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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work. |

the field of information technology, ISO and [EC have established a joint technical committe

ISO/IEC

The pro

describgd in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed fq
rent types of document should be noted. This document was drafted in accordance with the

the diffe
editoria

Attention is drawn to the possibility that some of the elements of this document may be the subjec
of patenjt rights. ISO and IEC shall not be held responsible for identifying any“or all such pater
etails of any patent rights identified during the development of the. decument will be in the

rights. I
Introdu

For an
express
World T

URL: www.iso.org/iso/foreword.html.

JTC 1.

cedures used to develop this document and those intended for its further maintenange ar

rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

tion and/or on the ISO list of patent declarations received (see wwwriso.org/patents).

e name used in this document is information given for the convenience of users and does ng
e an endorsement.

bxplanation on the voluntary nature of standards, the{meaning of ISO specific terms an

Fade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the followi

This ddcument was prepared by Technical Committee ISO/IEC JTC 1, Information technolog]

Subcom

This sedqond edition cancels and replaces the. first edition (ISO/IEC 15946-5:2009), which has bee
technicdlly revised.

It also iffjcorporates the Technical Corrigendum ISO/IEC 15946-5:2009/Cor.1:2012.

The mai
— the
— the
— the
Alist of

mittee SC 27, IT Security techniques.

I technical changes between the first edition and this second edition are as follows:
ferms and definitions given in ISO/IEC 15946-1 are used;

scope of verifiablypseudo-random elliptic curve generation has been added;
humerical examples in C.4.2 and C.4.3 have been modified.

b1l parts-in the ISO/IEC 15946 series can be found on the ISO website.

ons related to conformity assessment, as well as information about ISO’s adherence to t&E
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Introduction

Some of the most interesting alternatives to the RSA and F(p) based systems are crypto

017(E)

systems

based on elliptic curves defined over finite fields. The concept of an elliptic curve based public-key

cryptosystem is rather simple.

“«w,n

— Every elliptic curve over a finite field is endowed with an addition operation “+”, under which it

forms a finite abelian group.

- The group law on elliptic CUTVES EXTENdS IN a Natural way to a - diSCIete eXponentiation. O |
group of the elliptic curve.

4+ Based on the discrete exponentiation on an elliptic curve, one can easily derivelellipt
analogues of the well-known public-key schemes of Diffie-Hellman and ElGamal type.

The security of such a public-key system depends on the difficulty of determining-discrete logar
the group of points of an elliptic curve. This problem is, with current knowledge, much harder
factorization of integers or the computation of discrete logarithms in a finite field. Indeed, sin
and Koblitz independently suggested the use of elliptic curves for publicckey cryptographic
in 1985, the elliptic curve discrete logarithm problem has only beefi shown to be solvable in
specific and easily recognizable cases. There has been no substaiitial progress in finding an
method for solving the elliptic curve discrete logarithm problem.on arbitrary elliptic curves,
i$ possible for elliptic curve based public-key systems to usé,much shorter parameters than
slystem or the classical discrete logarithm-based systems that make use of the multiplicative gi
finite field. This yields significantly shorter digital signatures and system parameters.

—

his document describes elliptic curve generation techhiques useful for implementing the ellipt
ased mechanisms defined in ISO/IEC 29192-4, ISO/AEC 9796-3, ISO/IEC 11770-3, ISO/IEC 1484
50/1EC 18033-2.

— O

If is the purpose of this document to meef the increasing interest in elliptic curve based pt
technology by describing elliptic curve (@eneration methods to support key-exchange, key-ti
and digital signatures based on an elliptic curve.

he point

ic curve

ithms in
than the
e Miller
systems
certain
efficient
Thus, it
the RSA
oup of a

ic curve
8-3,and

iblic-key
ansport
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INTERNATIONAL STANDARD ISO/IEC 15946-5:2017(E)

Information technology — Security techniques —
Cryptographic techniques based on elliptic curves —

1 Scope

The ISO/IEC 15946 series specifies public-key cryptographic techniques bas€d-on ellipti¢ curves
described in ISO/IEC 15946-1.

This document defines elliptic curve generation techniques useful for implementing the elliptic curve
Hased mechanisms defined in ISO/IEC 29192-4, ISO/IEC 9796-3, ISO/IEC¥¥770-3, ISO/IEC 14888-3 and
IFO/IEC 18033-2.

his document is applicable to cryptographic techniques basedton elliptic curves defined ovler finite
elds of prime power order (including the special cases of prime order and characteristic two). This
ocument is not applicable to the representation of elements of the underlying finite field (i.e. which
asis is used).

o Q.=

o

he ISO/IEC 15946 series does not specify the*implementation of the techniques it |defines.
hteroperability of products complying with the ISOZIEC 15946 series will not be guaranteed.

]

2 Normative references

—

he following documents are referred"to in the text in such a way that some or all of their| content
onstitutes requirements of this document. For dated references, only the edition cited applies. For
yndated references, the latest edifign of the referenced document (including any amendments)|applies.

Q

]

5O/IEC 15946-1, Informatien\technology — Security techniques — Cryptographic techniques based on
Iliptic curves — Part 1: Gerernal

(e

3 Terms and definitions

1

or the purpeses of this document, the terms and definitions given in ISO/IEC 15946-1 [and the
bllowing apply.

-

IF0 and<EC maintain terminological databases for use in standardization at the following addrjesses:

- 1EC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.or

3.1
definition field of an elliptic curve
field that includes all the coefficients of the formula describing an elliptic curve

3.2

hash-function

function which maps strings of bits of variable (but usually upper bounded) length to fixed-length
strings of bits, satisfying the following two properties:

— for a given output, it is computationally infeasible to find an input which maps to this output;

© ISO/IEC 2017 - All rights reserved 1
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— foragiveninput, itis computationally infeasible to find a second input which maps to the same output

Note 1 to entry: Computational feasibility depends on the specific security requirements and environment. Refer
to ISO/IEC 10118-1:2016, Annex C.

[SOURCE: ISO/IEC 10118-1:2016, 3.4]

3.3

nearly prime number
positive integer, n =m-r, where m is a large prime number and r is a small smooth integer (3.5)

Note 1 to
based on

3.4
order o
E(F)
number

3.5
smooth
integer,

4 Syn
4.1 Sy

B
E

entry: The meaning of the terms large and small prime numbers is dependent on the application, and {s
bounds determined by the designer.

f an elliptic curve

of points on an elliptic curve, E, defined over a finite field, F

integer
I, whose prime factors are all small (i.e. less than some defined bound)

nbols and conversion functions

mbols

embedding degree, the smallest B such that.nttmber #E[F(q)] | gB-1

elliptic curve, given by a formula of the.form Y2 = X3 + aX + b over the field F(p™) for p > 3, b
a formula of the form Y2 + XY = X3 + aX2* b over the field F(2m), or by a formula of the fory
Y2 = X3 + aX2 + b over the field F(3™m),together with an extra point Of referred to as the poir
at infinity. The elliptic curve is denoted by E/F(pm™), E/F(2m), or E/F(3mM) respectively.

