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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are 
members of ISO or IEC participate in the development of International Standards through technical 
committees established by the respective organization to deal with particular fields of technical 
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international 
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 
work. In the field of information technology, ISO and IEC have established a joint technical committee, 
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for 
the different types of document should be noted. This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject 
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent 
rights. Details of any patent rights identified during the development of the document will be in the 
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents).

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO’s adherence to the 
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following 
URL: www​.iso​.org/​iso/​foreword​.html.

This document was prepared by Technical Committee ISO/IEC  JTC 1, Information technology, 
Subcommittee SC 27, IT Security techniques.

This second edition cancels and replaces the first edition (ISO/IEC  15946-5:2009), which has been 
technically revised.

It also incorporates the Technical Corrigendum ISO/IEC 15946-5:2009/Cor.1:2012.

The main technical changes between the first edition and this second edition are as follows:

—	 the terms and definitions given in ISO/IEC 15946-1 are used;

—	 the scope of verifiably pseudo-random elliptic curve generation has been added;

—	 the numerical examples in C.4.2 and C.4.3 have been modified.

A list of all parts in the ISO/IEC 15946 series can be found on the ISO website.
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Introduction

Some of the most interesting alternatives to the RSA and F(p) based systems are cryptosystems 
based on elliptic curves defined over finite fields. The concept of an elliptic curve based public-key 
cryptosystem is rather simple.

—	 Every elliptic curve over a finite field is endowed with an addition operation “+”, under which it 
forms a finite abelian group.

—	 The group law on elliptic curves extends in a natural way to a “discrete exponentiation” on the point 
group of the elliptic curve.

—	 Based on the discrete exponentiation on an elliptic curve, one can easily derive elliptic curve 
analogues of the well-known public-key schemes of Diffie-Hellman and ElGamal type.

The security of such a public-key system depends on the difficulty of determining discrete logarithms in 
the group of points of an elliptic curve. This problem is, with current knowledge, much harder than the 
factorization of integers or the computation of discrete logarithms in a finite field. Indeed, since Miller 
and Koblitz independently suggested the use of elliptic curves for public-key cryptographic systems 
in 1985, the elliptic curve discrete logarithm problem has only been shown to be solvable in certain 
specific and easily recognizable cases. There has been no substantial progress in finding an efficient 
method for solving the elliptic curve discrete logarithm problem on arbitrary elliptic curves. Thus, it 
is possible for elliptic curve based public-key systems to use much shorter parameters than the RSA 
system or the classical discrete logarithm-based systems that make use of the multiplicative group of a 
finite field. This yields significantly shorter digital signatures and system parameters.

This document describes elliptic curve generation techniques useful for implementing the elliptic curve 
based mechanisms defined in ISO/IEC 29192-4, ISO/IEC 9796-3, ISO/IEC 11770-3, ISO/IEC 14888-3, and 
ISO/IEC 18033-2.

It is the purpose of this document to meet the increasing interest in elliptic curve based public-key 
technology by describing elliptic curve generation methods to support key-exchange, key-transport 
and digital signatures based on an elliptic curve.
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Information technology — Security techniques — 
Cryptographic techniques based on elliptic curves —

Part 5: 
Elliptic curve generation

1	 Scope

The ISO/IEC  15946 series specifies public-key cryptographic techniques based on elliptic curves 
described in ISO/IEC 15946-1.

This document defines elliptic curve generation techniques useful for implementing the elliptic curve 
based mechanisms defined in ISO/IEC 29192-4, ISO/IEC 9796-3, ISO/IEC 11770-3, ISO/IEC 14888-3 and 
ISO/IEC 18033-2.

This document is applicable to cryptographic techniques based on elliptic curves defined over finite 
fields of prime power order (including the special cases of prime order and characteristic two). This 
document is not applicable to the representation of elements of the underlying finite field (i.e. which 
basis is used).

The ISO/IEC  15946 series does not specify the implementation of the techniques it defines. 
Interoperability of products complying with the ISO/IEC 15946 series will not be guaranteed.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC  15946-1, Information technology ― Security techniques ― Cryptographic techniques based on 
elliptic curves ― Part 1: General

3	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC  15946-1 and the 
following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 IEC Electropedia: available at http://​www​.electropedia​.org/​

—	 ISO Online browsing platform: available at http://​www​.iso​.org/​obp

3.1
definition field of an elliptic curve
field that includes all the coefficients of the formula describing an elliptic curve

3.2
hash-function
function which maps strings of bits of variable (but usually upper bounded) length to fixed-length 
strings of bits, satisfying the following two properties:

—	 for a given output, it is computationally infeasible to find an input which maps to this output;

INTERNATIONAL STANDARD� ISO/IEC 15946-5:2017(E)
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—	 for a given input, it is computationally infeasible to find a second input which maps to the same output

Note 1 to entry: Computational feasibility depends on the specific security requirements and environment. Refer 
to ISO/IEC 10118-1:2016, Annex C.

[SOURCE: ISO/IEC 10118‑1:2016, 3.4]

3.3
nearly prime number
positive integer, n =m⋅r, where m is a large prime number and r is a small smooth integer (3.5)

Note 1 to entry: The meaning of the terms large and small prime numbers is dependent on the application, and is 
based on bounds determined by the designer.

3.4
order of an elliptic curve 
E(F)
number of points on an elliptic curve, E, defined over a finite field, F

3.5
smooth integer
integer, r, whose prime factors are all small (i.e. less than some defined bound)

4	 Symbols and conversion functions

4.1	 Symbols

Β embedding degree, the smallest B such that number #E[F(q)] | qB−1

Ε elliptic curve, given by a formula of the form Y2 = X3 + aX + b over the field F(pm) for p > 3, by 
a formula of the form Y2 + XY = X3 + aX2 + b over the field F(2m), or by a formula of the form 
Y2 = X3 + aX2 + b over the field F(3m), together with an extra point OE referred to as the point 
at infinity. The elliptic curve is denoted by E/F(pm), E/F(2m), or E/F(3m) respectively.

NOTE 1    In applications not based on a pairing, E/F(p) or E/F(2m) is preferable from an 
efficiency point of view. In applications that use a pairing, E/F(p) or E/F(3m) is preferable 
from an efficiency point of view.

NOTE 2   An elliptic curve is not only the set of points on the curve, but also a group under 
an operation defined on these points.

