INTERNATIONAL STANDARD

ISO/ IEC/IEEE 8802-3

Third edition 2021-02

AMENDMENT 12 2022-10

Telecommunications and exchange between information technology systems — Requirements for local and metropolitan area networks —

Part 3:

ECNORM. Chick to view

Standard for Ethernet

AMENDMENT 12: Maintenance #15: Power over Ethernet

Télécommunications et échange entre systèmes informatiques — Exigences pour les réseaux locaux et métropolitains —

Partie 3: Norme pour Ethernet

AMENDEMENT 12: Maintenance #15: Alimentation électrique par câble Ethernet

© IEEE 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from IEEE at the address below.

Institute of Electrical and Electronics Engineers, Inc 3 Park Avenue, New York NY 10016-5997, USA

Email: stds.ipr@ieee.org Website: www.ieee.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO/IEC documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iso.org/di

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. In the IEC, see www.iso.org/iso/foreword.html.

ISO/IEC/IEEE 8802-3:2021/Amd.12 was prepared by the LAN/MAN of the IEEE Computer Society (as IEEE 802.3cv-2021) and drafted in accordance with its editorial rules. It was adopted, under the "fast-track procedure" defined in the Partner Standards Development Organization cooperation agreement between ISO and IEEE, by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 6, *Telecommunications and information exchange between systems*.

A list of all parts in the ISO/IEC/IEEE 8802-3 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.

ECNORAL COM. Cick to view the full pob of SOME CHEEK, 8802.3202 Manufactor to the full pob of Some Chief to view the full

IEEE Std 802.3cv™-2021

(Amendment to IEEE Std 802.3™-2018 as amended by IEEE Std 802.3cb™-2018, IEEE Std 802.3bt™-2018, IEEE Std 802.3cd™-2018, IEEE Std 802.3cn™-2019, IEEE Std 802.3cg™-2019, IEEE Std 802.3cq™-2020, IEEE Std 802.3cm™-2020, IEEE Std 802.3ch™-2020, IEEE Std 802.3ca™-2020€ IEEE Std 802.3cr™-2021, and IEEE Std 802.3cu™-2021)

IEEE Standard for Ethernet

Maintenance #15: Power over Ethernet

the
Standards Committee
Computer Society

Approved 9 May 2021
IEEE SA Standards Board

Lich Run. Chick

Abstract: This amendment implements editorial and technical corrections, refinements, and clarifications to Clause 145, Power over Ethernet, and related portions of the standard. No new features are added by this amendment.

A. Cidkto view the full policy of the one of Keywords: amendment, DTE power via MDI, Ethernet, IEEE 802.3™, IEEE 802.3bt™, PoE, Power over Ethernet

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2021 by The Institute of Electrical and Electronics Engineers, Inc.

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.

PDF: ISBN 978-1-5044-7556-3 STD24692 Print: ISBN 978-1-5044-7557-0 STDPD24692

IEEE prohibits discrimination, harassment and bullying.

For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE Standards documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page (https://standards.ieee.org/ipr/disclaimers.html), appear in all standards and may be found under the heading "Important Notices and Disclaimers Concerning IEEE Standards Documents."

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Board. IEEE develops its standards through an accredited consensus development process, which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed by volunteers with scientific, academic, and industry-based expertise in technical working groups. Volunteers are not necessarily members of IEEE or IEEE SA, and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or completeness of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to results and workmanlike effort. In addition, IEEE does not warrant or represent that the use of the material contained in its standards is free from patent infringement. IEEE Standards documents are supplied "AS IS" and "WITH ALL FAULTS."

Use of an IEEE standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity, nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE is the approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that the presenter's views should be considered the personal views of that individual rather than the formal position of IEEE, IEEE SA, the Standards Committee, or the Working Group.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE or IEEE SA. However, IEEE does not provide interpretations, consulting information, or advice pertaining to IEEE Standards documents.

Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its Societies and Standards Coordinating Committees are not able to provide an instant response to comments, or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in evaluating comments or in revisions to an IEEE standard is welcome to join the relevant IEEE working group. You can indicate interest in a working group using the Interests tab in the Manage Profile & Interests area of the IEEE SA myProject system. An IEEE Account is needed to access the application.

Comments on standards should be submitted using the Contact Us form.

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not constitute compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Data privacy

Users of IEEE Standards documents should evaluate the standards for considerations of data privacy and data ownership in the context of assessing and using the standards in compliance with applicable laws and regulations.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under US and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These

include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

Photocopies

Subject to payment of the appropriate licensing fees, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400; https://www.copyright.com/. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every 10 years. When a document is more than 10 years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit <u>IEEE Xplore</u> or <u>contact IEEE</u>. For more information about the IEEE SA or IEEE's standards development process, visit the IEEE SA Website.

Errata

Errata, if any, for all IEEE standards can be accessed on the <u>IEEE SA Website</u>. Search for standard number and year of approval to access the web page of the published standard. Errata links are located under the Additional Resources Details section. Errata are also available in <u>IEEE Xplore</u>. Users are encouraged to periodically check for errata.

Patents

IEEE Standards are developed in compliance with the IEEE SA Patent Policy.

IMPORTANT NOTICE

DEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. IEEE Standards development activities consider research and information presented to the standards development group in developing any safety recommendations. Other information about safety practices, changes in technology or technology implementation, or impact by peripheral systems also may be pertinent to safety considerations during implementation of the standard. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

Participants

The following individuals were officers and members of the IEEE 802.3 Working Group at the beginning of the IEEE P802.3cv Working Group ballot.

David J. Law, IEEE 802.3 Working Group Chair Adam Healey, IEEE 802.3 Working Group Vice-Chair Jon Lewis, IEEE 802.3 Working Group Secretary Steven B. Carlson, IEEE 802.3 Working Group Executive Secretary Valerie Maguire, IEEE 802.3 Working Group Treasurer

Chad Jones, IEEE P802.3cv Maintenance #15: Power over Ethernet Task Force Chair
Jon Lewis, IEEE P802.3cv Maintenance #15: Power over Ethernet Task Force Editor-in-Chief
David Abramson, IEEE P802.3cv Maintenance #15: Power over Ethernet Task Force Comment Editor

Pete Anslow Michikazu Aono Nobuyasu Araki Tim Baggett Thananya Baldwin Steven Baumgartner Denis Beaudoin Gitesh Bhagwat Rich Boyer David Brandt Ralf-Peter Braun Theodore Brillhart Paul Brooks Matthew Brown Leon Bruckman Jairo Bustos Heredia Adrian Butter John Calvin Clark Carty David Chalupsky Jacky Chang Xin Chang Chan Chen Golam Choudhury

Fred Dawson Gerrit den Besten Claudio DeSanti Curtis Donahue Kathryn Dube Mike Dudek Frank Effenberger David Estes John Ewen Vincent Ferretti Brian Franchuk Matthias Fritsche Takashi Fukuoka Ali Ghiasi Joel Goergen Steven Gorshe Hideki Goto Steffen Graber

Keng Hua Chuang

John D'Ambrosia

Piers Dawe

Olaf Grau Robert Grow Martin Gubow Mark Gustlin Marek Hajduczenia Howard Heck David Hess Brian Holden Yasuhiro Hvakutake Jonathan Ingham Kazuhiko Ishibe Hideki Isono Tom Issenhuth Hiroaki Ito Andrew Jimenez John Johnson Peter Jones Lokesh Kabra Haysam Kadry Manabu Kagami Upen Kareti Athanasios Kasapi Yong Kim Mark Kimber

Curtis Knittle
Elizabeth Kochuparambil
Sam Kocsis
Wojciech Koczwara
Paul Kolesar
Taiji Kondo
Daniel Koppermueller
Glen Kramer
Taketo Kumada
Hans Lackner
Frank Lambrecht
Mark Laubach
Greg Le Cheminant
David Lewis
Mike-Peng Li