=3

ot

NOTE 1 In applications not-based on a pairing, E/F(p) or E/F(2m) is preferable from a
efficiency point of view, In applications that use a pairing, E/F(p) or E/F(3m) is preferabl
from an efficiency pointyof view.

D =

NOTE 2 An ellipti¢-curve is not only the set of points on the curve, but also a group undg
an operation défined on these points.

—

number of'points on an elliptic curve E over F(q), #E[F(q)]
primedivisor of #E[F(q)]

elliptic curve point at infinity

#E[F(q)]
[x]
[x]

prime power, p™ for some prime p and some integer m = 1
cofactor, that is #E[F(q)] = rn

order (or cardinality) of E[F(q)]

smallest integer greater than or equal to the real number x

largest integer smaller than or equal to the real number x

© ISO/IEC 2017 - All rights reserved
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4.2 Conversion functions

BS2IP bit string to integer conversion primitive

BS20SP bit string to octet string conversion primitive

EC20SPg elliptic curve point to octet string conversion primitive
FE2IPF finite field element to integer conversion primitive
HE20SPr finite field element to octet string conversion primitive
[RPBSP integer to bit string conversion primitive

[ROSP integer to octet string conversion primitive

IPECP integer to elliptic curve conversion primitive

(S2BSP octet string to bit string conversion primitive

(S2FEPR octet string to finite field element conversion primitive
(QS2ECPEg octet string to elliptic curve point conversion primitive
QsSz21p octet string to integer conversion primitive

L

—

OTE1

OTE 2

Framework for elliptic curve generation

.1 Types of trusted elliptic curve

here are a number of ways in which a user can obtain trust in the provenance of an ellipt
hcluding the following.

— The curve could be obtained.from an impartial trusted source (e.g. an international or
standard).

— The curve could be generated and/or verified by a trusted third party.

— The curve could be generated and/or verified by the user.

Refer to,Annex A for background information on elliptic curves.

Refep to’Annex B for background information on elliptic curve cryptosystems.

.2 QOverview of elliptic curve generation

here.are three main ways to generate elliptic curves.

C curve,

national

elliptic curve. Such a technique is specified in Clause 6.

specified in Clause 7.

large field. Such a technique is specified in Clause 8.

NOTE 1

NOTE 2

Refer to Annex A for background information on elliptic curves.

Refer to Annex B for background information on elliptic curve cryptosystems.

© ISO/IEC 2017 - All rights reserved
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6 Verifiably pseudo-random elliptic curve generation

6.1 General

The generation of verifiably pseudo-random elliptic curves focuses on curves over prime and binary
fields (and so, for example, does not deal with curves over fields of characteristic 3).

6.2 Constructing verifiably pseudo-random elliptic curves (prime case)

6.2.1 [onstruction algorithm

The follgwing algorithm produces a set of elliptic curve parameters over a field F(p) selected (pseudo
randoml]y from the curves of appropriate order, along with sufficient information for others_to verifly
that the|curve was indeed chosen pseudo-randomly.

—r

NOTE 1 | The algorithm is consistent with Reference [9].

NOTE 2 | Methods of choosing a prime number p (pseudo) randomly are described in Reference [5].
It is assymed that the following quantities have been chosen:

— aloyer bound, npjp, for the order of the base point;

— acryptographic hash function, H, with output length Ly,sh bits;

— the pitlength, L, of inputs to H, satisfying L = Lyash.

The follgwing notation is adopted below:

— v=(logzpl,

— 5= |L(v-1)/LHash/,

— W=V -SLHash — 1.

Input: a prime number p; lower bound njj for n; a trial division bound Iy ax.
Output: p bit string X; EC parameters-a, b, n, and G.

a) Chopse an arbitrary bit string X of bit length L.

b) Conjpute h = H (X).

c) Let Wy be the bitstring obtained by taking the w rightmost bits of h.

d) LetF =BS2IP(XY.

e) Forjfromst'to s do:

1) |Le¥X;=I12BSP(Z+ i mod 2L)
2) Compute W;=H (X;).
f) LetW=Wy|| W1]|..|| W
g) Letc=0S2FEP [BS20SP (W)].
h) Ifc=0por4c+ 27 =0F then go to step a).

i) Choose finite field elements a, b € F(p) such that b # O and cb? - a3 = Or. Choosing a = b = ¢ will
guarantee the conditions hold, and this choice is recommended.

NOTE3  Choosing a = b = c may not be optimal from a performance perspective.

4 © ISO/IEC 2017 - All rights reserved
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NOTE 4  If the default values are chosen as suggested, the randomness of the generated curve is explicitly

guaranteed.

j) Compute the order #E[F(p)] of the elliptic curve E over F(p) given by y2 = x3 + ax + b.

k) Test whether #E[F(p)] is a nearly prime number using the algorithm specified in 6.2.2. If so, the

output of the algorithm specified in 6.2.2 consists of integers r, n. If not, then go to step a).

NOTES5  The necessity of near primality is described in B.2.2

D Checlif F'[F'(p)] satisfies the MQOV.-condition cpnr‘iﬁ'nd inB?2 '2’ that is the smallest infngn

r B such

that n divides gB - 1 ensures the desirable security level. If not, then go to step a).

=

) If #E[F(p)] = p, then go to step a).
NOTE 6  This check is performed in order to protect against the attack specified in B22.2.

1) Test whether the prime divisor n satisfies the condition described in B.2.4 forcryptosysten
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then.go'to step a).

d) Generate a point G on E of order n using the algorithm specified in 6:2.3.
d) OutputX, a, b, n,G.

NOTE7  Methods to compute the order #E[F(p)] are described in.Références [11], [30] and [31].

4.2.2 Test for near primality

(on)

iven a lower bound npjy and a trial division bound Iyya%, the following procedures test N = #E]
ear primality.

=

Ihput: positive integers N, Ihax, and npmin.

(an)

utput: if N is nearly prime, output a prime n with nyjy < n and a smooth integer r such that N
b not nearly prime, output the message “not nearly prime”.

—

d) Setn=N,r=1.
h) Forlfrom 2 to Ik do:
1) Iflis compositefthén go to step 3).
2) While (I divides n)
i) Setm=n/landr=rl
ii)}~ \If n < npjp, then output “not nearly prime” and stop.

3)~-Next L

s based

*(p)] for

= rn. If N

d “Test n for primality.

d) Ifnisprime, then outputrand n and stop.
e) Output “not nearly prime”.

NOTE Methods to test for primality are described in References [5] and [10]

6.2.3 Finding a point of large prime order

If the order #E[F(q)] of an elliptic curve E is nearly prime, the following algorithm efficiently produces a

random point in E[F(q)] whose order is the large prime factor n of #E[F(q)] = rn.

