TEMPSTR’ AND

SQL/CLI routines 301

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.62 TablePrivileges

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER(’CATVAL’) AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

a) SUBSTRING(TRIM(SCHVAL) FROM 2

FOR CHAR_LENGTH(TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = ’TEMPSTR’ AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER(’SCHVAL’) AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING(TRIM(TBLVAL) FROM 2

FOR CHAR_LENGTH(TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = ’TEMPSTR’ AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER(’TBLVAL’) AND

b) Otherwise,

i) Let SPC be the Code value from Table 28, ‘‘Codes and data types for implementation
information’’, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

302 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.62 TablePrivileges

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

TABLE_CAT = ’CATVAL’ AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

TABLE_SCHEM LIKE ’SCHVAL’ ESCAPE ’ESC’ AND

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string. Otherwise, let
TBLSTR be the character string:

TABLE_NAME LIKE ’TBLVAL’ ESCAPE ’ESC’ AND

16) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || 1=1

17) Let STMT be the character string:

SELECT *
FROM TABLE_PRIVILEGES_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, PRIVILEGE

18) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

SQL/CLI routines 303

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.63 Tables

6.63 Tables

Function
Based on the specified selection criteria, return a result set that contains information about tables
described by the information schemas of the connected data source.

Definition

Tables (
StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
NameLength1 IN SMALLINT,
SchemaName IN CHARACTER(L2),
NameLength2 IN SMALLINT,
TableName IN CHARACTER(L3),
NameLength3 IN SMALLINT,
TableType IN CHARACTER(L4),
NameLength4 IN SMALLINT)
RETURNS SMALLINT

where L1, L2, L3, and L4 are determined by the values of NameLength1, NameLength2, and
NameLength3, and NameLength4, respectively, and each of L1, L2, L3, and L4 has a maximum
value equal to the implementation-defined maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor
state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on
that connection.

5) Let TABLES_QUERY be a table with the definition:

CREATE TABLE TABLES_QUERY (
TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128),
TABLE_NAME CHARACTER VARYING(128),
TABLE_TYPE CHARACTER VARYING(254),
REMARKS CHARACTER VARYING(254),
SELF_REF_COLUMN CHARACTER VARYING(128),
REF_GENERATION CHARACTER VARYING(254),
UDT_CAT CHARACTER VARYING(128),
UDT_SCHEM CHARACTER VARYING(128),
UDT_NAME CHARACTER VARYING(128),
UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME))

304 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.63 Tables

6) TABLES_QUERY contains a row for each table described by SS’s Information Schema TABLES
view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo
with FeatureType = ’FEATURE’ and FeatureId = ’C041’ (corresponding to the feature
‘‘Information Schema metadata constrainted by privileges’’).

b) Case:

i) If the value of SUP is 1 (one), then TABLES_QUERY contains a row for each row
describing a table in SS’s Information Schema TABLES view for which the connected
UserName has selection privileges.

ii) Otherwise, TABLES_QUERY contains a row for each row describing a table in SS’s
Information Schema TABLES view that meets implementation-defined authorization
criteria.

7) The description of the table TABLES_QUERY is:

a) The value of TABLE_CAT in TABLES_QUERY is the value of the TABLE_CATALOG col-
umn in the TABLES view. If SS does not support catalog names, then TABLE_CAT is set to
the null value.

b) The value of TABLE_SCHEM in TABLES_QUERY is the value of the TABLE_SCHEMA
column in the TABLES view. The value of TABLE_NAME in TABLES_QUERY is the value
of the TABLE_NAME column in the TABLES view.

c) The value of TABLE_TYPE in TABLES_QUERY is determined by the values of the TABLE_
TYPE column in the TABLES view.

Case:

i) If the value of TABLE_TYPE in the TABLES view is ’VIEW’, then:

Case:

1) If the defined view is within the Information Schema itself, then the value of
TABLE_TYPE in TABLES_QUERY is set to ’SYSTEM TABLE".