Alex Lin

Robert Lingle

Hai-Feng Liu

William Lo

Yuanqiu Luo

Michael Klempa

David Malicoat Eric Maniloff Flavio Marques Arthur Marris Takeo Masuda Mick McCarthy Brett McClellan Larry McMillan Greg McSorley Richard Mellitz Shimon Muller Sean Murphy James Nadolny **Edward Nakamoto** Raymond Nering Paul Neveux Gary Nicholl Shawn Nicholl Paul Nikolich Kevin Noll Mark Nowell David Ofelt Ryo Okabe Tom Palkert Carlos Pardo Earl Parsons Gerald Pepper Rubén Perez De Aranda Alonso

Kent Lusted Jeffery Maki

David Piehler Fabio Pittala Christopher Pohl William Powell Rick Rabinovich Parthasarathy Raju Adee Ran Alon Regev Duane Remein Victor Renteria Thomas Rettig Toshiaki Sakai Sam Sambasiyan Edward Sayre Matthew Schmitt Hossein Sedarat

Masood Shariff Masato Shiino Ramin Shirani Kapil Shrikhande Jeff Slavick Scott Sommers Massimo Sorbara **Edward Sprague** Peter Stassar Heath Stewart Junqing Sun Steve Swanson Tomoo Takahara Satoshi Takahashi Tadashi Takahashi Kazuya Takayama

Michael Takefman
Masaru Terada
Geoffrey Thompson
Pirooz Tooyserkani
Nathan Tracy
Viet Tran
David Tremblay
Stephen Trowbridge
Mike Tu
Ed Ulrichs
Alexander Umnov
Prasad Venugopal
Edward Walter
Roy Wang
Xuehuan Wang

Brian Welch
Matthias Wendt
Natalie Wienckowski
Dance Wu
Peter Wu
Dayin Xu
Yu Xu
James Young
Lennart Yseboodt
Xingxin Zhang
Chunhui Zhu

Dong Wei

Martin Zielinski George Zimmerman Pavel Zivny

Yan Zhuang

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

James Weaver

Robert Aiello Thomas Alexander Curtis Ashton Rich Boyer Ralf-Peter Braun Jairo Bustos Heredia William Byrd John Calvin Steven B. Carlson Juan Carreon Clark Carty Charles Cook Avraham Freedman Matthias Fritsche Marek Hajduczenia Xiang He Adam Healey David Hess Werner Hoelzl Gergely Huszak Yasuhiro Hyakutake Tom Issenhuth Chad Jones Peter Jones

Lokesh Kabra

Piotr Karocki

Mark Laubach

Stuart Kerry

Yong Kim

David J. Law Pi-Cheng Law Hyeong Ho Lee Jon Lewis Valerie Maguire Jeffery Maki Michael Maytum Brett McClellan Richard Mellitz Rick Murphy Paul Nikolich Satoshi Obara Robert O'Hara Carlos Pardo Bansi Patel Arumugam Paventhan David Piehler Rick Pimpinella Fabio Pittala Patty Polpattana Adee Ran R. K. Rannow Lakshman Raut Maximilian Riegel Benjamin Rolfe Toshiaki Sakai

Bartien Sayogo Heath Stewart Walter Struppler Mitsutoshi Sugawara Michael Thompson David Tremblay Mark-Rene Uchida Alexander Umnov Dmitri Varsanofiev Prabodh Varshnev Ionel Marius Vladan Ruoxu Wang Lisa Ward Keith Waters James Weaver Stephen Webb Karl Weber Matthias Wendt Scott Willy Andreas Wolf Peter Wu James Young Lennart Yseboodt Yu Yuan Oren Yuen Janusz Zalewski George Zimmerman

Hugo Ricardo Sanchez Reategui

Olindo Savi

Hiroshi Sawano

When the IEEE SA Standards Board approved this standard on 9 May 2021, it had the following

Introduction

This introduction is not part of IEEE Std 802.3cv-2021, IEEE Standard for Ethernet—Amendment 12: Maintenance #15: Power over Ethernet.

IEEE Std 802.3TM was first published in 1985. Since the initial publication, many projects have added functionality or provided maintenance updates to the specifications and text included in the standard. Each IEEE 802.3 project/amendment is identified with a suffix (e.g., IEEE Std 802.3baTM-2010).

The half duplex Media Access Control (MAC) protocol specified in IEEE Std 802.3-1985 is Carrier Sense Multiple Access with Collision Detection (CSMA/CD). This MAC protocol was key to the experimental Ethernet developed at Xerox Palo Alto Research Center, which had a 2.94 Mb/s data rate. Ethernet at 10 Mb/s was jointly released as a public specification by Digital Equipment Corporation (DEC), intel and Xerox in 1980. Ethernet at 10 Mb/s was approved as an IEEE standard by the IEEE Standards Board in 1983 and subsequently published in 1985 as IEEE Std 802.3-1985. Since 1985, new media options, new speeds of operation, and new capabilities have been added to IEEE Std 802.3. A full duplex MAC protocol was added in 1997.

Some of the major additions to IEEE Std 802.3 are identified in the marketplace with their project number. This is most common for projects adding higher speeds of operation or new protocols. For example, IEEE Std 802.3uTM added 100 Mb/s operation (also called Fast Ethernet), IEEE Std 802.3z added 1000 Mb/s operation (also called Gigabit Ethernet), IEEE Std 802.3ae added 10 Gb/s operation (also called 10 Gigabit Ethernet), IEEE Std 802.3ahTM specified access network Ethernet (also called Ethernet in the First Mile) and IEEE Std 802.3ba added 40 Gb/s operation (also called 40 Gigabit Ethernet) and 100 Gb/s operation (also called 100 Gigabit Ethernet). These major additions are all now included in and are superseded by IEEE Std 802.3-2018 and are not maintained as separate documents.

At the date of IEEE Std 802.3cv-2021 publication, IEEE Std 802.3 was composed of the following documents:

IEEE Std 802.3-2018

Section One—Includes Clause 1 through Clause 20 and Annex A through Annex H and Annex 4A. Section One includes the specifications for 10 Mb/s operation and the MAC, frame formats and service interfaces used for all species of operation.

Section Two—Includes Clause 21 through Clause 33 and Annex 22A through Annex 33E. Section Two includes management attributes for multiple protocols and speed of operation as well as specifications for providing power over twisted pair cabling for multiple operational speeds. It also includes general information on 100 Mb/s operation as well as most of the 100 Mb/s Physical Layer specifications.

Section Three—Includes Clause 34 through Clause 43 and Annex 36A through Annex 43C. Section Three includes general information on 1000 Mb/s operation as well as most of the 1000 Mb/s Physical Layer specifications.

Section Four—Includes Clause 44 through Clause 55 and Annex 44A through Annex 55B. Section Four includes general information on 10 Gb/s operation as well as most of the 10 Gb/s Physical Layer specifications.

Section Five—Includes Clause 56 through Clause 77 and Annex 57A through Annex 76A. Clause 56 through Clause 67 and Clause 75 through Clause 77, as well as associated annexes, specify subscriber access and other Physical Layers and sublayers for operation from 512 kb/s to 10 Gb/s, and defines

services and protocol elements that enable the exchange of IEEE Std 802.3 format frames between stations in a subscriber access network. Clause 68 specifies a 10 Gb/s Physical Layer specification. Clause 69 through Clause 74 and associated annexes specify Ethernet operation over electrical backplanes at speeds of 1000 Mb/s and 10 Gb/s.

Section Six—Includes Clause 78 through Clause 95 and Annex 83A through Annex 93C. Clause 78 specifies Energy-Efficient Ethernet. Clause 79 specifies IEEE 802.3 Organizationally Specific Link Layer Discovery Protocol (LLDP) type, length, and value (TLV) information elements. Clause 80 through Clause 95 and associated annexes include general information on 40 Gb/s and 100 Gb/s operation as well the 40 Gb/s and 100 Gb/s Physical Layer specifications. Clause 90 specifies Ethernet support for time synchronization protocols.