Input: an elliptic curve E over the field F(q), a prime n, and a positive integer r not divisible by n.

© ISO/IEC 2017 - All rights reserved
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Output:

if #E[F(q)] = rn, a point G on E of order n; if not, the message “wrong order.”

a) Generate a random point P (not Og) on E.

b) Set
c IfG
d) Set
e) IfQ
f) Out
6.2.4

The follgwing algorithm determines whether or not an elliptic curve over F(p) was genérdted using thie

method
Input: a

Output:

a) Conjpute h = H (X).

b) Let
c) Let
d) For
1y
2)
e) Let
f) Con

g) Verify the following conditions.

1)
2)
3)
4)
5)
6)
7)
8)
9)
h) Ifal

G=rP.
= Of, then go to step a).
Q =nG.

QOr then output “wrong order” and stop
7 T O I

but G.

Verification of elliptic curve pseudo-randomness

of 6.2.1. The quantities Lyash, L, v, S, and w, and the hash function H, are as in6.2.1.
bit string X of length L, EC parameters q = p, a, b, n, and G = (xg, yg), and & positive integer npin

“True” or “False”.

/o be the bit string obtained by taking the w rightmost bits of h.
= BS2IP(X).

 from 1 to s do:

Let X; = [2BSP(Z + i mod 2L).

Compute W;=H (Xj).

W=Wo || Wil ... || Ws.

vert W to a finite field element ¢'=0S2FEP [BS20SP (W)].

n 2 Npin.

n is a prime.
c*0F

4c+ 27 # 0.
b 0k

L2 o4

-
G # OF.

y2 6=x3¢+ axg + b.
nG = Og.

1 the conditions in step g) hold, then output “True”; otherwise output “False”.

© ISO/IEC 2017 - All rights reserved
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6.3 Constructing verifiably pseudo-random elliptic curves (binary case)

6.3.1 Construction algorithm

The following algorithm produces a set of elliptic curve parameters for a pseudo-random curve over
a field F(2m), along with sufficient information for others to verify that the curve was indeed chosen
pseudo-randomly. See Annex C for additional information.

NOTE1 The algorithm is consistent with Reference [9].

[t is assumed that the following quantities have been chosen:

— afield F(2m);

— alower bound npjp, for the order of the base point;

- a cryptographic hash function H with output length Ly,sh bits;

- the bitlength L of inputs to H, satisfying L = Lyash.

—

he following notation is adopted below:

— s= L(m-1)/ Lyashl,

— w=m-— SLHash.

]

hput: a field F(2mM); a lower bound npiy, for n; a trial division bound Iy ax.
(Qutput: a bit string X; EC parameters q, b, n, and G.

d) Choose an arbitrary bit string X of bit length L

h) Compute h = H (X).

d Let Wy be the bit string obtained bytaking the w rightmost bits of h.
d) LetZ=BS2IP(x).

d) Forifrom1tos, do:

1) LetX;=I12BSP(Z# imod 21).

2) Compute Wi=-H (Xj).

f) LetW=WuthW1l]| ... || Ws.

g) Letb=0S2FEP [BS20SP(W)].

) Ifb=0g then go to step a).

i} ¢-Let a be an arbitrary element in F(2M). Choosing a = Or will guarantee the conditions hold, |and this
choice 1s recommended.

NOTE 2  The default values may not be chosen because of performance reasons.
NOTE 3  Ifthe default values are chosen as suggested, the randomness is explicitly guaranteed.
j)  Compute the order #E[F(2™M)] of the elliptic curve E over F(2™m) given by y2 + xy = x3 + ax2 + b.

NOTE4  Methods of computing the order #E[F(2™M)] are described in References [11], [30] and [33].

k) Test whether #E[F(2™M)] is a nearly prime number using the algorithm specified in 6.2.2. If so, the
output of the algorithm specified in 6.2.2 consists of integers r, n. If not, then go to step a).

1) Check that E[F(2m)] satisfies the MOV-condition specified in B.2.3. If not, then go to step a).

© ISO/IEC 2017 - All rights reserved 7
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m) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

n) Generate a point G on E of order n using the algorithm specified in 6.2.3.
o) OutputX,a,b,n,G.

NOTES5 The necessity of near primality is described in B.2.2.

6.3.2 Verification of elliptic curve pseudo-randomness

(s

The follpwing algorithm verifies the validity of a set of elliptic curve parameters. In addition,
determihes whether an elliptic curve over F(2™M) was generated using the method of 6.3.1.

The quaptities Lyash, L, s, and w, and the hash function H, are as in 6.3.1.
Input: a pit string X of length L, EC parameters g = 2m, g, b, n, and G = (xg, y), and a positive integer nmiy.
Output: [“True” or “False”.
a) Compute h = H (X).
b) Let Wy be the bit string obtained by taking the w rightmost bits of h,
c) Letf =BS2IP(x).
d) Forjffrom1tos,do:
1) |LetX;=12BSP(Z +imod 2L).
2) |Compute W;=H (X;).
e) LetW=Wy|| W1i]|..|| W
f) Letp’ = OS2FEP [BS20SP(W))].
g) Verify the following conditions.
1) [n2nmin
2) |nisaprime.
3) |b#0Fr
4) [b=b'
5) |G#O0g

6) |2c+Xgc=x3c+ax2g+b

7) |nG+"0g

h) Ifall the conditions in step g) hold, then output “True”; otherwise output “False”.

7 Constructing elliptic curves by complex multiplication

7.1 General construction (prime case)
The following algorithm produces an elliptic curve E over F(p) with the given number of rational points N.

NOTE1 The algorithm is based on Reference [17] which is applied to the primality proving [10].

8 © ISO/IEC 2017 - All rights reserved
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Input: the definition field F(p) and the number of points N = rn, where n is the largest prime divisor of N
and r is a cofactor.

Output: curve parameters of elliptic curve E with #E[F(p)] = N and base point G.

a) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based

on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then execute a new input.

b) Sett=p+1-N.

~1

e O = =

o

I
s

thoose-apairofintegers{B ¥ suchthat-4p—t2—=HV=

) Construct the Hilbert class polynomial Pp(X).
Find a solution jg in F(p) of Pp(X) = 0 modulo p.
Choose c € F(p)* and construct an elliptic curve over F(p) with the j-invariantyg.
1) Epj,c :y2=x3+[3cZjg / (1728 - jo)]x + 2¢3jo / (1 728 - jo) (if jo #.0F 1 728).
2) Epj,ec :y2=x3 + ¢ (ifjo = 0p).
3) Epjyc :y2=x3 + cx (if jo = 1 728).

) Constructarandom point G on EDJo c [F(p)] such that G # Opand r-G # OE.

) SetG=rG.