N number of points on an elliptic curve E over F(q), #E[F(q)]

n prime divisor of #E[F(q)]

OE elliptic curve point at infinity

p prime number

q prime power, pm for some prime p and some integer m ≥ 1

r cofactor, that is #E[F(q)] = rn

#E[F(q)] order (or cardinality) of E[F(q)]

⎾x⏋ smallest integer greater than or equal to the real number x

⎿x⏌ largest integer smaller than or equal to the real number x
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4.2	 Conversion functions

BS2IP bit string to integer conversion primitive

BS2OSP bit string to octet string conversion primitive

EC2OSPE elliptic curve point to octet string conversion primitive

FE2IPF finite field element to integer conversion primitive

FE2OSPF finite field element to octet string conversion primitive

I2BSP integer to bit string conversion primitive

I2OSP integer to octet string conversion primitive

I2ECP integer to elliptic curve conversion primitive

OS2BSP octet string to bit string conversion primitive

OS2FEPF octet string to finite field element conversion primitive

OS2ECPE octet string to elliptic curve point conversion primitive

OS2IP octet string to integer conversion primitive

5	 Framework for elliptic curve generation

5.1	 Types of trusted elliptic curve

There are a number of ways in which a user can obtain trust in the provenance of an elliptic curve, 
including the following.

—	 The curve could be obtained from an impartial trusted source (e.g. an international or national 
standard).

—	 The curve could be generated and/or verified by a trusted third party.

—	 The curve could be generated and/or verified by the user.

NOTE 1	 Refer to Annex A for background information on elliptic curves.

NOTE 2	 Refer to Annex B for background information on elliptic curve cryptosystems.

5.2	 Overview of elliptic curve generation

There are three main ways to generate elliptic curves.

—	 Generate an elliptic curve by applying the order counting algorithms to a (pseudo-)randomly chosen 
elliptic curve. Such a technique is specified in Clause 6.

—	 Generate an elliptic curve by applying the complex multiplication method. Such a technique is 
specified in Clause 7.

—	 Generate an elliptic curve by lifting an elliptic curve over a small finite field to that over a reasonably 
large field. Such a technique is specified in Clause 8.

NOTE 1	 Refer to Annex A for background information on elliptic curves.

NOTE 2	 Refer to Annex B for background information on elliptic curve cryptosystems.
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6	 Verifiably pseudo-random elliptic curve generation

6.1	 General

The generation of verifiably pseudo-random elliptic curves focuses on curves over prime and binary 
fields (and so, for example, does not deal with curves over fields of characteristic 3).

6.2	 Constructing verifiably pseudo-random elliptic curves (prime case)

6.2.1	 Construction algorithm

The following algorithm produces a set of elliptic curve parameters over a field F(p) selected (pseudo-) 
randomly from the curves of appropriate order, along with sufficient information for others to verify 
that the curve was indeed chosen pseudo-randomly.

NOTE 1	 The algorithm is consistent with Reference [9].

NOTE 2	 Methods of choosing a prime number p (pseudo) randomly are described in Reference [5].

It is assumed that the following quantities have been chosen:

—	 a lower bound, nmin, for the order of the base point;

—	 a cryptographic hash function, H, with output length LHash bits;

—	 the bit length, L, of inputs to H, satisfying L ≥ LHash.

The following notation is adopted below:

—	 v = ⎾log2 p⏋,

—	 s = ⎿(v − 1)/LHash⏌,

—	 w = v − sLHash − 1.

Input: a prime number p; lower bound nmin for n; a trial division bound lmax.

Output: a bit string X; EC parameters a, b, n, and G.

a)	 Choose an arbitrary bit string X of bit length L.

b)	 Compute h = H (X).

c)	 Let W0 be the bit string obtained by taking the w rightmost bits of h.

d)	 Let Z = BS2IP(X).

e)	 For i from 1 to s do:

1)	 Let Xi = I2BSP(Z + i mod 2L).

2)	 Compute Wi = H (Xi).

f)	 Let W = W0 || W1 || … || Ws.

g)	 Let c = OS2FEP [BS2OSP (W)].

h)	 If c = 0F or 4c + 27 = 0F, then go to step a).

i)	 Choose finite field elements a, b ∈ F(p) such that b ≠ 0F and cb2 − a3 = 0F. Choosing a = b = c will 
guarantee the conditions hold, and this choice is recommended.

NOTE 3	 Choosing a = b = c may not be optimal from a performance perspective.
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NOTE 4	 If the default values are chosen as suggested, the randomness of the generated curve is explicitly 
guaranteed.

j)	 Compute the order #E[F(p)] of the elliptic curve E over F(p) given by y2 = x3 + ax + b.

k)	 Test whether #E[F(p)] is a nearly prime number using the algorithm specified in 6.2.2. If so, the 
output of the algorithm specified in 6.2.2 consists of integers r, n. If not, then go to step a).

NOTE 5	 The necessity of near primality is described in B.2.2

l)	 Check if E[F(p)] satisfies the MOV-condition specified in B.2.3, that is the smallest integer B such 
that n divides qB − 1 ensures the desirable security level. If not, then go to step a).

m)	 If #E[F(p)] = p, then go to step a).

NOTE 6	 This check is performed in order to protect against the attack specified in B.2.2.

n)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

o)	 Generate a point G on E of order n using the algorithm specified in 6.2.3.

p)	 Output X, a, b, n, G.

NOTE 7	 Methods to compute the order #E[F(p)] are described in References [11], [30] and [31].

6.2.2	 Test for near primality

Given a lower bound nmin and a trial division bound lmax, the following procedures test N = #E[F(p)] for 
near primality.

Input: positive integers N, lmax, and nmin.

Output: if N is nearly prime, output a prime n with nmin ≤ n and a smooth integer r such that N = rn. If N 
is not nearly prime, output the message “not nearly prime”.

a)	 Set n = N, r = 1.

b)	 For l from 2 to lmax do:

1)	 If l is composite, then go to step 3).

2)	 While (l divides n)

i)	 Set n = n/l and r = rl.

ii)	 If n < nmin, then output “not nearly prime” and stop.

3)	 Next l.

c)	 Test n for primality.

d)	 If n is prime, then output r and n and stop.

e)	 Output “not nearly prime”.

NOTE	 Methods to test for primality are described in References [5] and [10]

6.2.3	 Finding a point of large prime order

If the order #E[F(q)] of an elliptic curve E is nearly prime, the following algorithm efficiently produces a 
random point in E[F(q)] whose order is the large prime factor n of #E[F(q)] = rn.

Input: an elliptic curve E over the field F(q), a prime n, and a positive integer r not divisible by n.