Section Seven—Includes Clause 96 through Clause 115 and Annex 97A through Annex 115A. Clause 96 through Clause 98, Clause 104, and associated annexes, specify Physical Layers and optional features for 100 Mb/s and 1000 Mb/s operation over a single twisted pair. Clause 100 through Clause 103, as well as associated annexes, specify Physical Layers for the operation of the EPON protocol over coaxial distribution networks. Clause 105 through Clause 114 and associated annexes include general information on 25 Gb/s operation as well as 25 Gb/s Physical Layer specifications. Clause 99 specifies a MAC merge sublayer for the interspersing of express traffic. Clause 115 and its associated annex specify a Physical Layer for 1000 Mb/s operation over plastic optical fiber.

Section Eight—Includes Clause 116 through Clause 126 and Annex 119A through Annex 120E. Clause 116 through Clause 124 and associated annexes include general information on 200 Gb/s and 400 Gb/s operation as well the 200 Gb/s and 400 Gb/s Physical Layer specifications. Clause 125 and Clause 126 include general information on 2.5 Gb/s and 5 Gb/s operation as well as 2.5 Gb/s and 5 Gb/s Physical Layer specifications.

IEEE Std 802.3cbTM-2018

Amendment 1—This amendment includes changes to IEEE Std 802.3-2018 and its amendments, and adds Clause 127 through Clause 130, Annex 127A, Annex 128A, Annex 128B, and Annex 130A. This amendment adds new Physical Layers for operation at 2.5 Gb/s and 5 Gb/s over electrical backplanes.

IEEE Std 802.3btTM-2018

Amendment 2—This amendment includes changes to IEEE Std 802.3-2018 and adds Clause 145, Annex 145A, Annex 145B, and Annex 145C. This amendment adds power delivery using all four pairs in the structured wiring plant, resulting in greater power being available to end devices. This amendment also allows for lower standby power consumption in end devices and adds a mechanism to better manage the available power budget.

IEEE Std 802.3cd™-2018

Amendment 3—This amendment includes changes to IEEE Std 802.3-2018 and adds Clause 131 through Clause 140 and Annex 135A through Annex 136D. This amendment adds MAC parameters, Physical Layers, and management parameters for the transfer of IEEE 802.3 format frames at 50 Gb/s, 100 Gb/s, and 200 Gb/s.

IEEE Std 802.3cnTM-2019

Amendment 4—This amendment includes changes to IEEE Std 802.3-2018 and adds 50 Gb/s, 200 Gb/s, and 400 Gb/s Physical Layer specifications and management parameters for operation over single-mode fiber with reaches of at least 40 km.

IEEE Std 802.3cgTM-2019

Amendment 5—This amendment includes changes to IEEE Std 802.3-2018 and its amendments and adds Clause 146 through Clause 148 and Annex 146A and Annex 146B. This amendment adds 10 Mb/s Physical Layer specifications and management parameters for operation on a single balanced pair of conductors.

IEEE Std 802.3cqTM-2020

Amendment 6—This amendment includes editorial and technical corrections, refinements, and clarifications to Clause 33 and related portions of the standard.

E Std 802.3cm^{TM_2020}

IEEE Std 802.3cmTM-2020

Amendment 7—This amendment includes changes to IEEE Std 802.3-2018 and adds Clause 150. This amendment adds Physical Layer (PHY) specifications and management parameters for 400 Gb/s operation on four pairs (400GBASE-SR4.2) and eight pairs (400GBASE-SR8) of multimode fiber, over reaches of at least 100 m.

IEEE Std 802.3chTM-2020

Amendment 8—This amendment includes changes to IEEE Std 802.3-2018 and adds Clause 149, Annex 149A, Annex 149B, and Annex 149C. This amendment adds physical layer specifications and management parameters for operation at 2.5 Gb/s, 5 Gb/s, and 10 Gb/s over a single balanced pair of conductors.

IEEE Std 802.3caTM-2020

Amendment 9—This amendment to IEEE std 802.3-2018 extends the operation of Ethernet passive optical networks (EPONs) to multiple channels of 25 Gb/s providing both symmetric and asymmetric operation for the following data rates (downstream/upstream): 25/10 Gb/s, 25/25 Gb/s, 50/10 Gb/s, 50/25 Gb/s, and 50/50 Gb/s. This amendment specifies the 25 Gb/s EPON Multi-Channel Reconciliation Sublayer (MCRS), Nx25G-EPON Physical Coding Sublayers (PCSs), Physical Media Attachment (PMA) sublayers, and Physical Medium Dependent (PMD) sublayers that support both symmetric and asymmetric data rates while maintaining backward compatibility with already deployed 10 Gb/s EPON equipment. The EPON operation is defined for distances of at least 20 km, and for a split ratio of at least 132.

IEEE Std 802.3cr[™]-2021

Amendment 10—This amendment includes changes to IEEE Std 802.3-2018 and adds Annex J. This amendment replaces references to the IEC 60950 series of standards (including IEC 60950-1 "Information technology equipment—Safety—Part 1: General requirements") with appropriate references to the IEC 62368 "Audio/video, information and communication technology equipment" series and makes appropriate changes to the standard corresponding to the new references.

IEEE Std 802.3cuTM-2021

Amendment 11—This amendment includes changes to IEEE Std 802.3-2018 and adds Clause 151. This amendment adds Physical Layer (PHY) specifications and management parameters for 100 Gb/s and 400 Gb/s operation over single-mode fiber, based on 100 Gb/s per wavelength optical signaling.

IEEE Std 802.3cvTM-2021

Amendment 12—This amendment includes editorial and technical corrections, refinements, and clarifications to Clause 145, Power over Ethernet, and related portions of the standard.

Two companion documents exist, IEEE Std 802.3.1 and IEEE Std 802.3.2. IEEE Std 802.3.1 describes Ethernet management information base (MIB) modules for use with the Simple Network Management Protocol (SNMP). IEEE Std 802.3.2 describes YANG data models for Ethernet. IEEE Std 802.3.1 and se added with see and see and see and see added with the full part of isonic cuttile. Band see and see IEEE Std 802.3.2 are updated to add management capability for enhancements to IEEE Std 802.3 after approval of those enhancements.

IEEE Std 802.3 will continue to evolve. New Ethernet capabilities are anticipated to be added within the

Contents

30.	Manage	emei	nt	•••••						16	5
	30.2 N	Mana	nged ol	biects						16	6
	30.2		_								
	3										
										C 11	
33.	Power	over	Ether	net ov	er 2 Pairs	s			3: ₀ 0	<u></u> 19	9
	22 6 Т	Doto	I ink I	over (Jossifica	ation			00,1	10	0
	33.6	2 2	Dowe	Layer C	nal stata	diagrama	•••••	•••••	3.	10) ()
		.s 33.6.:		Vonice Vonice	loi state	ulagranis	•••••			15	プ ロ
		-		v arıa	ibies	•••••		•••••	20V	19	ナ ヘ
	3	33.6.	3.4	Func	tions		•••••	•••••		20	J
									, 0		
79.									LDP) type, length,		
	value (TLV) info	rmatio	n elemen	nts			•	21	1
	79.3.	.2	Powe	er Via	MDI TL	V				21	1
	79.3.	.8	Powe	er via N	MDI Mea	asurements TLV	⁷			21	1
	7	79.3.	0.1	3.4	4		()	, ,		2.1	1
							10				
145	. Power	over	Ether	net			<u>~``</u>			22	2
							, 0				
	145.2 F	owe	er sour	cing e	nuinmen	t (PSE)	•			22	2
	145	2.5	PSE	state d	iaorams	(152)	••••••			22	2
		2.3 [45.2									
		-	2.5.2								
	1	-	-			_ V)					
	1		45.2.5								
		45.2									
		45.2	-								
		-	2.5.6								
			2.5.7								
	1	45.2	2.8.1	PSE 1	Multiple-	-Event Physical	Layer clas	sification		33	3
	145.3 F	Powe	ered de	evices	(PDs)					33	3
	145	3.3	PD st	tate dia	agrams					33	3
		45.3			_						
	\sim	,	45.3.3								
	V.		45.3.3								
0	1	45.3									
)	1		45.3.3								
	145					•					
	145										
		45.3	-								
			•								
		45.3		-	_						
		45.3									
	1	45.3	8.8.4	Peak							
		14	45.3.8	.4.1	Peak op	perating power e	exceptions			37	7