If n-G = Og, output curve parameters of Ep jy.c and the base point G. If n-G # Og, go to sgep f) to

choose another c.
OTE2  Any pair of integers (D,V) such that 4p <t2 = DV2 can be used in step c).
OTE3  The definition of the Diophantine equation used in step c) is given in A.5.

OTE4  The definition of the Hilbert glass polynomial Pp(X) is given in A.2.

.2 Miyaji-Nakabayashi-Takano (MNT) curve

he following algorithm produces an elliptic curve E over F(p) with embedding degree B = p, which
5 useful for cryptosystems based on a bilinear pairing. The pairing and the embedding degree are
escribed in A.3 and-B.2.2 respectively. Numerical examples and comparisons are given in Annlex C and
nnex D, respectjvely

OTE1 Songeinformation and an algorithm for generating an MNT curve with B = 3 are given in Refer¢nce [24].
OTE 2 .SMNT curves can be constructed, not only with B = 6, but also with B = 3 and 4.

hput: lower and upper bound (odd integer) pmin and pmax for the definition field (in bits) and upper
ound Dmax for size of D.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E[F(p)], and basepoint G.

a) Choose a small positive integer D < Dyyax such that D = 3 (mod 8) and go to step c).

b) Ifsuch D does not exist, then stop and output “fail”.

c) Find a pair of integers (T,U) with the smallest U > 0 that satisfies T2 - 3DU2 = 1 using the continued

fraction algorithm.

d) Finda pair ofintegers (x,y) that satisfies x2 - 3Dy2 = -8 and 0 < x < 2UV (2D), 2V (2/D) <y < 2TV (2/D),

using the algorithm of Lagrange. If not, go to step a).

e) i=0.

© ISO/IEC 2017 - All rights reserved 9
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f) Find a pair of primes (p,n) as follows:

Compute integers x; and y; such that x; + yiV (3D) = [x + yV (3D)] [T + UV (3D)]".
E3 Notall solutions can be derived in this way.

If x; = 1(mod 6), then s = (x; - 1)/6 and p = 4s2 + 1;

i) elseifx;=-1(mod 6), thens = (x;+ 1)/6 and p = 4s2 + 1;

ii) else j=7i+1 and gota cfpp1)

If p < pmin, theni=i+ 1 and go to step 1).

If p > pmax, then go to step a).

If p is prime, then n1 = 4s2 + 2s + 1 and np = 452 - 25 + 1;
i) else,i=i+1and go tostep 1).

If x; = 1(mod 6), then n = ny;

i) elsen=ny.

If n is prime, then go to step g);

i) else,i=i+1and go tostep 1).

jom

whether the prime divisor n satisfies the condition des¢ribed in B.2.4 for cryptosystems base
CDLP, ECDHP, or BDHP with auxiliary inputs as in B.I.5. If not, then go to step a).

struct the Hilbert class polynomial Pp(X).

| a solution jp in F(p) of Pp(X) = 0 modulo p:

pse ¢ € F(p)* and construct an elliptic curve over F(p) with the j-invariant jo.
Epjyc :y2=x3+[3cZjo / (1 728=y0)]x + 2¢3jo / (1 728 - jo) (if jo # Of, 1 728).
ED,jO,c :y2=x3 + ¢ (if jo = 0k

Epj,.c :y2=x3+cx (if o =1 728).

truct a random paintG on ED,jo ¢ [F(p)], not equal to the point at infinity O.
(; = Og, output®p,\E; n, and G.

; + O, go-to'step j) to choose another ¢ € F(p)*.

The-definition of the Hilbert class polynomial Pp(X) is given in A.2.

The continued fraction algorithm in step c) is given in Reference [27].

1
NOT
2)
3)
4)
5)
6)
7)
g) Test
on B
h) Con
i)  Fing
i) Cho
1y
2)
3)
k) Con
) Ifn
m) Ifn-
NOTE 4
NOTE 5
NOTE 6
NOTE 7

The algorithm of Lagrange in step d) is given in References [22] and [25].

A technique for speeding up a protocol based on a bilinear pairing is described in Reference [12].

7.3 Barreto-Naehrig (BN) curve

The following algorithm produces an elliptic curve E over F(p) with embedding degree B = 12, which
is useful for cryptosystems based on bilinear pairings. The embedding degree is described in B.2.2.
Numerical examples and comparisons are given in Annex C and Annex D, respectively.

NOTE 1

10

A detailed information is given in Reference [12].
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NOTE 2  This method will always generate at most one curve for a given value of m.

Input: the approximate desired size m of the curve order (in bits) and upper bound (odd integer) pmax
for the definition field.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E[F(p)], and basepoint G.
a) LetP(u)=36u4+36u3+24u? +6u+ 1.

b) Compute the smallest u ~ 2m/4 such that [logy P(-u) 1 =m.

d Whilep < pmax

1) t=6u2+1.

2) p=P(u)andn=p+1-t.

3) Ifpand nare prime, then go to step e).
4) p=Pu)andn=p+1-t¢t

5) Ifpandn are prime, then go to step e).
6) u=u+1andgo tostep 1).

d) Stop and output “fail”.

g) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based
on ECDLP, ECDHP, or BDHP with auxiliary inputs@g$yin B.1.5. If not, then go to step a).

f) b=0.
gd) Ifb+1isnotrepresented by b+ 1 =yp2 modulo p for an integer yo, then b = b + 1 and go to step g).
H) Setan elliptic curve E: y2 = x3 + b.

i) Compute a square root yo = V(b€ 1) modulo p.
j] Setthe basepoint G = (1, yo) €E.

K) Ifn-G # Og, then set b ¥ hy*+ 1 and go to step g).
1) Outputp, E, n, andG.

NOTE 3 A technigue for speeding up a protocol based on a bilinear pairing is described in Reference [12].

1.4 Freeman curve (F curve)

—

he following algorithm produces an elliptic curve E over F(p) with embedding degree B = 1P, which
5 useful for cryptosystems based on a bilinear pairing. The embedding degree is described |in B.2.2.
Numierical examples and comparisons are given in Annex C and Annex D, respectively.

—e

NOTE1 Detailed information is given in Reference [18].

Input: lower and upper bound pmin and pmax for the size of the definition field (in bits) and upper bound
Dmax for size of D.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E[F(p)], and basepoint G.

a) Choose a small positive integer D < Dy ax such that D = 43 or 67 (mod 120) and 15D is square-free
and go to step c).

b) Ifsuch D does not exist, then stop and output “fail”.

© ISO/IEC 2017 - All rights reserved 11
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c) Finda pair of integers (7,U) with the smallest U > 0 that satisfies T2 - 15DU? = 1 using the continued
fraction algorithm.

d) Letg=T- UV (15D).