2) Otherwise, the value of TABLE_TYPE in TABLES_QUERY is set to ’VIEW’.

ii) If the value of TABLE_TYPE in the TABLES view is ’BASE TABLE’, then the value of
TABLE_TYPE in TABLES_QUERY is set to ’TABLE’.

iii) If the value of TABLE_TYPE in the TABLES view is ’GLOBAL TEMPORARY’ or
’LOCAL TEMPORARY’, then the value of TABLE_TYPE in TABLES_QUERY is set
to that value.

iv) Otherwise, the value of TABLE_TYPE in TABLES_QUERY is an implementation-
defined value.

d) The value of REMARKS in TABLES_QUERY is an implementation-defined description of
the table.

e) The value of SELF_REF_COLUMN in TABLES_QUERY is the value of the SELF_
REFERENCING_COLUMN_NAME column in the TABLES view.

SQL/CLI routines 305

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.63 Tables

f) The value of REF_GENERATION in TABLES_QUERY is the value of the REFERENCE_
GENERATION column in the TABLES view.

g) The value of UDT_CAT in TABLES_QUERY is the value of the USER_DEFINED_TYPE_
CATALOG column in the TABLES view.

h) The value of UDT_SCHEMA in TABLES_QUERY is the value of the USER_DEFINED_
TYPE_SCHEMA column in the TABLES view.

i) The value of UDT_NAME in TABLES_QUERY is the value of the USER_DEFINED_TYPE_
NAME column in the TABLES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3,
and NameLength4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and TYPVAL be the values of CatalogName, SchemaName,
TableName, and TableType, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type
from Table 28, ‘‘Codes and data types for implementation information’’, is ’Y’, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer or if TableName is a null pointer, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then
NL2 is set to zero. If TableName is a null pointer, then NL3 is set to zero. If TableType is a null
pointer, then NL4 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of SchemaName.

306 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.63 Tables

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName
that precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of TableType that
precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TYPVAL be the first L octets of ColumnName.

16) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(CATVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(CATVAL)
FROM CHAR_LENGTH(TRIM(CATVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM(CATVAL) FROM 2
FOR CHAR_LENGTH (TRIM(CATVAL)) - 2)

and let CATSTR be the character string:

TABLE_CAT = ’TEMPSTR’ AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER(’CATVAL’) AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

SQL/CLI routines 307

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.63 Tables

Case:

A) If SUBSTRING(TRIM(SCHVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(SCHVAL)
FROM CHAR_LENGTH(TRIM(SCHVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM(SCHVAL) FROM 2
FOR CHAR_LENGTH (TRIM(SCHVAL)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = ’TEMPSTR’ AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER(’SCHVAL’) AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM(TBLVAL) FROM 1 FOR 1) = ’"’and if SUBSTRING(TRIM(TBLVAL)
FROM CHAR_LENGTH(TRIM(TBLVAL)) FOR 1) = ’"’, then let TEMPSTR be the value
obtained from evaluating:

SUBSTRING (TRIM(TBLVAL) FROM 2
FOR CHAR_LENGTH (TRIM(TBLVAL)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = ’TEMPSTR’ AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER(’TBLVAL’) AND

b) Otherwise:

i) Let SPC be the Code value from Table 28, ‘‘Codes and data types for implementation
information’’, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

TABLE_CAT = ’CATVAL’ AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

TABLE_SCHEM LIKE ’SCHVAL’ ESCAPE ’ESC’ AND

308 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
6.63 Tables

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

TABLE_NAME LIKE ’TBLVAL’ ESCAPE ’ESC’ AND

17) Case:

a) If the value of NL4 is zero, then let TYPSTR be a zero-length string.

b) Otherwise,

i) TableType is a comma-separated list of one or more types of tables that are to be re-
turned in the result set. Each value may optionally be enclosed within <quote> charac-
ters. The types are ’TABLE’, ’VIEW’, ’GLOBAL TEMPORARY’, ’LOCAL TEMPORARY’,
and ’SYSTEM TABLE’.
NOTE 66 – These types are mutually exclusive; for instance, ’TABLE’ includes only user-
created base tables and ’SYSTEM TABLE’ includes only views from the Information Schemas.
Implementation-defined types may also be specified.

ii) Let N be the number of comma-separated values specified within TableType.

iii) Let TT be the set of comma-separated values TTi, 1 � i � N, specified within TableType.

iv) TYPSTR is a string that is the predicate required to select the requested types of tables
from TABLES_QUERY:

TABLE_TYPE = ’’’’ || TRIM(TT1) || ’’’’ OR
TABLE_TYPE = ’’’’ || TRIM(TT2) || ’’’’ OR

.

.