ISO/IEC/IEEE 8802-3:2021/Amd.12:2022(E)

145.5 Data Link Layer classification	
145.5.3 Power control state diagrams	
145.5.3.2 PSE power control state diagrams	
145 5 3 2 2 Variables 37	
145 5 3 2 5 State diagrams 39	
145.5.2.2. Single signature DD novement at the diagrams 41	
145.55.5 Single-signature PD power control state diagrams 41	
145.5.3.3.1 Variables 41	-0'V
145.5.3.3.3 Functions	2r
145.5.3.3.1 Variables	
145.5.3.4.3 Functions	
145.5.7 Autoclass	
145.7 Protocol implementation conformance statement (PICS) proforma for Clause 145. Power	
over Ethernet 43	
145.7.3. PICS proforms tables for Power over Ethernet	
145.7.2.1 Device containing continuous	
145.7.2.2 P 1.1	
145.7.3.2 Powered devices 44	
$-\Omega$	
· · · · · · · · · · · · · · · · · · ·	
20,	
and the second of the second o	
We will be a second of the sec	
*O	
\cdot	
145.5 Data Link Layer classification	
V	

IEEE Standard for Ethernet

Amendment 12: Maintenance #15: Power over Ethernet

(This amendment is based on IEEE Std 802.3TM-2018 as amended by IEEE Std 802.3cbTM-2018, IEEE Std 802.3cdTM-2018, IEEE Std 802.3cdTM-2019, IEEE Std 802.3cdTM-2019, IEEE Std 802.3cdTM-2020, IEEE Std 802.3cdTM-2020, IEEE Std 802.3cdTM-2020, IEEE Std 802.3cdTM-2020, IEEE Std 802.3cdTM-2021, and IEEE Std 802.3cdTM-2021.)

NOTE—The editing instructions contained in this amendment define how to merge the material contained therein into the existing base standard and its amendments to form the comprehensive standard.

The editing instructions are shown in **bold italic**. Four editing instructions are used: change, delete, insert, and replace. **Change** is used to make corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strikethrough (to remove old material) and <u>underscore</u> (to add new material). **Delete** removes existing material. **Insert** adds new material without disturbing the existing material. Deletions and insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. **Replace** is used to make changes in figures of equations by removing the existing figure or equation and replacing it with a new one. Editing instructions, change markings, and this NOTE will not be carried over into future editions because the changes will be incorporated into the base standard.

Cross references that refer to clauses, tables, equations, or figures not covered by this amendment are highlighted in green.¹

¹ Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

ISO/IEC/IEEE 8802-3:2021/Amd.12:2022(E)

IEEE Std 802.3cv-2021 IEEE Standard for Ethernet—Amendment 12: Maintenance #15: Power over Ethernet

30. Management

30.2 Managed objects

ECHORMICOM. Cick to view the full poly of Econecillette 8802.3202 Nambur 2012

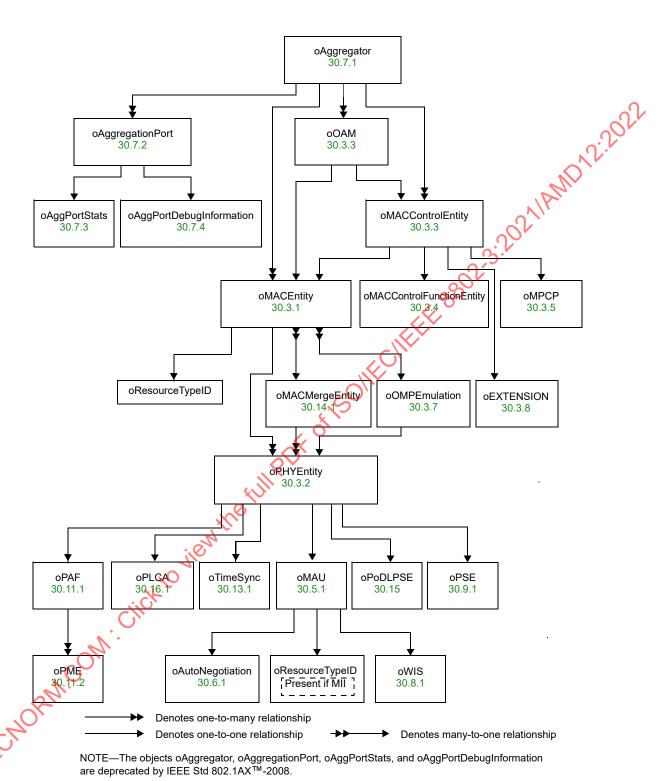


Figure 30–3—DTE System entity relationship diagram

ISO/IEC/IEEE 8802-3:2021/Amd.12:2022(E)

IEEE Std 802.3cv-2021

IEEE Standard for Ethernet—Amendment 12: Maintenance #15: Power over Ethernet

30.12 Layer Management for Link Layer Discovery Protocol (LLDP)

30.12.3 LLDP Remote System Group managed object class

30.12.3.1 LLDP Remote System Group attributes

Change 30.12.3.1.18f and 30.12.3.1.18g (as inserted by IEEE Std 802.3bt-2018) as follows:

30.12.3.1.18f aLldpXdot3RemPowerClassExtA

ATTRIBUTE

APPROPRIATE SYNTAX:

An ENUMERATED VALUE that has one of the following entries: Single-signature PD or 2-pair only PSE singlesig class1 Class 1 class2 Class 2 class3 Class 3 class4 Class 4 class5 Class 5

BEHAVIOUR DEFINED AS:

EEE 8802.3:2021AMD12:2022 For a dual-signature PD, a read-only value that indicates the currently assigned Class for Mode A by the remote 4-pair PSE. For a single-signature PD or a dual-signature PD connected to a 2-pair only PSE, a read-only value set to 'singlesig' by the remote PSE. For a PSE connected to a dualsignature PD, a read-only value that indicates the requested Class for Mode A during Physical Layer classification (see 145.2.8) by the remote PD. For a PSE connected to a single-signature PD, a read-only value set to 'singlesig' by the remote PD.;

30.12.3.1.18g aLldpXdot3RemPowerClassExtB

ATTRIBUTE

APPROPRIATE SYNTAX:

An ENUMERATED VALUE that has one of the following entries: singlesig Single-signature PD or 2-pair only PSE

class1 Class 1 class2 Class 2 class3 Class 3 Class 4 class4 class5 Class 5

BEHAVIOUR DEFINED AS:

For a dual-signature PD, a read-only value that indicates the currently assigned Class for Mode B by the remote 4-pair PSE. For a single-signature PD or a dual-signature PD connected to a 2-pair only PSE, a read-only value set to 'singlesig' by the remote PSE. For a PSE connected to a dualsignature PD, a read-only value that indicates the requested Class for Mode B during Physical Layer classification (see 145.2.8) by the remote PD. For a PSE connected to a single-signature PD, a read-only value set to 'singlesig' by the remote PD.;

33. Power over Ethernet over 2 Pairs

33.6 Data Link Layer classification

33.6.3 Power control state diagrams

Change the following definitions in 33.6.3.3, some of which were changed by IEEE Std 802.3bt-2018 (unchanged definitions not shown):
...