﻿
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Output: if #E[F(q)] = rn, a point G on E of order n; if not, the message “wrong order.”

a)	 Generate a random point P (not OE) on E.

b)	 Set G = rP.

c)	 If G = OE, then go to step a).

d)	 Set Q = nG.

e)	 If Q ≠ OE, then output “wrong order” and stop.

f)	 Output G.

6.2.4	 Verification of elliptic curve pseudo-randomness

The following algorithm determines whether or not an elliptic curve over F(p) was generated using the 
method of 6.2.1. The quantities LHash, L, v, s, and w, and the hash function H, are as in 6.2.1.

Input: a bit string X of length L, EC parameters q = p, a, b, n, and G = (xG, yG), and a positive integer nmin.

Output: “True” or “False”.

a)	 Compute h = H (X).

b)	 Let W0 be the bit string obtained by taking the w rightmost bits of h.

c)	 Let Z = BS2IP(X).

d)	 For i from 1 to s do:

1)	 Let Xi = I2BSP(Z + i mod 2L).

2)	 Compute Wi = H (Xi).

e)	 Let W = W0 || W1 || … || Ws.

f)	 Convert W to a finite field element c = OS2FEP [BS2OSP (W)].

g)	 Verify the following conditions.

1)	 n ≥ nmin.

2)	 n is a prime.

3)	 c ≠ 0F.

4)	 4c + 27 ≠ 0F.

5)	 b ≠ 0F.

6)	 cb2 − a3 = 0F.

7)	 G ≠ OE.

8)	 y2 G= x3G + axG + b.

9)	 nG = OE.

h)	 If all the conditions in step g) hold, then output “True”; otherwise output “False”.
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6.3	 Constructing verifiably pseudo-random elliptic curves (binary case)

6.3.1	 Construction algorithm

The following algorithm produces a set of elliptic curve parameters for a pseudo-random curve over 
a field F(2m), along with sufficient information for others to verify that the curve was indeed chosen 
pseudo-randomly. See Annex C for additional information.

NOTE 1	 The algorithm is consistent with Reference [9].

It is assumed that the following quantities have been chosen:

—	 a field F(2m);

—	 a lower bound nmin for the order of the base point;

—	 a cryptographic hash function H with output length LHash bits;

—	 the bit length L of inputs to H, satisfying L ≥ LHash.

The following notation is adopted below:

—	 s = ⎿(m − 1)/ LHash⏌,

—	 w = m − sLHash.

Input: a field F(2m); a lower bound nmin for n; a trial division bound lmax.

Output: a bit string X; EC parameters a, b, n, and G.

a)	 Choose an arbitrary bit string X of bit length L.

b)	 Compute h = H (X).

c)	 Let W0 be the bit string obtained by taking the w rightmost bits of h.

d)	 Let Z= BS2IP(x).

e)	 For i from 1 to s, do:

1)	 Let Xi = I2BSP(Z + i mod 2L).

2)	 Compute Wi = H (Xi).

f)	 Let W = W0 || W1 || … || Ws.

g)	 Let b = OS2FEP [BS2OSP(W)].

h)	 If b = 0F, then go to step a).

i)	 Let a be an arbitrary element in F(2m). Choosing a = 0F will guarantee the conditions hold, and this 
choice is recommended.

NOTE 2	 The default values may not be chosen because of performance reasons.

NOTE 3	 If the default values are chosen as suggested, the randomness is explicitly guaranteed.

j)	 Compute the order #E[F(2m)] of the elliptic curve E over F(2m) given by y2 + xy = x3 + ax2 + b.

NOTE 4	 Methods of computing the order #E[F(2m)] are described in References [11], [30] and [33].

k)	 Test whether #E[F(2m)] is a nearly prime number using the algorithm specified in 6.2.2. If so, the 
output of the algorithm specified in 6.2.2 consists of integers r, n. If not, then go to step a).

l)	 Check that E[F(2m)] satisfies the MOV-condition specified in B.2.3. If not, then go to step a).
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m)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

n)	 Generate a point G on E of order n using the algorithm specified in 6.2.3.

o)	 Output X, a, b, n, G.

NOTE 5	 The necessity of near primality is described in B.2.2.

6.3.2	 Verification of elliptic curve pseudo-randomness

The following algorithm verifies the validity of a set of elliptic curve parameters. In addition, it 
determines whether an elliptic curve over F(2m) was generated using the method of 6.3.1.

The quantities LHash, L, s, and w, and the hash function H, are as in 6.3.1.

Input: a bit string X of length L, EC parameters q = 2m, a, b, n, and G = (xG, yG), and a positive integer nmin.

Output: “True” or “False”.

a)	 Compute h = H (X).

b)	 Let W0 be the bit string obtained by taking the w rightmost bits of h.

c)	 Let Z = BS2IP(x).

d)	 For i from 1 to s, do:

1)	 Let Xi = I2BSP(Z + i mod 2L).

2)	 Compute Wi = H (Xi).

e)	 Let W = W0 || W1 || … || Ws.

f)	 Let b′ = OS2FEP [BS2OSP(W)].

g)	 Verify the following conditions.

1)	 n ≥ nmin

2)	 n is a prime.

3)	 b ≠ 0F

4)	 b = b′

5)	 G ≠ OE

6)	 y2G + x GyG = x3G + ax2G + b

7)	 nG = OE

h)	 If all the conditions in step g) hold, then output “True”; otherwise output “False”.

7	 Constructing elliptic curves by complex multiplication

7.1	 General construction (prime case)

The following algorithm produces an elliptic curve E over F(p) with the given number of rational points N.

NOTE 1	 The algorithm is based on Reference [17] which is applied to the primality proving [10].
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Input: the definition field F(p) and the number of points N = rn, where n is the largest prime divisor of N 
and r is a cofactor.

Output: curve parameters of elliptic curve E with #E[F(p)] = N and base point G.

a)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then execute a new input.

b)	 Set t = p + 1 − N.

c)	 Choose a pair of integers (D,V) such that 4p − t2 = DV2.

d)	 Construct the Hilbert class polynomial PD(X).

e)	 Find a solution j0 in F(p) of PD(X) = 0 modulo p.

f)	 Choose c ∈ F(p)* and construct an elliptic curve over F(p) with the j-invariant j0.

1)	 ED j c, ,0
: y2 = x3 + [3c2j0 / (1 728 − j0)]x + 2c3j0 / (1 728 − j0) (if j0 ≠ 0F, 1 728).