.
TABLE_TYPE = ’’’’ || TRIM(TTN) || ’’’’

18) Let PRED be the result of evaluating:

CATSTR || ’ ’ || SCHSTR || ’ ’ || TBLSTR || ’ ’ || TYPSTR || ’ ’ || 1=1

19) Case:

a) If the value of CATVAL is the value in the ’Value’ column for ALL CATALOGS in Table 42,
‘‘Special parameter values’’, and both SCHVAL and TBLVAL are zero-length strings, then let
STMT be the character string:

SELECT DISTINCT TABLE_CAT,
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(254)),
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY
ORDER BY TABLE_CAT

NOTE 67 – All tables qualify for selection and no privileges are required for access to the underly-
ing TABLES view.

SQL/CLI routines 309

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
6.63 Tables

b) If the value of SCHVAL is the value in the ’Value’ column for ALL SCHEMAS in Table 42,
‘‘Special parameter values’’, and both CATVAL and TBLVAL are zero-length strings, then let
STMT be the character string:

SELECT DISTINCT CAST (NULL AS VARCHAR(128)),
TABLE_SCHEM,
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(254)),
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY
ORDER BY TABLE_SCHEM

NOTE 68 – All tables qualify for selection and no privileges are required for access to the underly-
ing TABLES view.

c) If the value of TYPVAL is the value in the ’Value’ column for ALL TYPES in Table 42,
‘‘Special parameter values’’, and CATVAL, SCHVAL, and TBLVAL are zero-length strings,
then let STMT be the character string:

SELECT DISTINCT CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
TABLE_TYPE,
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY
ORDER BY TABLE_TYPE

NOTE 69 – All tables qualify for selection and no privileges are required for access to the underly-
ing TABLES view.

d) Otherwise, let STMT be the character string:

SELECT *
FROM TABLES_QUERY
WHERE PRED
ORDER BY TABLE_TYPE, TABLE_CAT, TABLE_SCHEM, TABLE_NAME

20) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

310 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

7 Definition Schema

7.1 SQL_IMPLEMENTATION_INFO base table

Function
The SQL_IMPLEMENTATION_INFO base table has one row for each implementation information
item defined by ISO/IEC 9075.

Definition

No additional Definition items

Description

1) Insert this description Some IMPLEMENTATION_INFO_ID values assigned by ISO/IEC 9075
have been assigned for backwards compatibility with ISO/IEC 9075-3:1995. All other values
assigned by ISO/IEC 9075 are in the range 21000 through 24999, inclusive.

2) Insert this description Implementation-defined items that are represented in this table shall have
an IMPLEMENTATION_INFO_ID value that is in the range 11000 through 14999, inclusive.

Table population
The implementation shall effectively populate the SQL_IMPLEMENTATION_INFO base table
with an <insert statement> that is equivalent to the <insert statement> shown below; the <insert
statement> shown below provides values only for certain columns and implicitly assigns the null
value to other columns of the table.

The implementation effectively populates the table so that, for each row containing information
about some facility that the implementation supports, either the INTEGER_VALUE column or the
CHARACTER_VALUE column is set to a value that specifies the requisite information about that
supported facility. For all information items that the implementation does not support, both the
INTEGER_VALUE and the CHARACTER_VALUE column have the null value. The COMMENTS
column may be set to any value deemed appropriate by the implementation, or it may be set to the
null value.

Definition Schema 311

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
7.1 SQL_IMPLEMENTATION_INFO base table

INSERT INTO sql_implementation_info (implementation_info_id,
implementation_info_name,
comments)

VALUES ((10003, ’CATALOG NAME’,
’CHAR: ’’Y’’ if supported, otherwise ’’N’’’),

(10004, ’COLLATING SEQUENCE’,
’CHAR: default collation name’),

(23, ’CURSOR COMMIT BEHAVIOR’,
’INT: 0: close cursors & delete prepared stmts

1: close cursors & retain prepared stmts
2: leave cursors open & retain stmts’),

(2, ’DATA SOURCE NAME’,
’CHAR: <connection name> on CONNECT statement’),

(17, ’DBMS NAME’,
’CHAR: Name of the implementation software’),

(18, ’DBMS VERSION’,
’CHAR: Version of the implementation software

The format is:
<part1>.<part2>.<part3>[<part4>]

where:
<part1 ::= <digit><digit>
<part2 ::= <digit><digit>
<part3 ::= <digit><digit><digit><digit>
<part4 ::= <character representation>’),

