INTERNATIONAL ISO/IEC
STANDARD 29500-2

Second edition
2011-08-15

Information technology — Documen
description and processing languages —
Office Open XML File Formats —

Part 2:
Open Packaging Conventions

Technologies de l'information — Description des documents et
langages de traitement — Formats de fichier "Office Open XML" —

Partie 2: Conventions de paquetage ouvert

Reference number
ISO/IEC 29500-2:2011(E)

© ISO/IEC 2011

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

© ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

COPYRIGHT PROTECTED DOCUMENT

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Table of Contents
FOr@WOIG. . iiiiiieieeuiiiiiiiiierenuisiitiirerssasssssiseiirerssssssssssssmeesssssssssssssssesssssssssssssesesssssssssssssseessssssssssssssesssnnsssss vii
INErOQUCTION L.iieiiiiiiiiiiiiiiireneisiniiineresaessisesireressesssssssstneeesssssssssssssreesssssssssssssneesssssssssssssssessnsssssssssssnsnnnnes viii
Y oo o = 1
2. CORLOIMIANCE e —————r—————————————————————————————————rrr————y 0 2
3. NJrmative ReferEnCeS.......cooiiiireruuiiiiiiiiiiiinmiiiiiiiiiiirenssiiiiiessmmesiiimessssssssiimresssssssssssssiugs hasdesssss 3
4. Tefms and Definitionsc.cccviiiiiiiiiiiiiiiniiiiieerreeienreesisnsesssssssssssessssssssssssssssssdedbainesnnssss doanses 5
5. Ndtational CoNVENtIONSc.ciiveieeiiiiiiiiiiieiniiiiiiiiiiierissseiessssssssssngisbashossssssssesssssedossos 8
5.1 | DocumMeNnt CONVENTIONS ...ccciiiiiiiiiiieeee ettt e et ee e s e esireneeeee e s sesnnneeeeeeesses (R Tadeeeeesessnmnneneeeees s dhannnne 8
5.2 | DIiagram NOTES.....uuuiiiiiiiieiiieieietetrrerrreeeerererrrrererereerreeererrererrremerrrsrmrarrmrmsmmmsrmmsrsssslonmtermmmmmmremmmmmmmrmmmmmmmmmmmberme 8
6. Acfonyms and AbBreviations.......ccccciiiiiiiiiinnniiiiiniiiniesmas b sessssssssessssssssssssssasssans ... 10
7. GENEral DESCriPtioNccceiiieiiieiiirenietiniereeierenerenerenssernseernssessssssensersasderntosenssersnsssensessnssssnssssnssenannes R §
8. OVBIVIBW . ceeuuiiiiiieiiiiirieiiiiirieiniisneisiisseississsssssisssssssisnsssssssssssssadinesssssssssssmsnsssssssnsssssssnsssssssnsssssssnnss .12
9. Pafkage Model ...ttt rreeees s renne e ss e fadesrenn s s e e na e s s e e na s s e e e na s s s e e nane s eenasananenans .13
1S IS R I = o (TP SR .13
1S 8 0 R - T A A =1 4 =TS SRR13
158 9 0o o} (=T o) Y 1= - S SRR16
1N 0 T €1 o 1Y o I 1o P v PRSP w17
1S 8 R AV | I U LYY= = s TN .17
S I I - T Vo o [Ty Vo V- o s SO ... 18
9.2.1 Relative REfEIENCES....ccciiieee e s e et e e e e s e e e ae e e saeeesreeened ... 18
S 8 A = V=40 0 =1 1 £ ...19
9.3 | ReIGLIONSNIPS oot et e ettt e e ettt e e e ettt e e e eateeeeeaseeeeessaeeeessaeaeessaeeeeassaeeeensaneesannreeaans ...19
9.B.1 RelationShips Part. ... e e ittt e e et e e e et e e e e e be e e e e abee e e eeabae e e eaabaeeeeaaraeeeenraeas ...19
9.B.2 Relationship Markbhe......ooo ittt e e e e bee e e e abe e e e e e abaee e eeaneeas ...20
9.B.3 Representing ReIAIONSHIPS.ooi ittt e e e tee e e ebe e e e e sarae e e e aneeas w22
9.8.4 Support for Versioning and EXtENSIDIliTY........c.eeeeiiiiiiieciee e e ... 25
10. PhSiCal PaCKage <ol i ieeiieinieeieianesrenaneeeeennseseennssessennsseseensssssesnsssssesnsssssesnsssssesnsssssesnssnsnennssnnnans 26
10.1| Physical Mapping GUIAEIINES......ccccuiiee ettt e et e e e e tae e e e e ta e e e e eatae e e e abaeeeeeabeeeeennsenas ... 26
0 000 R Y = 1) o <To [@0 4 ¥ o 0 1=] A3 SRR w27
10.1.2 MapPing CoNtENE TYPES oo w27
14.1.3\, Mapping Part Names to Physical Package [tem Names.........ccccccveieeciiieee e .32
1014 Interleaving .34
O A\ YT o1 gY < o I 1A | A el o V7 USSR 36
10.2.1 Mapping Part Data ...ccccoeee i, 36
10.2.2 ZIP IEEIM NGMIES .ottt ettt et e e e ettt e e e e e e e e an bttt e e e e e e e s s anbeeteeaeessaannreeteeeeeesaansreneeeeessaaannns 36
10.2.3 Mapping Part Names t0 ZIP Item NamMIESccoviiiiiiiii e 37
10.2.4 Mapping ZIP Item Names t0 Part NameS.....ccoiviiiiiiiiiii e 37
O T A | o Vol & 1= T W o 11 =1 o o LSRR 37
10.2.6 Mapping Part Content Ty e .o 38
©ISO/IEC 2011 — All rights reserved iii