2)	 ED j c, ,0
: y2 = x3 + c (if j0 = 0F).

3)	 ED j c, ,0
: y2 = x3 + cx (if j0 = 1 728).

g)	 Construct a random point G on ED j c, ,0
[F(p)] such that G ≠ OE and r·G ≠ OE.

h)	 Set G = r·G.

i)	 If n·G = OE, output curve parameters of ED j c, ,0
 and the base point G. If n·G ≠ OE, go to step f) to 

choose another c.

NOTE 2	 Any pair of integers (D,V) such that 4p − t2 = DV2 can be used in step c).

NOTE 3	 The definition of the Diophantine equation used in step c) is given in A.5.

NOTE 4	 The definition of the Hilbert class polynomial PD(X) is given in A.2.

7.2	 Miyaji-Nakabayashi-Takano (MNT) curve

The following algorithm produces an elliptic curve E over F(p) with embedding degree B = 6, which 
is useful for cryptosystems based on a bilinear pairing. The pairing and the embedding degree are 
described in A.3 and B.2.2 respectively. Numerical examples and comparisons are given in Annex C and 
Annex D, respectively.

NOTE 1	 Some information and an algorithm for generating an MNT curve with B = 3 are given in Reference [24].

NOTE 2	 MNT curves can be constructed, not only with B = 6, but also with B = 3 and 4.

Input: lower and upper bound (odd integer) pmin and pmax for the definition field (in bits) and upper 
bound Dmax for size of D.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E[F(p)], and basepoint G.

a)	 Choose a small positive integer D < Dmax such that D ≡ 3 (mod 8) and go to step c).

b)	 If such D does not exist, then stop and output “fail”.

c)	 Find a pair of integers (T,U) with the smallest U > 0 that satisfies T2 − 3DU2 = 1 using the continued 
fraction algorithm.

d)	 Find a pair of integers (x, y) that satisfies x2 − 3Dy2 = −8 and 0 ≤ x < 2U√ (2D), 2√ (2/D) ≤ y < 2T√ (2/D), 
using the algorithm of Lagrange. If not, go to step a).

e)	 i = 0.
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f)	 Find a pair of primes (p,n) as follows:

1)	 Compute integers xi and yi such that xi + yi√ (3D) = [x + y√ (3D)] [T + U √ (3D)]i.

NOTE 3	 Not all solutions can be derived in this way.

2)	 If xi ≡ 1(mod 6), then s = (xi − 1)/6 and p = 4s2 + 1;

i)	 else if xi ≡ −1(mod 6), then s = (xi + 1)/6 and p = 4s2 + 1;

ii)	 else, i = i + 1 and go to step 1).

3)	 If p < pmin, then i = i + 1 and go to step 1).

4)	 If p > pmax, then go to step a).

5)	 If p is prime, then n1 = 4s2 + 2s + 1 and n2 = 4s2 − 2s + 1;

i)	 else, i = i + 1 and go to step 1).

6)	 If xi ≡ 1(mod 6), then n = n1;

i)	 else n = n2.

7)	 If n is prime, then go to step g);

i)	 else, i = i + 1 and go to step 1).

g)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

h)	 Construct the Hilbert class polynomial PD(X).

i)	 Find a solution j0 in F(p) of PD(X) = 0 modulo p.

j)	 Choose c ∈ F(p)* and construct an elliptic curve over F(p) with the j-invariant j0.

1)	 ED j c, ,0
: y2 = x3 + [3c2j0 / (1 728 − j0)]x + 2c3j0 / (1 728 − j0) (if j0 ≠ 0F, 1 728).

2)	 ED j c, ,0
: y2 = x3 + c (if j0 = 0F).

3)	 ED j c, ,0
: y2 = x3 + cx (if j0 = 1 728).

k)	 Construct a random point G on ED j c, ,0
[F(p)], not equal to the point at infinity OE.

l)	 If n⋅G = OE, output p, E, n, and G.

m)	 If n⋅G ≠ OE, go to step j) to choose another c ∈ F(p)*.

NOTE 4	 The definition of the Hilbert class polynomial PD(X) is given in A.2.

NOTE 5	 The continued fraction algorithm in step c) is given in Reference [27].

NOTE 6	 The algorithm of Lagrange in step d) is given in References [22] and [25].

NOTE 7	 A technique for speeding up a protocol based on a bilinear pairing is described in Reference [12].

7.3	 Barreto-Naehrig (BN) curve

The following algorithm produces an elliptic curve E over F(p) with embedding degree B = 12, which 
is useful for cryptosystems based on bilinear pairings. The embedding degree is described in B.2.2. 
Numerical examples and comparisons are given in Annex C and Annex D, respectively.

NOTE 1	 A detailed information is given in Reference [12].
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NOTE 2	 This method will always generate at most one curve for a given value of m.

Input: the approximate desired size m of the curve order (in bits) and upper bound (odd integer) pmax 
for the definition field.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E[F(p)], and basepoint G.

a)	 Let P(u) = 36u4 + 36u3 + 24u2 + 6u + 1.

b)	 Compute the smallest u ≈ 2m/4 such that ⎾log2 P(−u)⏋ = m.

c)	 While p ≤ pmax

1)	 t = 6u2 + 1.

2)	 p = P(−u) and n = p + 1 − t.

3)	 If p and n are prime, then go to step e).

4)	 p = P(u) and n = p + 1 − t.

5)	 If p and n are prime, then go to step e).

6)	 u = u + 1 and go to step 1).

d)	 Stop and output “fail”.

e)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

f)	 b = 0.

g)	 If b + 1 is not represented by b + 1 = y02 modulo p for an integer y0, then b = b + 1 and go to step g).

h)	 Set an elliptic curve E: y2 = x3 + b.

i)	 Compute a square root y0 = √(b + 1) modulo p.

j)	 Set the basepoint G = (1, y0) ∈ E.

k)	 If n⋅G ≠ OE, then set b = b + 1 and go to step g).

l)	 Output p, E, n, and G.

NOTE 3	 A technique for speeding up a protocol based on a bilinear pairing is described in Reference [12].

7.4	 Freeman curve (F curve)

The following algorithm produces an elliptic curve E over F(p) with embedding degree B = 10, which 
is useful for cryptosystems based on a bilinear pairing. The embedding degree is described in B.2.2. 
Numerical examples and comparisons are given in Annex C and Annex D, respectively.

NOTE 1	 Detailed information is given in Reference [18].