MirroredPDRequestedPowerValue

The copy of PDRequestedPowerValue that the PSE receives from the remote system. This variable is mapped from the aLldpXdot3RemPDRequestedPowerValue attribute (30.123.1.17). Actual power numbers are represented using an integer value that is encoded according to Equation (79-1), where X is the decimal value of MirroredPDRequestedPowerValue. Power numbers are represented using an integer value in units of 0.1 W.

Values: 1 through 255

MirroredPSEAllocatedPowerValue

The copy of PSEAllocatedPowerValue that the PD receives from the remote system. This variable is mapped from the aLldpXdot3RemPSEAllocatedPowerValue attribute (30.12.3.1.18). Actual power numbers are represented using an integer value that is encoded according to Equation (79 2), where X is the decimal value of Mirror PSEAllocated Power Value. Power numbers are represented using an integer value in units of 0.1 W.

Values: 1 through 255

PDMaxPowerValue

Integer that indicates the actual PD power value of the local system. The actual PD power value for a PD is the maximum input average power (see 33.3.7.2) the PD ever draws under the current power allocation. Actual power numbers are represented using an integer value that is encoded according to Equation (791), where X is the decimal value of PDMaxPowerValue. Power numbers are represented using an integer value in units of 0.1 W.

PDRequestedPowerValue \(\sqrt{1} \)

Integer that indicates the PD requested power value in the PD. The value is the maximum input average power (see 33.3.7.2) the PD requests. This power value is encoded according to Equation (79 1), where X is the decimal value of PDRequestedPowerValue. Power numbers are represented using an integer value in units of 0.1 W. This variable is mapped from the aLldpXdot3LocPDRequestedPowerValue attribute (30.12.2.1.17).

Values: 1 through PD DLLMAX VALUE

PSEAllocatedPowerValue

Integer that indicates the PSE allocated power value in the PSE. The value is the maximum input average power (see 33.3.7.2) the PD ever draws. The power value for a PSE is the maximum input average power the PD may ever draw. This power value is encoded according to Equation (79-2), where X is the decimal value of PSEAllocatedPowerValue. Power numbers are represented using an integer value in units of 0.1 W. This variable is mapped aLldpXdot3LocPSEAllocatedPowerValue attribute (30.12.2.1.18).

Values: 1 through 255

TempVar

A temporary variable used to store Power Value. Actual power numbers are represented using an integer value that is encoded according to Equation (79-1) or Equation (79-2), where X is the

ISO/IEC/IEEE 8802-3:2021/Amd.12:2022(E)

IEEE Std 802.3cv-2021 IEEE Standard for Ethernet—Amendment 12: Maintenance #15: Power over Ethernet

decimal value of TempVar. A temporary variable used to store Power Value, represented by an integer value in units of 0.1 W.

33.6.3.4 Functions

Change 33.6.3.4 as follows:

pse power review

This function evaluates the power allocation or budget of the PSE based on local system changes, The function returns the following variables:

PSE NEW VALUE:

The new maximum power value that the PSE expects the PD to draw. Actual power value that the PSE expects the PD to draw. are represented using an integer value that is encoded according to Equation (79-2), where X is the decimal value of PSE NEW VALUE.

Power numbers are represented using an integer value in units of 0.1 W.

pd_power_review

This function evaluates the power requirements of the PD based on local system changes and/or changes in the PSE allocated power value. The function returns the following variables:

PD NEW VALUE:

The new maximum power value that the PD wants to draw. Actual power numbers are value in value in the full Political Conference of 150 like the full Pol represented using an integer value that is encoded according to Equation (79-1), where X is the decimal value of PD_NEW_VALUE.

Power numbers are represented using an integer value in units of 0.1 W.

79. IEEE 802.3 Organizationally Specific Link Layer Discovery Protocol (LLDP) type, length, and value (TLV) information elements

79.3.2 Power Via MDI TLV

Delete the last paragraph of 79.3.2 beginning "If a Type 1 or Type 2 power entity ...", as inserted by IEEE Std 802.3bt-2018.

Insert the following text and Table 79–2a at the end of 79.3.2 as follows:

Power entities that implement Data Link Layer classification shall support the Power via MDI TLV DLL classification extension fields shown in Figure 79–3 after the PI has been powered. Type 3 or Type 4 power entities that implement Data Link Layer classification and are connected to another Type 3 or Type 4 power entity shall support the Type 3 and Type 4 extension fields shown in Figure 79–3 after the PI has been powered. Such entities, when connected to a Type 1 or Type 2 power entity, may support the Type 3 and Type 4 extension fields shown in Figure 79–3 after the PI has been powered. Type 1 and Type 2 devices shall not include the Type 3 and Type 4 extension fields in the transmitted Power via MDI TLV.

NOTE—Some implementations of the Power via MDI TLV in Type 1 and Type 2 power entities ignore TLVs that are longer than 12 octets. In order to be interoperable with these implementations, Type 3 and Type 4 power entities are permitted to transmit 12-octet TLVs (without the Type 3 and Type 4 extension) after first transmitting at least one valid 29-octet TLV (including the Type 3 and Type 4 extension). Table 79–2a lists the recommended Power via MDI TLV formats for each combination of power entity Types.

Table 79-2a—Recommended TLV format

Power entity A	Power entity B	Power entity A sends	Power entity B sends	Recommended TLV format
Type 1, Type 2	Type 1, Type 2	12-octet TLV	12-octet TLV	12-octet TLV
Type 3, Type 4	Type 1, Type 2	29-octet TLV	12-octet TLV	12-octet TLV
Type 1, Type 2	Type 3, Type 4	12-octet TLV	29-octet TLV	12-octet TLV
Type 3, Type 4	Type 3, Type 4	29-octet TLV	29-octet TLV	29-octet TLV

Type 3 and Type 4 PD power entities can determine the PSE Type based on the duration of the first classification event (see 145.3.7) or based on the length of a received Power via MDI TLV (see Figure 79.3). Type 3 and Type 4 PSEs can determine the PD Type based on the PDs Physical Layer requested Class (see 145.2.8 and 145.3.6.1) or based on the length of a received Power via MDI TLV (see Figure 79–3).

79.3.8 Power via MDI Measurements TLV

79.3.8.1 Measurements

Change footnote a to Table 79-8a (as inserted by IEEE Std 802.3bt-2018) as follows:

^a The valid range of this field extends beyond the allowed operating range of <u>V_{Port_PD_or_VPD-2P}</u>; see <u>33.3.8.1</u> <u>33.3.7.1</u> and 145.3.8.1.

ISO/IEC/IEEE 8802-3:2021/Amd.12:2022(E)

IEEE Std 802.3cv-2021
IEEE Standard for Ethernet—Amendment 12: Maintenance #15: Power over Ethernet

Clause 145 was added by IEEE Std 802.3bt-2018

145. Power over Ethernet

145.2 Power sourcing equipment (PSE)

145.2.5 PSE state diagrams

145.2.5.1 State diagram overview and timing

Change the third paragraph of 145.2.5.1 as follows:

A PSE performing detection using only Alternative B may fail to detect a valid PD detection signature. When this occurs, the PSE shall back off for at least T_{dbo} as defined in Table 145–16, before attempting another detection, except in the case of an open circuit as defined in 145.2.6.5. During this backoff, the PSE shall not apply a voltage greater than V_{Off} to the PI until after at least T_{dbo}, as defined in Table 145–16, has passed before attempting another detection, except in the case of an open circuit as defined in 145.2.6.5. See 145.2.6.5 for more information on Alternative B detection backoff requirements.

Change the fifth paragraph of 145.2.5.1 as follows:

Connection <u>Ccheck</u> timing requirements are specified in <u>Table 145–10</u>. Detection and power turn-on timing requirements are specified in <u>Table 145–16</u>. Classification timing requirements are specified in <u>Table 145–14</u>. Autoclass timing requirements are specified in <u>Table 145–15</u>.