) Find a pair of integers (x, y) that satisfies x2 - 15Dy2 = =20 and 0 < x < 10UV(3D), 2v1/(3D) <y < 2TV1/
(3D) using the algorithm of Lagrange.

f) For the current solution (x, y).

[l # Jd.1C

1y

2)
3)
4)
5)
6)
NOT,
7)

g) Test
on

h) Con
i) Find
i) Cho
1y
2)
3)
k) Con
) Ifn

Hx=+5tmodt5);then:

i) Lets=(-5%x)/15.

ii) Letp=25s4+ 2553 + 2552 + 10s + 3.

iii) Letn=25s%+ 2553 + 1552 + 55+ 1.

Else, go to step 6).

If p > pmax, g0 to step a) to choose a new D.
Else if p < pmin, then go to step 6).

If p and n are primes, go to step g).

Find a pair of integers (x', ') such that x’ + y’ V15D = (x +yVA5D)-g.
E 2  Notall solutions can be derived in this way.
Let x = x’ and y=y’ and return to step 1).

whether the prime divisor n satisfies the congdition described in B.2.4 for cryptosystems basefd
CDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

struct the Hilbert class polynomial Pp(X).

| a solution jg in F(p) of Pp(X) = @ modulo p.

pse ¢ € F(p)* and constructan‘elliptic curve E over F(p) with j-invariant jo:
Epjyc :y2 =x3+ [3cZjo /(1 728 - jo)lx + 2¢3jo / (1 728 - jo) (if jo # OF, 1 728).
Epjyc :y2 =x3 + Hif jo = OF).

Epj,c :y2=%3 ¥ cx (ifjo = 1 728).

Struct a panidom point G on ED'J'o ¢ [F(p)], not equal to the point at infinity O.

(; = Ogroutput p, E, n, and G.

m) Elsd

, 50'to Step j) to choose another ¢ € F(p)*.

NOTE 3
NOTE 4
NOTE 5

NOTE 6

12

The definition of the Hilbert class polynomial Pp(X) in step i) is given in A.2.
The continued fraction algorithm in step c) is given in Reference [27].
The algorithm of Lagrange in step f) is given in References [22] and [25].

A technique to speed up a protocol based on a bilinear pairing is described in Reference [12].
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7.5 Cocks-Pinch (CP) curve

The following algorithm produces an elliptic curve E over F(p) with arbitrary embedding degree B, which
is useful for cryptosystems based on a bilinear pairing. The embedding degree is described in B.2.2.

NOTE1 Detailed information is given in Reference [13].
Input: a positive integer B and a set R of prime numbers n (n-1 is divisible by B).

Output: prime p, curve parameters of elliptic curve E/F(p), the order n-r = #E[F(p)], and basepoint G.

d) Choose a small square-free positive integer D and n in R such that -D is a square modulgd k.
H) Find a B-th primitive root of unity z in F(n).

qg t=z+1

d) y' = (t-2)/V (-D) (mod n).

!

g) Lettbe an integer such that tis equal to t" modulo n, and let y be an integer such that y is equal to y
modulo n.

f) p=(t2+Dy2)/4.
NOTE2 t=t"andy=y' canbe used.
gd) If pisnotprime, then go to step a).

H) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based
on ECDLP, ECDHP, or BDHP with auxiliary inputs,as in B.1.5. If not, then go to step a).

i} Construct the Hilbert class polynomial Pp(X).

j] Find a solution jg in F(p) of Pp(X) = 0 medulo p.

K) Choose c € F(p)* and construct anfelliptic curve over F(p) with the j-invariant jp.
1) Epj,c :y2=x3 +[3cZjo J(1'728 - jo)]x + 2¢3jo / (1 728 - jo) (if jo # Of, 1 728).
2) Epjyc :y2=x3 + ¢ (ifyp = Op).

3) Epjsc :y2 =x3 %.¢x (if jo = 1 728).

1) Setacofactork=Tp+1-t)/n.

m) Construct-arandom point G on ED.J'o ¢ [F(p)] such that G # O and r-G # Of.

n) Set G&veG.

d) UG = O, output n, G, and the elliptic curve E.

) _-Else, go to step K) to choose another ¢ € F(p)*

NOTE 3  The definition of the Hilbert class polynomial Pp(X) in step c) is given in A.2.

NOTE4 A technique for speeding up a protocol based on a bilinear pairing is described in Reference [12].

8 Constructing elliptic curves by lifting
The following algorithm produces an elliptic curve E over F(p™) by lifting an elliptic curve E over F(p).

NOTE The algorithm is based on Reference [33].
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Input: small finite field F(p), elliptic curve E over F(p), lower and upper bound Ny, and Npyax for the
order of elliptic curve (in bits).

Output: extension degree m, order Ny, = #E[F(p™)], basepoint G, and order n of G.

a) Count the order of N = #E[F(p)], which is easily executed since F(p) is small.

b) Sett=p+1- Nand compute algebraic integers @ and  that satisfy t=a + fand p = af.

c) Set

m=1.

d) Find a triple of (m, N, n) as follows:

1y
2)
3)
4)

5)

e) Gen
f) Out

Compute Ny, = pm + 1- (a ™ + M) and q = p™m, which is an integer.
If Ny < Npin, then m = m + 1 and go to Step 1).

If Niy > Nmax, then stop and output “fail”.

output of 6.2.2 consists of the integers r and n. If not, then m =m

Check whether E[F(q)] satisfies the MOV-condition specified

and go to step 1).

Test whether Ny, is a nearly prime number using the algorithm specified in 6.2.2. If so, thie

integer B such that n divides gB - 1 ensures the desirable security level. If not, then m = m +

prate a point G on E[F(q)] of order n using the algorithm specified in 6.2.3.

but an extension degree m, the order Ny, = #E[F(q)], abasepoint G and the order n.

+ 1 and‘go to step 1).

in-B.2.3, that is the smalles

=+

14
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Annex A
(informative)

Background information on elliptic curves

A.1 j-invariant

—

et F(q) be a finite field with g = pm, where prime p > 3. Let E be an elliptic curve over F(q) givgn by the
short Weierstrass equation:

Y2 = X3 + aX + b with a, b € F(q),

where the inequality 4a3 + 27b2 # Or holds in F(q). Then, the j-invariant is'defined as
j=1728-(4a3)/(4a3 + 27b2).

et F(2m), for some m = 1, be a finite field. Let E be an elliptic cufve over F(2m) given by the formula:

Y2 + XY =X3 + aX + b with a, b € F(2m),

where b # 0. Then, the j-invariant is defined as

j=1/b.

et F(3m), for some m = 1, be a finite field-~Let E be an elliptic curve over F(3™M) given by the formula:

Y2 = X3 + aX2 + b with a, b € F(3m)

sjuch that a, b # Op. Then, the j4nvariant is defined as

j=-a3/b.