Input: lower and upper bound pmin and pmax for the size of the definition field (in bits) and upper bound 
Dmax for size of D.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E[F(p)], and basepoint G.

a)	 Choose a small positive integer D < Dmax such that D ≡ 43 or 67 (mod 120) and 15D is square-free 
and go to step c).

b)	 If such D does not exist, then stop and output “fail”.
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c)	 Find a pair of integers (T,U) with the smallest U > 0 that satisfies T2 − 15DU2 = 1 using the continued 
fraction algorithm.

d)	 Let g = T − U√ (15D).

e)	 Find a pair of integers (x, y) that satisfies x2 − 15Dy2 = −20 and 0 ≤ x < 10U√(3D), 2√1/(3D) ≤y < 2T√1/
(3D) using the algorithm of Lagrange.

f)	 For the current solution (x, y).

1)	 If x = ±5 (mod 15), then:

i)	 Let s = (−5 ± x)/ 15.

ii)	 Let p = 25s4 + 25s3 + 25s2 + 10s + 3.

iii)	 Let n = 25s4 + 25s3 + 15s2 + 5s + 1.

2)	 Else, go to step 6).

3)	 If p > pmax, go to step a) to choose a new D.

4)	 Else if p < pmin, then go to step 6).

5)	 If p and n are primes, go to step g).

6)	 Find a pair of integers (x′, y′) such that x′ + y′ √15D = (x + y√15D)⋅g.

NOTE 2	 Not all solutions can be derived in this way.

7)	 Let x = x′ and y=y′ and return to step 1).

g)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

h)	 Construct the Hilbert class polynomial PD(X).

i)	 Find a solution j0 in F(p) of PD(X) = 0 modulo p.

j)	 Choose c ∈ F(p)* and construct an elliptic curve E over F(p) with j-invariant j0:

1)	 ED j c, ,0
: y2 = x3 + [3c2j0 / (1 728 − j0)]x + 2c3j0 / (1 728 − j0) (if j0 ≠ 0F, 1 728).

2)	 ED j c, ,0
: y2 = x3 + c (if j0 = 0F).

3)	 ED j c, ,0
: y2 = x3 + cx (if j0 = 1 728).

k)	 Construct a random point G on ED j c, ,0
[F(p)], not equal to the point at infinity OE.

l)	 If n⋅G = OE, output p, E, n, and G.

m)	 Else, go to Step j) to choose another c ∈ F(p)*.

NOTE 3	 The definition of the Hilbert class polynomial PD(X) in step i) is given in A.2.

NOTE 4	 The continued fraction algorithm in step c) is given in Reference [27].

NOTE 5	 The algorithm of Lagrange in step f) is given in References [22] and [25].

NOTE 6	 A technique to speed up a protocol based on a bilinear pairing is described in Reference [12].
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7.5	 Cocks-Pinch (CP) curve

The following algorithm produces an elliptic curve E over F(p) with arbitrary embedding degree B, which 
is useful for cryptosystems based on a bilinear pairing. The embedding degree is described in B.2.2.

NOTE 1	 Detailed information is given in Reference [13].

Input: a positive integer B and a set R of prime numbers n (n−1 is divisible by B).

Output: prime p, curve parameters of elliptic curve E/F(p), the order n⋅r = #E[F(p)], and basepoint G.

a)	 Choose a small square-free positive integer D and n in R such that −D is a square modulo n.

b)	 Find a B-th primitive root of unity z in F(n).

c)	 t′ = z + 1.

d)	 y′ = (t′−2)/ √ (−D) (mod n).

e)	 Let t be an integer such that t is equal to t′ modulo n, and let y be an integer such that y is equal to y′ 
modulo n.

f)	 p = (t2 + Dy2 ) / 4.

NOTE 2	 t = t′ and y = y′ can be used.

g)	 If p is not prime, then go to step a).

h)	 Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based 
on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to step a).

i)	 Construct the Hilbert class polynomial PD(X).

j)	 Find a solution j0 in F(p) of PD(X) = 0 modulo p.

k)	 Choose c ∈ F(p)* and construct an elliptic curve over F(p) with the j-invariant j0.

1)	 ED j c, ,0
: y2 = x3 + [3c2j0 / (1 728 − j0)]x + 2c3j0 / (1 728 − j0) (if j0 ≠ 0F, 1 728).

2)	 ED j c, ,0
: y2 = x3 + c (if j0 = 0F).

3)	 ED j c, ,0
: y2 = x3 + cx (if j0 = 1 728).

l)	 Set a cofactor r = (p + 1 − t) / n.

m)	 Construct a random point G on ED j c, ,0
[F(p)] such that G ≠ OE and r⋅G ≠ OE.

n)	 Set G = r⋅G.

o)	 If n⋅G = OE, output n, G, and the elliptic curve E.

p)	 Else, go to step k) to choose another c ∈ F(p)*.

NOTE 3	 The definition of the Hilbert class polynomial PD(X) in step c) is given in A.2.

NOTE 4	 A technique for speeding up a protocol based on a bilinear pairing is described in Reference [12].

8	 Constructing elliptic curves by lifting

The following algorithm produces an elliptic curve E over F(pm) by lifting an elliptic curve E over F(p).

NOTE	 The algorithm is based on Reference [33].
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Input: small finite field F(p), elliptic curve E over F(p), lower and upper bound Nmin and Nmax for the 
order of elliptic curve (in bits).

Output: extension degree m, order Nm = #E[F(pm)], basepoint G, and order n of G.

a)	 Count the order of N = #E[F(p)], which is easily executed since F(p) is small.

b)	 Set t = p + 1 − N and compute algebraic integers α and β that satisfy t = α + β and p = αβ.

c)	 Set m = 1.

d)	 Find a triple of (m, Nm, n) as follows:

1)	 Compute Nm = pm + 1– (α m + β m) and q = pm, which is an integer.

2)	 If Nm < Nmin, then m = m + 1 and go to Step 1).

3)	 If Nm > Nmax, then stop and output “fail”.

4)	 Test whether Nm is a nearly prime number using the algorithm specified in 6.2.2. If so, the 
output of 6.2.2 consists of the integers r and n. If not, then m = m + 1 and go to step 1).