145.2.5.2 Conventions

Insert new subclause 145.2.5.2.1 at the end of 145.2.5.2 as follows:

145.2.5.2.1 Alternative designation

Alternative information is obtained by replacing the X in the desired variable or function with the letter of the Alternative of interest. The Alternative is referred to in general as follows:

X

Generic Alternative designator. When X is used in a state diagram, its value is local to that state diagram and not global to the set of state diagrams.

Values:

Alternative A

→ B: Alternative B

NOTE—The variables alt pri and alt sec map Alternatives to Primary and Secondary.

145.2.5.3 Constants

Change the definition for value 0 of CC_DET_SEQ as follows:

0: Connection Ccheck is followed by staggered detection for a single-signature PD and parallel or staggered detection for a dual-signature PD.

145.2.5.4 Variables

Insert new variable ac measurement completed at the beginning of 145.2.5.4:

ac measurement completed

A variable that indicates that an Autoclass measurement has been completed. This variable is set by the state diagram.

Values:

FALSE: The Autoclass measurement has not completed. TRUE: An Autoclass measurement has been completed.

Change the variable definition for MirroredPDAutoclassRequest in 145.2.5.4 as follows:

MirroredPDAutoclassRequest

A variable output by the PSE power control state diagram that indicates whether the PSE has received an Autoclass measurement request from the PD via the Data Link Layer, See 145.5. This variable is assigned through Table 145–38.

The copy of the 'PD Autoclass request' field in the Power via MDI TLV that the PSE receives from the remote system. This variable is mapped from aLldpXdot3RemAutoclassRequest (30.12.3.1.180) and assigned through Table 145–38.

Insert new variable option MEC after probe after variable option detect ted sec in 145.2.5.4:

option_MEC_after_probe

This variable indicates if Multiple-Event classification is allowed after a class probe in the dual-signature state diagrams.

Values:

FALSE: Only allow Single-Event classification after class probe.

TRUE: Allow Multiple-Event classification after class probe.

Insert new variable pd_autoclass_cancelled after variable pd_4pair_cand in 145.2.5.4:

pd_autoclass_cancelled

A variable that indicates whether the PD cancelled Autoclass by drawing less than Class 1 power during the Autoclass measurement period.

Values:

FALSE: The PD did not cancel Autoclass or did not request Autoclass. TRUE: The PD requested Physical Layer Autoclass and cancelled.

Insert two new variables pse ready pri and pse ready sec after variable pse ready in 145.2.5.4:

pse_ready_pri

Variable that is asserted in an implementation-dependent manner to probe the Primary Alternative. This variable may be set by the PSE at any time.

Values:

FALSE: PSE is not ready to probe the primary link segment. TRUE: PSE is ready to probe the primary link segment.

pse_ready_sec

Variable that is asserted in an implementation-dependent manner to probe the Secondary Alternative. This variable may be set by the PSE at any time.

Values:

FALSE: PSE is not ready to probe the secondary link segment. TRUE: PSE is ready to probe the secondary link segment.

145.2.5.6 Functions

Change the definition of do autoclass measure in 145.2.5.6 as follows:

do autoclass measure

Probe the full but of the little and the little This function measures P_{Autoclass} as defined in 145.2.8.2. This function returns the following variable:

PAutoclass: The power measured by the PSE during Physical Layer classification as defined in 145.2.8.2.

Change the first sentence of the definition of do cxn chk in 145.2.5.6 as follows:

do_cxn_chk

This function initiates the <u>Connection Check</u> as defined in 145.2.7.

Change the definition of do initialize in 145.2.5.6 as follows:

do initialize

This function returns the following variables (see 145.2.5.4):

alt pri autoclass enable class 4PID mult events pri class 4PID mult events sec option 2ev option class probe option_class_probe_pri option_class_probe_sec option_detect_ted option detect ted pri option detect ted sec option MEC after probe option_probe_alt_sec

Change the definition of do_update_pse_allocated_pwr_pri in 145.2.5.6 as follows:

do update pse allocated pwr pri

pse alternative pse avail pwr pse avail pwr pri pse avail pwr see pse dll capable semi_pwr_en

A function that updates the pse allocated pwr pri value based on the value of PSEAllocatedPowerValue_alt(X) as defined in Table 145-12. This function returns the following variable:

pse_allocated_pwr_pri: See_do_classification_pri function_pse_allocated_pwr_pri in 145.2.5.4.

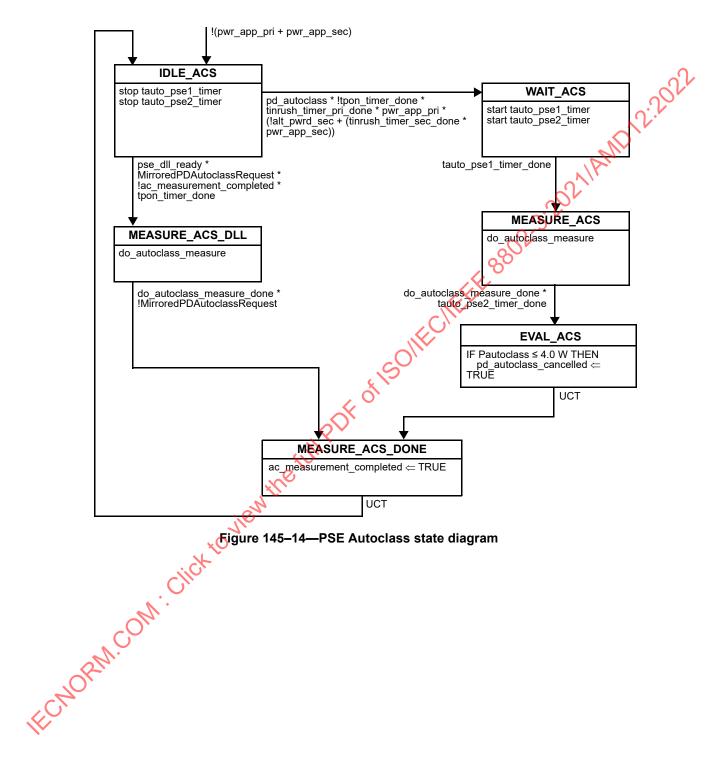



Figure 145-13—Top level PSE state diagram (continued)

Replace Figure 145–14 with the following figure:

Replace part 1 of Figure 145–15 with the following figure (with changed exit condition from IDLE_PRI to START_DETECT_PRI):

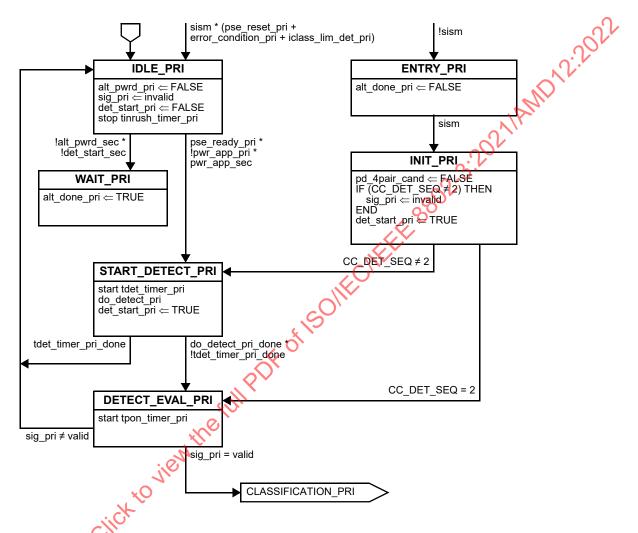


Figure 145–15—Primary Alternative dual-signature semi-independent PSE state diagram

Replace part 2 of Figure 145–15 (with changed exit conditions from CLASS_PROBE_PRI) as shown on the following page.