NS

1.2 Hilbertelass polynomial

he construption of elliptic curves by complex multiplication uses the theory of imaginary quadratic

olynomial Pp(X) is defined by the minimum polynomial of K over Q(\/—D). In the construction df elliptic
1rves by complex multiplication, the fa ha e j-invariants of elliptic curve p) are gi
solution of a Hilbert class polynomial Pp(X) modulo p is used.
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NOTE1 These facts are described in References [13] and [16].

NOTE 2  Online databases of Hilbert class polynomials are available in Reference [21].
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A.3 Cryptographic pairing

A cryptographic pairing e, satisfies the conditions of non-degeneracy, bilinearity, and computability. A
pairing e, is defined over < G1 > x < G > as follows,

en:<G1>x<Gy>- Up

where < G1 > and < G > are the cyclic groups of order n and py, is the cyclic group of the n-th roots of

unity. A

A.4 Pell equation

The Pell
T2 -

where a

equation with a positive integer d that is not a perfect square is used. Then, all positive integer solution

of (TU)
T+

fork=1

NOTE

A5 D

In the c(
is used.
integer
given by
T2 - dU?

NOTE

pairing e; is realized by restricting the domain of the Weil or Tate pairings.

equation is of the form:

dUz = 1

—_—

is a fixed integer. In the construction of elliptic curves by complex multiplication, the Pe

[72)

hre given by using the least positive solution (T¢,Up) with the smallestUp > 0 as follows:

\/d = (To + UgrJd)k
2, ..
These facts are described in Reference [28].
jophantine equation, x2 - dy2 = n

nstruction of elliptic curves by complex multiplication, the Diophantine equation, x2 - dy? = f,
Here, n is an integer and d is a positive integer that is not a perfect square. The number of
bolutions of this formula is zero ordnfinite. An infinite number of integer solutions (x, y) are
using the least positive solution(¥p,Up) with the smallest Uy > 0 of the related Pell equation gf
=1.

Details are described in Reference [28].

16
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Annex B
(informative)

Background information on elliptic curve cryptosystems

B.1 Definition of cryptographic problems

B.1.1 Elliptic curve discrete logarithm problem (ECDLP)

Hor an elliptic curve E/F(q), the base point G € E[F(q)] with order n, and a point P€E[F(q)], th
durve discrete logarithm problem (with respect to the base point G) is to find.the integer x g
uch that P = xG if such an x exists.

W

The security of elliptic curve cryptosystems is based on the believed lHardness of the ellipt
discrete logarithm problem.

=

.1.2 Computational elliptic curve Diffie-Hellman problem (ECDHP)

1

or an elliptic curve E/F(q), the base point G € E[F(q)] withyerder n, and points aG, bG € E[F
omputational elliptic curve Diffie-Hellman problem is to‘compute abG.

Q

—]

he security of some elliptic curve cryptosystems is based on the believed hardness of the compt
[liptic curve Diffie-Hellman problem.

(0}

B.1.3 Decisional elliptic curve Diffie-Héllman problem (ECDDHP)

Hor an elliptic curve E/F(q), the base poifit G € E[F(q)] with order n, and points aG, bG, Y € E[H
decisional elliptic curve Diffie-Hellman problem is to decide whether Y = abG or not.

The security of some elliptic curye cryptosystems is based on the believed hardness of the dg
[liptic curve Diffie-Hellman problem.

(o)

B.1.4 Bilinear DiffiesHellman problem (BDHP)

The bilinear Diffie<Hellman problems are described in two ways according to the correg
ryptographic bilinear maps.

Q

+ For twé/~groups < Gi1> and < Gz> with order n, a cryptographic biline
en: <G1% % <G >> Up, aGy, bGy € < G1>, and aGy, cGy € < G>, the bilinear Diffie-Hellman pr
to comxpute ep(G1, G2)abe.

+~Fer a group < G1> with order n, a cryptographic bilinear map e, : < Gi>x< G1> —

b elliptic
(0, n-1)

ic curve

(q)], the

tational

()], the

bcisional

ponding

\r - map
oblem is

Un, and

nfy'l’ hf.'1 f‘f;l c< fl1>’ the bilinear Diffie-Hellman prnh]nm isto compute p,;(f:l, f,'l)abC

The security of some elliptic curve cryptosystems is based on the believed hardness of the elliptic curve

bilinear Diffie-Hellman problem.

B.1.5 Elliptic curve discrete logarithm problem with auxiliary inputs (ECDLP with

auxiliary inputs)

The security of some cryptosystems is based on the elliptic curve discrete logarithm problem with

auxiliary inputs.

— ECDLP with additional inputs x2G, x3G, ..., xkG

© ISO/IEC 2017 - All rights reserved
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— ECDHP with additional inputs a2G, a3g, ..., akG
— BDHP with additional inputs a2G1, a3Gy, ..., akGq

Three examples of elliptic curve problems with auxiliary inputs are as follows (the notation follows
from the original definitions of the problems in B.1.1, B.1.2, and B.1.4).

B.2 Algorithms to determine discrete logarithms on elliptic curves

B.2.1 ardness of ECDLP

=

The harfness of ECDLP depends on the selected elliptic curves E/F(q) and the size n of the erder d
the basg point G. The size of n should be 160 bits or more to achieve the desired level of security i
cryptosystems based on the hardness of the ECDLP.

-

The elliptic curve E/F(q) should be chosen to meet the defined security objectives against the following
algorithns to solve ECDLP. The size of n should be set to meet the defined security objectives againgt
the baby-step-giant-step algorithm and various variants of the Pollard-p algorithn.

B.2.2 Qverview of algorithms
The follgwing techniques are available to determine discrete logarithms,en an elliptic curve:

— The| Pohlig-Silver-Hellman algorithm. This is a “divide-and-conquer” method which reduces t
disdrete logarithm problem for an elliptic curve E defined over F(q) to the discrete logarithm in t
cyclic subgroups of prime order dividing # E[F(q)].

— The|baby-step-giant-step algorithm and various variaits of the Pollard-p algorithm.
NOTE 1 | Various variants of the Pollard-p algorithm arg;described in Reference [33].

— The| algorithm of Frey-Riick[19] and the Menezes-Okamoto-Vanstone algorithml[23] which both
trar{sform the discrete logarithm problem-in a cyclic subgroup of E with prime order n to t
smallest extension field F(gB) of F(q) such that n divides (g8 - 1), where B is called the embeddiEE

degree. The Frey-Riick algorithm runs under weaker conditions than the algorithm published b

Merjezes-Okamoto-Vanstone.

<<

— The|algorithm of Araki-Satoh[29], Smart[32] and Semaev[31] which solves the discrete logarith
problem for an elliptic curve-E defined over F(p™) in the case #E [F(p™)] = p™m.

-

Unlike the situation of the'discrete logarithm in the multiplicative group of some finite field, there is n
known ‘lindex-calculus*~available in the case of elliptic curves. As for attacks using covering for specig
type of qovers, e.g. the-Weil descent attack, the GHS attack, etc., see Chapter 22 of Reference [11].