5)	 Check whether E[F(q)] satisfies the MOV-condition specified in B.2.3, that is the smallest 
integer B such that n divides qB – 1 ensures the desirable security level. If not, then m = m + 1 
and go to step 1).

e)	 Generate a point G on E[F(q)] of order n using the algorithm specified in 6.2.3.

f)	 Output an extension degree m, the order Nm = #E[F(q)], a basepoint G and the order n.
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Annex A 
(informative) 

 
Background information on elliptic curves

A.1	 j-invariant

Let F(q) be a finite field with q = pm, where prime p > 3. Let E be an elliptic curve over F(q) given by the 
short Weierstrass equation:

Y2 = X3 + aX + b with a, b ∈ F(q),

where the inequality 4a3 + 27b2 ≠ 0F holds in F(q). Then, the j-invariant is defined as

j = 1 728·(4a3)/(4a3 + 27b2).

Let F(2m), for some m ≥ 1, be a finite field. Let E be an elliptic curve over F(2m) given by the formula:

Y2 + XY = X3 + aX + b with a, b ∈ F(2m),

where b ≠ 0F. Then, the j-invariant is defined as

j = 1/b.

Let F(3m), for some m ≥ 1, be a finite field. Let E be an elliptic curve over F(3m) given by the formula:

Y2 = X3 + aX2 + b with a, b ∈ F(3m)

such that a, b ≠ 0F. Then, the j-invariant is defined as

j = −a3/b.

A.2	 Hilbert class polynomial

The construction of elliptic curves by complex multiplication uses the theory of imaginary quadratic 
fields Q(√−D). In the case of the imaginary quadratic field Q(√−D), the Hilbert class field K is the 
extension field of Q(√−D), which is the unramified abelian extension of Q(√−D). The Hilbert class 
polynomial PD(X) is defined by the minimum polynomial of K over Q(√−D). In the construction of elliptic 
curves by complex multiplication, the fact that the j-invariants of elliptic curves E/F(p) are given as a 
solution of a Hilbert class polynomial PD(X) modulo p is used.

NOTE 1	 These facts are described in References [13] and [16].

NOTE 2	 Online databases of Hilbert class polynomials are available in Reference [21].
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A.3	 Cryptographic pairing

A cryptographic pairing en satisfies the conditions of non-degeneracy, bilinearity, and computability. A 
pairing en is defined over < G1 > × < G2 > as follows,

en : < G1 > × < G2 > → μn

where < G1 > and < G2 > are the cyclic groups of order n and μn is the cyclic group of the n-th roots of 
unity. A pairing en is realized by restricting the domain of the Weil or Tate pairings.

A.4	 Pell equation

The Pell equation is of the form:

T2 − dU2 = ±1

where d is a fixed integer. In the construction of elliptic curves by complex multiplication, the Pell 
equation with a positive integer d that is not a perfect square is used. Then, all positive integer solutions 
of (T,U) are given by using the least positive solution (T0,U0) with the smallest U0 > 0 as follows:

T + U√d = (T0 + U0√d)k

for k = 1, 2, ….

NOTE	 These facts are described in Reference [28].

A.5	 Diophantine equation, x2 − dy2 = n

In the construction of elliptic curves by complex multiplication, the Diophantine equation, x2 − dy2 = n, 
is used. Here, n is an integer and d is a positive integer that is not a perfect square. The number of 
integer solutions of this formula is zero or infinite. An infinite number of integer solutions (x, y) are 
given by using the least positive solution (T0,U0) with the smallest U0 > 0 of the related Pell equation of 
T2 − dU2 = 1.

NOTE	 Details are described in Reference [28].
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Annex B 
(informative) 

 
Background information on elliptic curve cryptosystems

B.1	 Definition of cryptographic problems

B.1.1	 Elliptic curve discrete logarithm problem (ECDLP)

For an elliptic curve E/F(q), the base point G ∈ E[F(q)] with order n, and a point P∈E[F(q)], the elliptic 
curve discrete logarithm problem (with respect to the base point G) is to find the integer x ∈ (0, n−1) 
such that P = xG if such an x exists.

The security of elliptic curve cryptosystems is based on the believed hardness of the elliptic curve 
discrete logarithm problem.

B.1.2	 Computational elliptic curve Diffie-Hellman problem (ECDHP)

For an elliptic curve E/F(q), the base point G ∈ E[F(q)] with order n, and points aG, bG ∈ E[F(q)], the 
computational elliptic curve Diffie-Hellman problem is to compute abG.

The security of some elliptic curve cryptosystems is based on the believed hardness of the computational 
elliptic curve Diffie-Hellman problem.

B.1.3	 Decisional elliptic curve Diffie-Hellman problem (ECDDHP)

For an elliptic curve E/F(q), the base point G ∈ E[F(q)] with order n, and points aG, bG, Y ∈ E[F(q)], the 
decisional elliptic curve Diffie-Hellman problem is to decide whether Y = abG or not.

The security of some elliptic curve cryptosystems is based on the believed hardness of the decisional 
elliptic curve Diffie-Hellman problem.

B.1.4	 Bilinear Diffie-Hellman problem (BDHP)

The bilinear Diffie-Hellman problems are described in two ways according to the corresponding 
cryptographic bilinear maps.

—	 For two groups < G1> and < G2> with order n, a cryptographic bilinear map 
en : < G1 > × < G2 >→ μn, aG1, bG1 ∈ < G1>, and aG2, cG2 ∈ < G2>, the bilinear Diffie-Hellman problem is 
to compute en(G1, G2)abc.

—	 For a group < G1> with order n, a cryptographic bilinear map en  : <  G1>×<  G1>  →  μn, and 
aG1, bG1 cG1 ∈ < G1>, the bilinear Diffie-Hellman problem is to compute en(G1, G1)abc.

The security of some elliptic curve cryptosystems is based on the believed hardness of the elliptic curve 
bilinear Diffie-Hellman problem.

B.1.5	 Elliptic curve discrete logarithm problem with auxiliary inputs (ECDLP with 
auxiliary inputs)

The security of some cryptosystems is based on the elliptic curve discrete logarithm problem with 
auxiliary inputs.

—	 ECDLP with additional inputs x2G, x3G, …, xkG
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—	 ECDHP with additional inputs a2G, a3G, …, akG

—	 BDHP with additional inputs a2G1, a3G1, …, akG1

Three examples of elliptic curve problems with auxiliary inputs are as follows (the notation follows 
from the original definitions of the problems in B.1.1, B.1.2, and B.1.4).

B.2	 Algorithms to determine discrete logarithms on elliptic curves

B.2.1	 Hardness of ECDLP

The hardness of ECDLP depends on the selected elliptic curves E/F(q) and the size n of the order of 
the base point G. The size of n should be 160 bits or more to achieve the desired level of security in 
cryptosystems based on the hardness of the ECDLP.