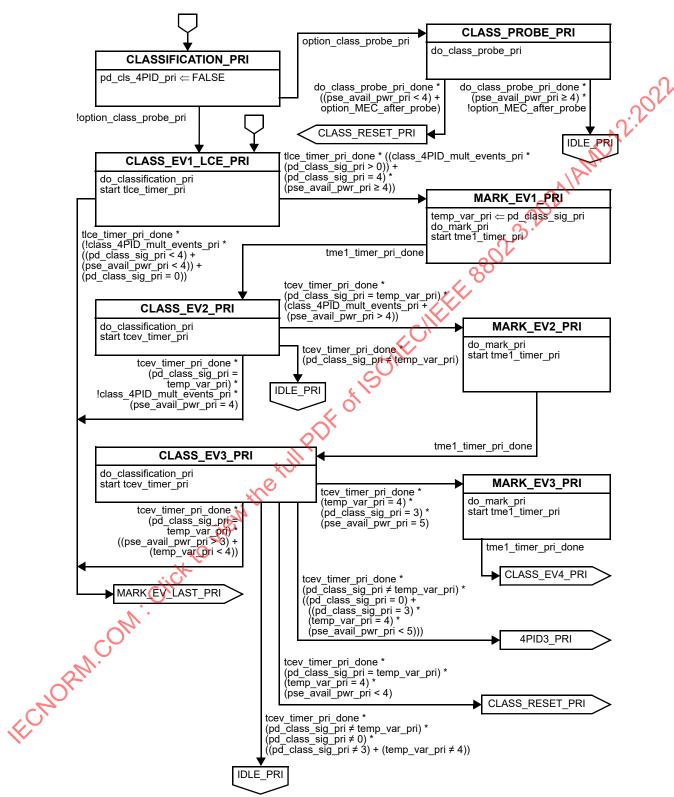
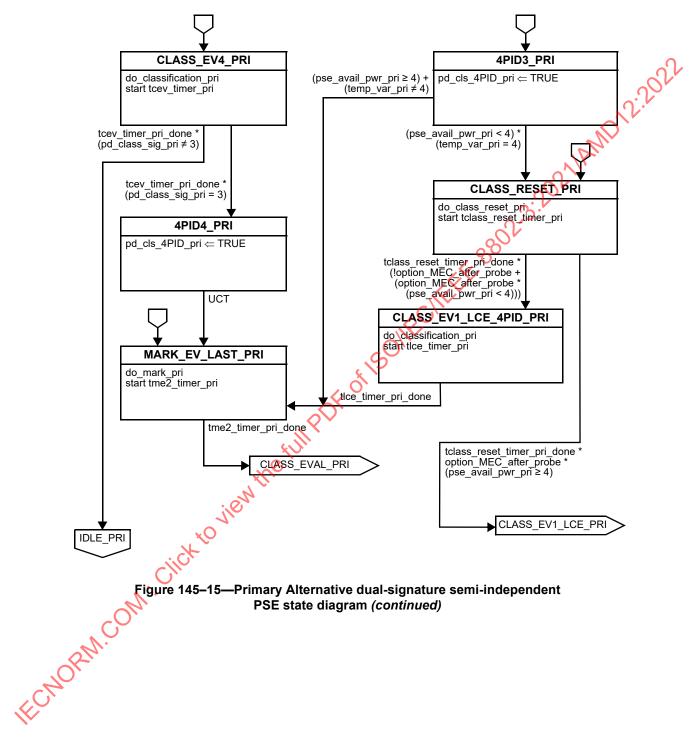



Figure 145–15—Primary Alternative dual-signature semi-independent PSE state diagram *(continued)*

Replace part 3 of Figure 145-15 with the following figure (with changed exit conditions from CLASS RESET PRI):

Replace part 2 of Figure 145–16 with the following figure (with changed exit conditions from CLASS PROBE SEC):

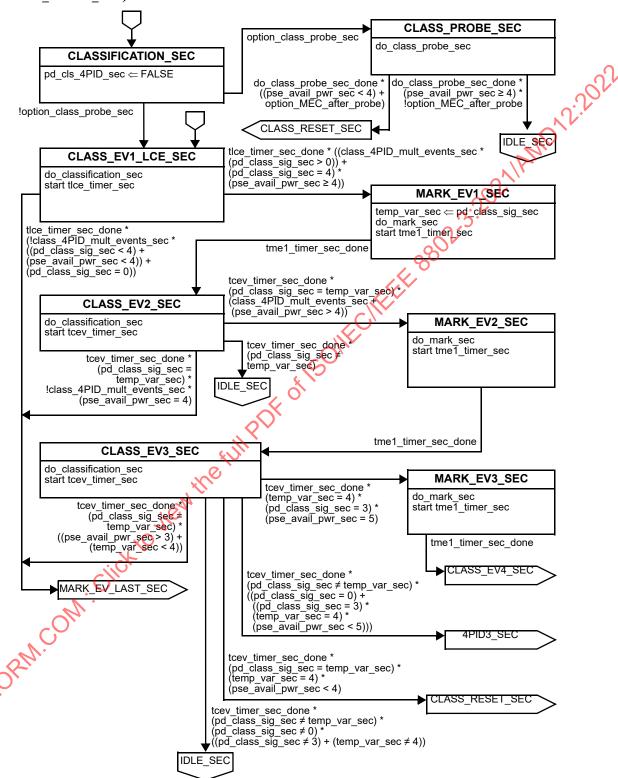


Figure 145–16—Secondary Alternative dual-signature semi-independent PSE state diagram *(continued)*

Replace part 3 of Figure 145–16 with the following figure (with changed exit conditions from CLASS RESET SEC):

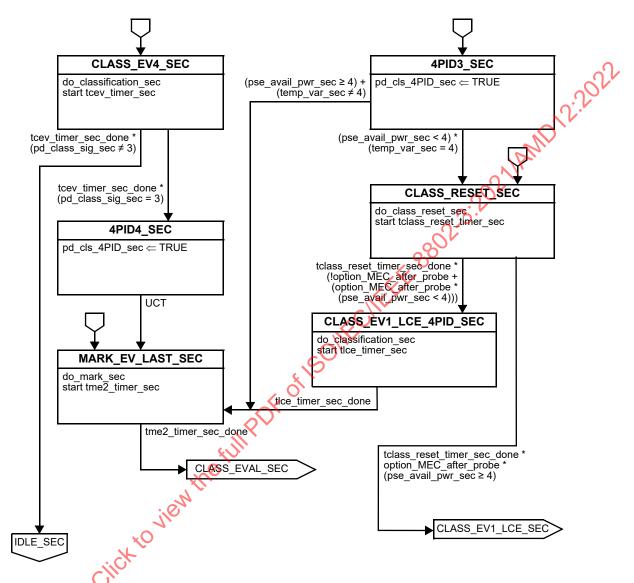


Figure 145–16—Secondary Alternative dual-signature semi-independent PSE state diagram (continued)

145.2.8 PSE classification of PDs and mutual identification

Change the tenth paragraph of 145.2.8 as follows:

If the PD connected to the PSE performs Autoclass (see 145.2.8.2 and 145.3.6.2), the PSE may set the minimum supported output power based on $P_{Autoclass}$, the power drawn during the Autoclass measurement window. $P_{Autoclass}$ shall be increased by at least P_{ac_margin} , as defined in Table 145-15, in order to account for potential increase in link section resistance due to temperature increase, up to the value defined in Table 145-11 of the Class assigned to the PD, and with a minimum power allocation of Class 1. If $P_{Autoclass}$ is less than or equal to 4 W then the minimum supported output power shall be P_{Class} per the assigned Class.