(26, ’DEFAULT TRANSACTION ISOLATION’,
’INT: 1: READ UNCOMMITTED

2: READ COMMITTED
3: REPEATABLE READ
4: SERIALIZABLE’),

(28, ’IDENTIFIER CASE’,
’The case in which identifiers are stored in the Definition Schema
INT: 1: stored in upper case

2: stored in lower case
3: stored in mixed case - case sensitive
4: stored in mixed case - case insensitive’),

(85, ’NULL COLLATION’,
’INT: 0: nulls higher than non-nulls

1: nulls lower than non-nulls’),
(13, ’SERVER NAME’,
’CHAR: <SQL server name> on CONNECT statement’),

(94, ’SPECIAL CHARACTERS’,
’CHAR: All special chars OK in non-delimited ids’),

(46, ’TRANSACTION CAPABLE’,
’INT: 0: not supported

1: DML only - error if DDL
2: both DML and DDL
3: DML only - commit before DDL
4: DML only - ignore DDL’)

);

312 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
7.2 SQL_SIZING base table

7.2 SQL_SIZING base table

Function
The SQL_SIZING base table has one row for each sizing item defined by ISO/IEC 9075.

Definition

No additional Definition items

Description

1) Insert this description Some SIZING_ID values assigned by ISO/IEC 9075 have been assigned for
backwards compatibility with ISO/IEC 9075-3:1995. All other values assigned by ISO/IEC 9075
are in the range 25000 through 29999, inclusive.

2) Insert this description Implementation-defined items that are represented in this table shall have
a SIZING_ID value that is in the range 15000 through 19999, inclusive.

Table population
The implementation shall effectively populate the SQL_SIZING base table with an <insert state-
ment> that is equivalent to the <insert statement> shown below; the <insert statement> shown be-
low provides values only for certain columns and implicitly assigns the null value to other columns
of the table.

The implementation effectively populates the table so that, for each row containing information
about some facility that the implementation supports, the SUPPORTED_VALUE column is set to a
value that specifies the requisite information about that supported facility. For all information items
that the implementation does not support, the SUPPORTED_VALUE column has the null value.
The COMMENTS column may be set to any value deemed appropriate by the implementation, or it
may be set to the null value.

Definition Schema 313

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
7.2 SQL_SIZING base table

INSERT INTO sql_sizing (sizing_id, sizing_name, comments)
VALUES ((34, ’MAXIMUM CATALOG NAME LENGTH’,

’Length in characters’),
(30, ’MAXIMUM COLUMN NAME LENGTH’,

’Length in characters’),
(97, ’MAXIMUM COLUMNS IN GROUP BY’, NULL),
(99, ’MAXIMUM COLUMNS IN ORDER BY’, NULL),
(100, ’MAXIMUM COLUMNS IN SELECT,

’Max number of expressions in <select list>’),
(101, ’MAXIMUM COLUMNS IN TABLE’, NULL),
(1, ’MAXIMUM CONCURRENT ACTIVITIES’,

’Max number of SQL-statements currently active’),
(31, ’MAXIMUM CURSOR NAME LENGTH’,

’Length in characters’),
(0, ’MAXIMUM DRIVER CONNECTIONS’,

’Max number of SQL-connections currently established’),
(10005, ’MAXIMUM IDENTIFIER LENGTH’,

’Length in characters;
If different for some objects, set to smallest max’),

(32, ’MAXIMUM SCHEMA NAME LENGTH,
’Length in characters’),

(20000, ’MAXIMUM STATEMENT OCTETS’,
’Max length in octets of <SQL statement variable>’),

(20001, ’MAXIMUM STATEMENT OCTETS DATA’,
’Max length in octets of <SQL data statement>’),

(20002, ’MAXIMUM STATEMENT OCTETS SCHEMA’,
’Max length in octets of SQL <schema definition>’),

(35, ’MAXIMUM TABLE NAME LENGTH’,
’Max length in chars of low order table name part’),

(106, ’MAXIMUM TABLES IN SELECT’,
’Max number of table names in FROM clause’),

(107, ’MAXIMUM USER NAME LENGTH’,
’Length in characters for a <user identifier> of an SQL-session’),

(25000, ’MAXIMUM CURRENT DEFAULT TRANSFORM GROUP LENGTH’,
’Length in characters’),