The elliptic curve E/F(q) should be chosen to meet the defined security objectives against the following 
algorithms to solve ECDLP. The size of n should be set to meet the defined security objectives against 
the baby-step-giant-step algorithm and various variants of the Pollard-ρ algorithm.

B.2.2	 Overview of algorithms

The following techniques are available to determine discrete logarithms on an elliptic curve:

—	 The Pohlig-Silver-Hellman algorithm. This is a “divide-and-conquer” method which reduces the 
discrete logarithm problem for an elliptic curve E defined over F(q) to the discrete logarithm in the 
cyclic subgroups of prime order dividing # E[F(q)].

—	 The baby-step-giant-step algorithm and various variants of the Pollard-ρ algorithm.

NOTE 1	 Various variants of the Pollard-ρ algorithm are described in Reference [33].

—	 The algorithm of Frey-Rück[19] and the Menezes-Okamoto-Vanstone algorithm[23] which both 
transform the discrete logarithm problem in a cyclic subgroup of E with prime order n to the 
smallest extension field F(qB) of F(q) such that n divides (qB − 1), where B is called the embedding 
degree. The Frey-Rück algorithm runs under weaker conditions than the algorithm published by 
Menezes-Okamoto-Vanstone.

—	 The algorithm of Araki-Satoh[29], Smart[32] and Semaev[31] which solves the discrete logarithm 
problem for an elliptic curve E defined over F(pm) in the case #E [F(pm)] = pm.

Unlike the situation of the discrete logarithm in the multiplicative group of some finite field, there is no 
known “index-calculus” available in the case of elliptic curves. As for attacks using covering for special 
type of covers, e.g. the Weil descent attack, the GHS attack, etc., see Chapter 22 of Reference [11].

NOTE 2	 The Pohlig-Silver-Hellman and baby-step-giant-step algorithms work generally on all kinds of elliptic 
curves while the Frey-Rück, the Menezes-Okamoto-Vanstone, Araki-Satoh, Smart, and Semaev algorithms work 
only on curves with special properties.

B.2.3	 MOV-condition

Let n be as defined in the set of elliptic curve domain parameters, where n is a prime divisor of #E[F(q)] 
and q is a power of a prime p. A value B, used for the MOV-condition, is given as the smallest integer such 
that n divides pB − 1. As mentioned above, the Frey-Rück and Menezes-Okamoto-Vanstone algorithms 
reduce the discrete logarithm problem in an elliptic curve over F(q) to the discrete logarithm in the 
finite field F(pB) for some B ≥ 1. By using the attack, the difficulty of the discrete logarithm problem in 
an elliptic curve E/F(q) is related to the discrete logarithm problem in a finite field F(pB). The subfield-
adjusted MOV-condition describes the degree B that ensures the security level of the discrete logarithm 
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problem in an elliptic curve by the discrete logarithm problem in finite field. For some applications 
based on the Weil and Tate pairing, a reasonably small value of B such as 6 or more is preferable.

NOTE	 Information on the degree B is described in Reference [20].

B.2.4	 Condition of prime divisor, n

For some cryptosystems based on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5, the prime 
divisor n should satisfy the following conditions: there is no divisor d of n − 1 such that (log n)2 < d < n1/2 
and there is no divisor e of n + 1 such that (log n)2 < e < n1/2. The divisors d and e are possibly composite.

NOTE	 The size of d is related with k in B.1.5, which is the maximum of the largest divisor of n  −  1 not 
exceeding the minimum of k and √n. Further detailed information on d and e is given in Reference [14].
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Annex C 
(informative) 

 
Numerical examples

C.1	 Numerical examples of verifiably pseudo-random elliptic curves

C.1.1	 General

Refer to Reference [8] for this subclause. The parameters are chosen from a seed using SHA-1.

C.1.2	 Elliptic curve over a prime field (192 bits)

p ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff  

  2192−264−1

a ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc

b 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

(seed) X 3045ae6f c8422f64 ed579528 d38120ea e12196d5

(compressed) G 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

(uncompressed) G 04 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

n ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22831

(cofactor) r 1

C.1.3	 Elliptic curve over a prime field (224 bits)

p ffffffff

ffffffff ffffffff ffffffff 00000000 00000000 00000001

2224−296+1

a ffffffff

ffffffff ffffffff fffffffe ffffffff ffffffff fffffffe

b b4050a85

0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4

(seed) X bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5

(compressed) G 02 b70e0cbd

6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21
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(uncompressed) G 04 b70e0cbd 6bb4bf7f

321390b9 4a03c1d3 56c21122 343280d6 115c1d21 bd376388

b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34

n ffffffff

 ffffffff ffffffff ffff16a2 e0b8f03e 13dd2945 5c5c2a3d

(cofactor) r 1

C.1.4	 Elliptic curve over a prime field (256 bits)

p ffffffff 00000001

00000000 00000000 00000000 ffffffff ffffffff ffffffff

2224(232−1) +2192+296−1

a ffffffff 00000001

00000000 00000000 00000000 ffffffff ffffffff fffffffc

b 5ac635d8 aa3a93e7

b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b

(seed) X c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

(compressed) G 03 6b17d1f2 e12c4247

f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296

(uncompressed) G 04 6b17d1f2 e12c4247 f8bce6e5 63a440f2

77037d81 2deb33a0 f4a13945 d898c296 4fe342e2 fe1a7f9b 
8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5  

n ffffffff 00000000

ffffffff ffffffff bce6faad a7179e84 f3b9cac2 fc632551

(cofactor) r 1

C.1.5	 Elliptic curve over a prime field (384 bits)

p ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 fffffff

2384−2128−296+232−1

a ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 fffffffc

b b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112

0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

(seed) X a335926a a319a27a 1d00896a 6773a482 7acdac73

(compressed) G 03 aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7
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(uncompressed) G 04 aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7 
3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c 
e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f 

n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

(cofactor) r 1

C.1.6	 Elliptic curve over a prime field (521 bits)

p 01ff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

2521−1

a 01ff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 
ffffffff ffffffff ffffffff ffffffff ffffffff fffffffc

b 0051 953eb961 8e1c9a1f 929a21a0 b68540ee

a2da725b 99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 
1652c0bd 3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

(seed) X d09e8800 291cb853 96cc6717 393284aa a0da64ba

(compressed) G 0200c6 858e06b7 0404e9cd 9e3ecb66 2395b442

9c648139 053fb521 f828af60 6b4d3dba a14b5e77 efe75928 
fe1dc127 a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66