Replace Equation (145-4) with the following equation:

$$P_{\text{ac_extra}} = \left\{ \left(\frac{P_{\text{Autoclass}}}{V_{\text{Port_PSE-2P}} \text{min}} \right)^2 \times \frac{R_{\text{Ch}}}{2} \right\}_{\text{W}}$$
 (145-4)

145.2.8.1 PSE Multiple-Event Physical Layer classification

Change the third paragraph from the end of 145.2.8.1 as follows:

If any measured I_{Class} is equal to or greater than I_{Class_LIM} min, a PSE shall-returns to IDLE_SEC as appropriate. The PSE shall limit class event currents to I_{Class_LIM} and shall limit mark event currents to I_{Mark_LIM} .

Change the second paragraph from the end of 145.2.8.1 as follows:

All class event voltages and mark event voltages shall have the same polarity as defined for V_{Port_PSE-2P} in 145.2.4. PSEs may issue class events on one or both pairsets, when connected to a single-signature PD and operating over 4 pairs. The PSE shall complete Multiple-Event Physical Layer classification and transition to POWER_ON_POWER_ON_PRI, or POWER_ON_SEC without allowing the voltage at the PI or pairset to go below V_{Mark} min, unless in CLASS_RESET, CLASS_RESET_PRI, or CLASS_RESET_SEC. If the PSE returns to IDLE, it shall maintain the PI voltage in the range of V_{Reset} for a period of at least T_{Reset} min before starting a new detection cycle. If the PSE returns to IDLE_PRI or IDLE_SEC, it shall maintain the PI voltage on the corresponding pairset in the range of V_{Reset} for a period of at least T_{Reset} min before starting a new detection cycle. If the PSE is in any of the CLASS_RESET states it shall maintain the PI or pairset voltage in the range of V_{Reset} for a period of at least T_{Reset} min.

145.3 Powered devices (PDs)

145.3.3 PD state diagrams

145.3.3.3 Single-signature PD state diagrams

145.3.3.3.2 Variables

Insert new variable pd_acs_cancel after variable nopower as follows:

pd_acs_cancel

This variable indicates that the PD is aborting the Autoclass procedure. See 145.3.6.2.

Values:

FALSE: The PD does not abort the Physical Layer Autoclass procedure.

TRUE: The PD aborts the Physical Layer Autoclass procedure.

145.3.3.3.5 State diagrams

Replace part 1 of Figure 145–25 with the following (with changed content in DO_CLASS_EVENT_AUTO):

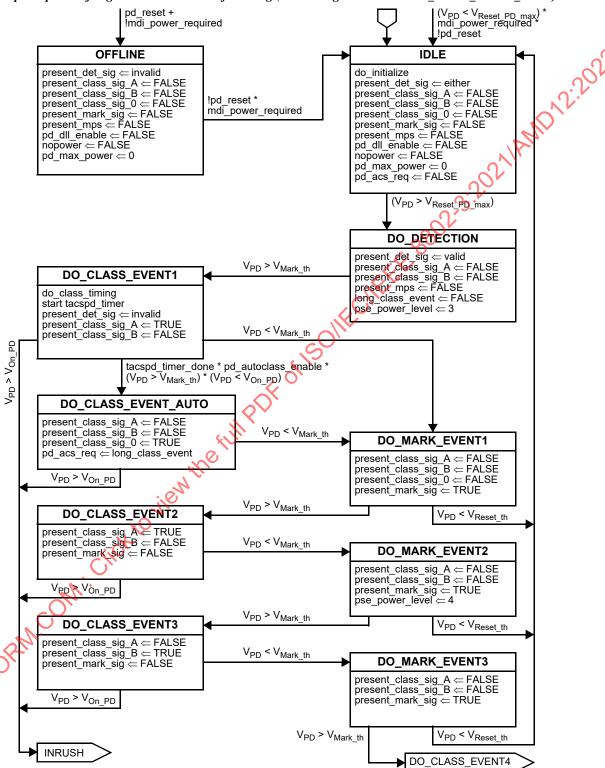


Figure 145–25—Single-signature PD state diagram

Replace Figure 145–26 with the following:

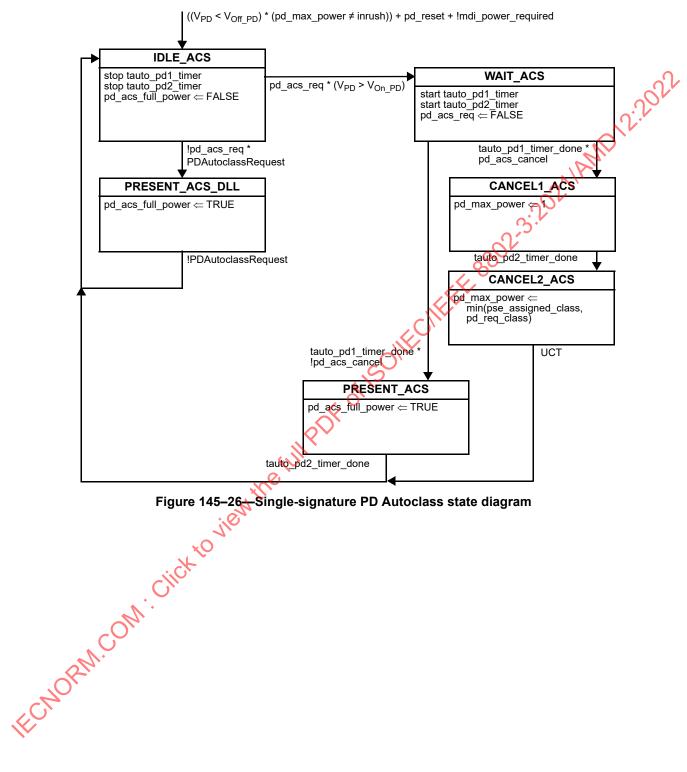


Figure 145–26—Single-signature PD Autoclass state diagram

145.3.3.4 Dual-signature PD state diagram

145.3.3.4.5 State diagram

Replace part 2 of Figure 145–27 with the following (with changed content in state POWERED):

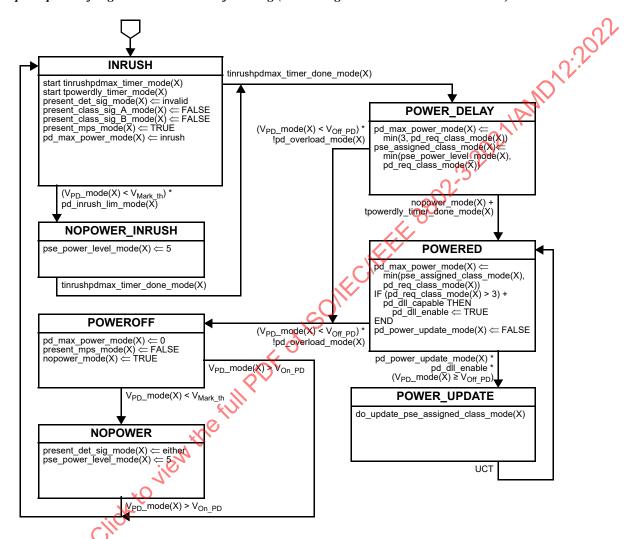


Figure 145–27—Dual-signature PD state diagram (continued)

145.3.6 PD classification

145.3.6.2 Autoclass (optional)

Change the third paragraph of 145.3.6.2 as follows:

After power up, a PD that implements Autoclass shall draw its highest required power, $P_{Autoclass_PD}$, subject to the requirements on P_{Class_PD} in 145.3.8.4, throughout the period bounded by T_{AUTO_PD1} and T_{AUTO_PD2} , measured from when V_{PD} rises above V_{On_PD} . The PD is restricted to a maximum power draw of $P_{Autoclass_PD}$ until the PD successfully negotiates a higher power level through Data Link Layer classification as defined in 145.5. A PD that draws less than P_{Class_PD} max for Class 1 during the period