— O

NOTE 2 | The Pehlig-Silver-Hellman and baby-step-giant-step algorithms work generally on all kinds of ellipt
curves while the\Frey-Riick, the Menezes-Okamoto-Vanstone, Araki-Satoh, Smart, and Semaev algorithms worj
only on curvés with special properties.

3ks)

B.2.3 MOV-condition

Let n be as defined in the set of elliptic curve domain parameters, where n is a prime divisor of #E[F(q)]
and q is a power of a prime p. A value B, used for the MOV-condition, is given as the smallest integer such
that n divides pB - 1. As mentioned above, the Frey-Riick and Menezes-Okamoto-Vanstone algorithms
reduce the discrete logarithm problem in an elliptic curve over F(q) to the discrete logarithm in the
finite field F(pB) for some B 2 1. By using the attack, the difficulty of the discrete logarithm problem in
an elliptic curve E/F(q) is related to the discrete logarithm problem in a finite field F(p5B). The subfield-
adjusted MOV-condition describes the degree B that ensures the security level of the discrete logarithm
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problem in an elliptic curve by the discrete logarithm problem in finite field. For some applications
based on the Weil and Tate pairing, a reasonably small value of B such as 6 or more is preferable.

NOTE Information on the degree B is described in Reference [20].
B.2.4 Condition of prime divisor, n
For some cryptosystems based on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5, the prime

divisor n should satisfy the following conditions: there is no divisor d of n - 1 such that (log n)2 < d < n1/2
and there is no divisor e of n + 1 such that (log n)2 < e < n1/2. The divisors d and e are possibly composite.

NOTE The size of d is related with k in B.1.5, which is the maximum of the largest divisor™of*f - 1 not
xceeding the minimum of k and \/n. Further detailed information on d and e is given in Referenee\[14].

(¢)
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Annex C
(informative)

Numerical examples

C.1 Npmerical examples of verifiably pseudo-random elliptic curves

C.1.1 General

Refer to[Reference [8] for this subclause. The parameters are chosen from a seed using SHA-1.

C.1.2 Elliptic curve over a prime field (192 bits)

p fEffffff fEfffffff fEfFffff fEfffffe\TfLffffff fLLFELFf

2192_264 41

a fEffffff fEfffffff fEfFffff fLLFfffe fELFEEfFE FELFEFFE

b 64210519 e59c80e7 0fa7e9abl 72243049 feb8deec cl46b9bfl

(seed) X| 3045ae6f c8422f64 ed579528 d38120ea el2196dp

(compressed) G 03 188da80e b03090f6 7cbf20eb 43218800 f4ffOafd 82ff101p

(uncompressed) G 04 188da80e b03090£fi6" 7cbf20eb 43a18800 f4ffOafd 82ff101p
07192b95 ffc8da78 631011led 6b24cdd5 73f977al 1e79481[

n fEffffff FEFfffff fELfFffff 99def836 146bcSbl b4d2283[

(cofactof) r il

C.1.3 Elliptic curve over a prime field (224 bits)

p fELrefff
ffffffff ffffffff f££££f£££f 00000000 00000000 0000000

222429641

a fELFefff
frffffff FEFFFFFF FEFFFFfe FEFFFFFF FEFFFFFF FEFFFFFE

b p4050a85
0c04b3ab f5413256 5044b0b7 d7bfd8ba 27003943 2355ffb4

(seed) X bd713447 99d5c7fc dcd45b59f a3b9%ab8f 6a948bch

(compressed) G 02 b70e0chbd
6bb4bf7f 321390b9 4a03cld3 56c¢21122 343280d6 115cldzl
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(uncompressed) G

(cofactor) r

321390b9 4a03cld3 56c¢21122
p5£723fb 4c22dfe6 cd4375a0

fEfEffff fEfE£f££ff ££f£f£f16a2

ISO/IEC 15946-5:2017(E)

04
343280d6
5a074764

e0b8£f03e

b70e0cbd
115c1d21
44458199

13dd2945

6bb4bf7f
bd376388
85007e34

ffffffff
5c5c2a3d

1

(beed) X

(fofactor) r

(fompressed) G

(bncompressed) G

(¢.1.4 Elliptic curve over a prime field (256 bits)

00000000 00000000 00000000

00000000

b3ebbd55

f8bcebeb

77037481
Beelebda

TEffffff

00000000

769886bc
c49d3608

63a440£2

04

2deb33a0
7c0f9el6

fEffffff

00000000

651d0%b0
86e70493

77037d81

6bl17d1f2

£4a213945
2bce3357

bce6faad

(¢.1.5 Ellipticcurve over a prime field (384 bits)

fEffffff

ELEELEEE

cch3b0fo
6a6678el

03
2deb33a0

el2cd247

d898c296
6b31l5ece

a7179%9e84

fEEEFHESL
B2 i i e i i

00000001
ffiffffff

2224(232-1) +21924296-1

fEffffff
fEfffffff

5ac635d8
3bce3c3e
139d26b7

6bl17d1£f2
£4a213945

f8bcebeb

4fe342e2
cbb64068

ffffffff
£f3b9cac?2

00000001
ffiffffffc

aal3ad%3e7
27d2604b
8119f7e90

ell2cd4247
dg|98c296

63}a440£2

fe[lla7f9b
37bf51£f5

00000000
fcl632551

1

D ffffffff fEfffffff fEE££££f fEfffffff fEEEFEEFEFE FEFELEEL
ffffffff fffffffe fE£££££££f 00000000 00000000 fIffffff

2384-2128-2964232-1

a fEfffffff fEff£f£ff fEE££££f fEfffffff fEEfEFEEFE FELELEESE
ffffffff fffffffe ff££££££f 00000000 00000000 fffffffc

b b3312fa7 e23ee7ed 988e056b e3£f82d19 181d9cbe fe814112
0314088f 5013875a c656398d 8a2edl9d 2a85c8ed d3ec2aef

(seed) X a335926a a319%a27a 1d00896a 6773a482 Tacdac73
(compressed) G aaB87ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

© ISO/IEC 2017 - All rights reserved 21


https://standardsiso.com/api/?name=8cff618562a1defe2f0509c7880b4fdc

ISO/IEC 15946-5:2017(E)