(uncompressed) G 04 00c6858e 06b70404 e9cd9e3e

cb662395 b4429c64 8139053f b521f828 af606b4d 3dbaa14b 
5e77efe7 5928fe1d c127a2ff a8de3348 b3c1856a 429bf97e 
7e31c2e5 bd660118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 
98f54449 579b4468 17afbd17 273e662c 97ee7299 5ef42640 
c550b901 3fad0761 353c7086 a272c240 88be9476 9fd16650 

n 01ff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff fffffffa 51868783 bf2f966b 
7fcc0148 f709a5d0 3bb5c9b8 899c47ae bb6fb71e 91386409

(cofactor) r 1

C.2	 Numerical examples of MNT curve

C.2.1	 General

Detailed information on examples of the Miyaji-Nakabayashi-Takano (MNT) curve in 7.2 are given in 
Reference [26].
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C.2.2	 Elliptic curve over a prime field (160 bits)

p 8c72d321 e48aa141 9b22f914 cb43c112 b76d7ae5

a 8c72d321 e48aa141 9b22f914 cb43c112 b76d7ae2

b 299ce219 b7b01348 fc2b5007 b6ab1ee1 005676f7

(compressed) G 03

00000000 00000000 00000000 00000000 00000002

(uncompressed) G 04

00000000 00000000 00000000 00000000 00000002

0be8f0d3 623edada ce4c2fac a541679b 002f1d07 

n 8c72d321 e48aa141 9b23b6b2 e4a85a07 3822640f

(cofactor) r 1

C.2.3	 Elliptic curve over a prime field (256 bits)

p f6529c2a 424a6332

b1d5054e 2f7b68aa ee7ef918 74dd140c 6919af9b 719ed905

a f6529c2a 424a6332

b1d5054e 2f7b68aa ee7ef918 74dd140c 6919af9b 719ed902

b 6e974d68 ef44f266

ae3dd5d1 f97c497c 1d5452d1 b074a6c0 6a25d4e5 819ccd1c

(compressed) G 02 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000003

(uncompressed) G 04 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000003 693d7af8 c4a29f8d 
e56e477f f569661c 4dcd2227 aac17b09 e4b4b0b7 03b978ce 

n f6529c2a 424a6332

b1d5054e 2f7b68ab e99c585a 8419ae9f b45c620e 5ef666c3

(cofactor) r 1

C.3	 Numerical examples of BN curve

C.3.1	 General

All of the following examples are chosen so that p is the largest prime satisfying p  =  3 (mod  4) and 
p  =  4 (mod 9) for the largest parameter u with minimum Hamming weight, allowing the extension 
field F(p2) to be represented as F(p)[i]/(i2  +  1) and the extension field F(p2m) to be represented as 
F(p2)[z]/(zm −v) for m = 2, 3, 6 and v = 1 +  i. Computation of square (or cube) roots needed for point 
and/or pairing compression is also simplified in both F(p) and F(p2). Furthermore, the curve equation 
has the form E: y2 = x3 + 3 with the obvious basepoint G = (1, 2), and the sextic twist E′/F(p2) of the form 
E′: y′2 = x′3 + 3v contains a subgroup of order n and cofactor h = 2p − n, with basepoint G′ = hG0′ where 
G0′ is a point with x-coordinate x0′ = 1. Finally, the isomorphism ψ: E′/F(p2) → E/F(p12) takes the form 
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ψ(x′, y′) = (x′ v−1 z4, y′ v−1 z3), with z6 = v. These properties effectively facilitate the implementation of the 
(plain or compressed) Tate or Weil pairing e: E × E′ → F(p2m), with optimal pairings especially benefiting 
from the sparse form of u. A detailed information on these examples is given in Reference [12].

C.3.2	 Elliptic curve over a prime field (160 bits)

p ffffffda 48afd02c ccf4fe55 0dc1ddf3 f4046e43

a 0

b 3

(compressed) G 02 00000000 00000000 00000000 00000000 00000001

(uncompressed) G 04 00000000 00000000 00000000 00000000

00000001 00000000 00000000 00000000 00000000 00000002

n ffffffda 48afd02c ccf3fe55 0dd4bad5 95810cdd

(cofactor) r 1

C.3.3	 Elliptic curve over a prime field (192 bits)

p fffffff5 26bac3d5 23661124 f38543e9 1f0186c1 f247719b

a 0

b 3

(compressed) G 02

00000000 00000000 00000000 00000000 00000000 00000001

(uncompressed) G 04 

00000000 00000000 00000000 00000000 00000000 00000001 
00000000 00000000 00000000 00000000 00000000 00000002

n fffffff5 26bac3d5 23661123 f38543ee 8ba2eb5d 35910e65

(cofactor) r 1

C.3.4	 Elliptic curve over a prime field (224 bits)

p ffffffff

fff10728 8ec29e60 2c4520db 42180823 bb907d12 87127833

a 0

b 3

(compressed) G 02 00000000

00000000 00000000 00000000 00000000 00000000 00000001

﻿

24� © ISO/IEC 2017 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
94

6-5
:20

17

https://standardsiso.com/api/?name=8cff618562a1defe2f0509c7880b4fdc

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and conversion functions
	4.1 Symbols
	4.2 Conversion functions
	5 Framework for elliptic curve generation
	5.1 Types of trusted elliptic curve
	5.2 Overview of elliptic curve generation
	6 Verifiably pseudo-random elliptic curve generation
	6.1 General
	6.2 Constructing verifiably pseudo-random elliptic curves (prime case)
	6.2.1 Construction algorithm
	6.2.2 Test for near primality
	6.2.3 Finding a point of large prime order
	6.2.4 Verification of elliptic curve pseudo-randomness
	6.3 Constructing verifiably pseudo-random elliptic curves (binary case)
	6.3.1 Construction algorithm
	6.3.2 Verification of elliptic curve pseudo-randomness
	7 Constructing elliptic curves by complex multiplication
	7.1 General construction (prime case)
	7.2 Miyaji-Nakabayashi-Takano (MNT) curve
	7.3 Barreto-Naehrig (BN) curve
	7.4 Freeman curve (F curve)
	7.5 Cocks-Pinch (CP) curve
	8 Constructing elliptic curves by lifting
	Annex A (informative)  Background information on elliptic curves
	Annex B (informative)  Background information on elliptic curve cryptosystems
	Annex C (informative)  Numerical examples
	Annex D (informative)  Summary of properties of elliptic curves generated by the complex multiplication method
	Bibliography