(25001, ’MAXIMUM CURRENT TRANSFORM GROUP LENGTH’,
’Length in characters’),

(25002, ’MAXIMUM CURRENT PATH LENGTH’,
’Length in characters’),

(25003, ’MAXIMUM CURRENT ROLE LENGTH’,
’Length in characters’),

(25004, ’MAXIMUM SESSION USER LENGTH’,
’Length in characters’),

(25005, ’MAXIMUM SYSTEM USER LENGTH’,
’Length in characters’)

);

314 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)
7.3 SQL_LANGUAGES base table

7.3 SQL_LANGUAGES base table

Function
The SQL_LANGUAGES table has one row for each ISO and implementation-defined SQL language
binding and programming language for which conformance is claimed.
NOTE 70 – The SQL_LANGUAGES base table provides, among other information, the same information
provided by the SQL object identifier specified in Subclause 6.3, "Object identifier for Database Language
SQL", in ISO/IEC 9075-1.

Definition
Augment the column constraint SQL_LANGUAGE_BINDING_STYLE_ISO_1992in Part 5 Add ’CLI’to

the <in value list> of valid SQL_LANGUAGE_BINDING_STYLEs.

Augment the column constraint SQL_LANGUAGE_BINDING_STYLE_ISO_1999in Part 5 Add ’CLI’to
the <in value list> of valid SQL_LANGUAGE_BINDING_STYLEs.

Definition Schema 315

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC

316 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

©ISO/IEC ISO/IEC 9075-3:1999 (E)

8 Conformance

8.1 Conformance to SQL/CLI

This part of ISO/IEC 9075 specifies conforming SQL/CLI routines and conforming SQL/CLI imple-
mentations.

A conforming SQL/CLI application is one that invokes SQL/CLI routines specified in this part of
ISO/IEC 9075. Such routine invocations shall be constructed according to the BNF Format and
associated Syntax Rules, Access Rules, and Definitions specified for <CLI routine>s in Clause 5,
‘‘Call-Level Interface specifications’’, and Clause 6, ‘‘SQL/CLI routines’’, in this part of ISO/IEC
9075.

A conforming SQL/CLI implementation shall process conforming SQL/CLI routine invocations
according to the associated Definitions and General Rules in Clause 5, ‘‘Call-Level Interface speci-
fications’’, and Clause 6, ‘‘SQL/CLI routines’’, in this part of ISO/IEC 9075. A conforming SQL/CLI
implementation shall process SQL-statements in the manner specified in Core SQL and in the set of
any additional features to which conformance is claimed by the SQL-implementation.
NOTE 71 – Certain facilities specified in this part of ISO/IEC 9075 are closely related to specific facilities
specified in ISO/IEC 9075-2 and ISO/IEC 9075-5; such facilities specified in this part of ISO/IEC 9075 are
not supported unless the corresponding facilities in ISO/IEC 9075-2 and ISO/IEC 9075-5 are supported. The
relationships between the facilities specified in this part of ISO/IEC 9075 and the corresponding facilities in
ISO/IEC 9075-2 and ISO/IEC 9075-5 are not specified, but are inferable.

For example, provision of the GetPosition, GetSubstring, and GetLength routines specified in this part of
ISO/IEC 9075 is dependent on support of the LARGE OBJECT data types specified in ISO/IEC 9075-2.

8.2 Claims of conformance

Insert this paragraph Claims of conformance to this part of ISO/IEC 9075 shall state:

1) Insert after list element 2) in ISO/IEC 9075-1 Which of the following standard programming
languages are supported for SQL/CLI routine invocation (see Subclause 5.2, ‘‘<CLI routine>
invocation’’):

a) Ada

b) C

c) COBOL

d) Fortran

e) MUMPS

f) Pascal

g) PL/I

Conformance 317

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

ISO/IEC 9075-3:1999 (E) ©ISO/IEC
8.2 Claims of conformance

2) Insert after list element 2) in ISO/IEC 9075-1 The definitions for all elements and actions that are
specified in this part of ISO/IEC 9075 as implementation-defined.

8.3 Extensions and options

New paragraph A conforming implementation may provide support for additional implementation-
defined routines or for implementation-defined argument values for <CLI routine>s.

New paragraph An implementation remains conforming even if it provides user options to process
conforming <CLI routine> invocations in a nonconforming manner.

318 Call-Level Interface (SQL/CLI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
19

99

https://iecnorm.com/api/?name=26f8c0eff19fae702964d0907a2fef67