(uncompressed) G

04 aa87caz?2?2

59f741e0
36l17deda
e9da3113

fEffffff
c7634d81

be8b0537

82542a38
96262c6f
p5£0b8cO

fEffffff
£4372ddf

8eblc71le

5502f25d
5d9e98bf
0a60blce

fEffffff
581a0db2

£320ad74

pbf55296c
9292dc29
1d7e819d

fEffffff
48pb0a77a

6eld3b62

3a545e38
£f8f41dbd
7a431d7c

fEffffff

ececl9oca

8ba79p98

72760ab’7
289%al4d7c
90ealebf

ffffffff
ccecb52973

1l

(cofacto

C.1.6

p

(seed) X

(compre

AN
7

fEffffff
ffffffff

ffffffff
fEffffff

a2da725b
1652c0bd

ssed) G

9c648139
feldcl27

(uncompressed) G

cbo62395
Selefe’
le31c2eb
98£54449
c550b901

fEffffff
7fcc0148

O1ff

fEffffff
ffffffff

Olff
ffffffff
fEffffff

0051

99b315£3
3bblbf07

d09e8800

0200ce

053£b521
azffa8de

p4429ce4
5928feld
bd660118
57904468
3fad0761

O1ff

fEffffff
£709a5d0

Elliptic curve over a prime field (521 bits)

fEffffff

fEffffff
ffffffff

fEffffff
ffffffff
fEffffff
953eb96}

b8b48991
3573df88

291cb853

858e06b7

£828af60
3348b3cl

04

8139053f
cl27a2ff
39296a78
17afbdl7
353c7086

fEffffff

fEffffff
3bb5c9b8

fEffffff

fEffffff
ffffffff

ffffffef
fffLEfff
fELffffff
8elc9alf

8efl09%el
3d2c34f1

96cc6717

0404e9cd

6b4d3dba
856a429b

00c6858e

b521£828
a8de3348
9a3bc004
273e662c
a272c240

fEffffffef

fffffffa
899c47ae

fEffffff

fEfELENT
il il i s i i

ffffffff
ffffffff
ffffffff
929%9a21a0

56193951
ef451fd4

393284aa

9e3ecbo66

aldbbe77
£f97e7e31

06b70404

afoOob4dd
b3cl856a
5c8abfbi4
97ee7299
88be9476

fEffffff

51868783
bb6fb7le

FELLELLf

fEEEELFf
fEEfEfff

2521

fffffff

i
fEEEEfff
fffffffp

b68540ep

ec7e937pb
6b503£0p

a0da64dbp

2395b44p

efe7592
c2e5bdb

[ ee)

e9cd9%e3

3dbaali
429b£97
2c7dlbd
5ef4264
9fd1665

D

OO O M O

ffffffef

bf2£966
9138640

™

OO

(cofacto

JRA

C.2 Numerical examples of MNT curve

C.2.1 General

Detailed information on examples of the Miyaji-Nakabayashi-Takano (MNT) curve in 7.2 are given in
Reference [26].
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C.2.2 Elliptic curve over a prime field (160 bits)

ISO/IEC 15946-5:2017(E)

p 8c72d321 ed48aaldl 9b22£f914 cb43cll2 b76d7aeb

a 8c72d321 ed48aaldl 9b22£f914 cb43cll2 b76d7ae2

b 299ce219 b7b01348 £c2b5007 boableel 005676f7

(compressed) G 03

U00U00U00UU 00000000 00000000 00000000 gop00002

(hncompressed) G 04

00000000 00000000 00000000 0000GOO0 00000002

Obe8f0d3 623edada cedc2fac ab&l'679% 00R£f1d07

n 8c72d321 ed48aaldl 9b23bo6b2\e4a85a07 38R2640f

(fofactor) r 1
(.2.3 Elliptic curve over a prime field (256 bits)

2 f6529c2a 424426332

b1d5054e 2f7b68aa eefef918 74ddl140c 6919%af9%0 71[9ed905

a f6529c2a 4244a6332

b1d5054e 2f7b68aa ee7ef918 74ddl140c 6919%af9%b 71[9ed902

b 6€974d68 efld4£266

ae3ddbdl £97c497c 1d5452d1 b074a6c0 6a25d4e5 819ccdlc

(fompressed) G 02 00000000 00000000

00060000 00000000 00000000 00000000 00000000 00[000003

(bncompressed) G 04 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000003 693d7af8 c4p29f8d

eb6ed77f £569661c 4dcd2227 aacl7b09 e4b4b0b7 03p978ce

n f6529c2a 42K4a6332

b1d5054e 2f7b68ab e€99c585a 8419ae9f b45c620e 5elf666c3

(fofactor)r 1

C3—Numerieal examplesef BN ewrve—m8Mm —M |

C.3.1 General

All of the following examples are chosen so that p is the largest prime satisfying p = 3 (mod 4) and
p = 4 (mod 9) for the largest parameter u with minimum Hamming weight, allowing the extension
field F(p2) to be represented as F(p)[i]/(i2 + 1) and the extension field F(p?m) to be represented as
F(p?)[z]/(zm -v) for m = 2, 3, 6 and v = 1 + i. Computation of square (or cube) roots needed for point
and/or pairing compression is also simplified in both F(p) and F(p2). Furthermore, the curve equation
has the form E: y2 = x3 + 3 with the obvious basepoint G = (1, 2), and the sextic twist E'/F(p2) of the form
E’: y'2 = x'3 + 3v contains a subgroup of order n and cofactor h = 2p - n, with basepoint G' = hGy' where
Go' is a point with x-coordinate x¢’ = 1. Finally, the isomorphism yi: E'/F(p?2) —» E/F(p12) takes the form
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Y(x',y') = (x" v-1z4,y' v-123), with z6 = v. These properties effectively facilitate the implementation of the
(plain or compressed) Tate or Weil pairing e: E x E' —» F(p2m), with optimal pairings especially benefiting
from the sparse form of u. A detailed information on these examples is given in Reference [12].

C.3.2 Elliptic curve over a prime field (160 bits)

p ffffffda 48afd02c ccfdfeb5 0dclddf3 f4046e43
a 0
b 3
(comprdssed) G 02 00000000 00000000 00000000 00000000 0000600L
(uncompressed) G 04 00000000 00000000 OOOOOOOQLOOOOOOOP
00000001 00000000 0OOOOOOO 00000000 0000GHL0 0000000P
n ffffffda 48afd02c ccf3fe55 0ddAbad5 95810cdf
(cofactof) r il
C.3.3 Elliptic curve over a prime field (192 bits)
p fffffff5 26bac3d5 23661124\£88543e9 1£f0186cl £247719p
a 0
b 3
(compressed) G op
00000000 000QGQ00O 00000000 00000000 00000000 0000000
(uncompressed) G 0K
00000000~00000000 00000000 00000000 00000000 0000000
0000Q0Q0 00000000 00OOOOOOO 00000000 00000000 0000000P
n fHEEff£f5 26bac3db 23661123 £38543ee 8ba2eb5d 35910e6p
(cofactof) r il
C.3.4 Elliptic curyegver a prime field (224 bits)
p fEffffff
f£f£10728 8ec29e60 2c4520db 42180823 bb907d12 8712783
a
b 3
(compressed) G 02 00000000
00000000 00000000 OOOOOOOO 00000000 00000000 00000001
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