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

10.2.7 Mapping the GroWth HiNt ...t e e e e e e e e e e e e e e nsbeaeeeeeeeeennnnes 38
10.2.8 Late Detection of ZIP Items Unfit for Streaming Consumptionccccceeeriiieeiniiiee e 39
10.2.9 ZIP Format Clarifications fOr PACKaZEScuueiiiiuiiiiiiiiiiei ettt see e e vee e s s 39

B T T T = o o T =T 40
11.1 COre Properties Part ..o eeeiiieee ettt ettt e e e e s ettt e e e e e e st bteeeeeesesanbabeeeeeeesesannbebaaaeeessssannnenenes 41
11.2 Location Of COre Properties Part....c..ciiiccuiieeiiieie it setee e sttt e e sttt e e s stee e e s s bee e e s sbteeessbeeeesebeeeessanseeassnns 43
11.3 Support for Versioning and EXteNSIDIlityccuveiieciiiiiiiiiei e e e 43
11.4] Schema Restrictions fOr COre Propertiesccueiiicciee ettt ssvee e ssee e s sbee e s ssbee e s s b ...43
I I 1 0T 3 T 1 | PP S SN ... 45
12.1] THUMDBNAIT PartS..cuviiiiiieiiteciee ettt ste e st e s be e sbeeesareesbeeessseesnsessnsnessnseesnseeesssdoshastensueeennd45
13, Digital SiBNAtUIES....iiiveieeeiiiiiiiiiiiiriiiiiiiiiirersiserttrresssssssssstirnesssssssssssssseessssssssssssssonshrssssssssnnnenns ... 46
13.1] ChoosSing CoNtENT T0 SIZN ..eiiiiiiiee ettt e e e erre e e e ebe e e s e ebae e e e ET s ebreeeeenreeeeenarenas ... 46
13.2| Digital SIZNAtUre PArtscccocciieicciiie et e ettt eetee e eevee e e eeveeeessveee e essafe s e tane e eebaeeeeeabeeaeennrenas ... 46
13.2.1 Digital Signature OFigin Part.......ccoei i it eeeree e e s s naee e e saeeesensaeeesssseeann .47
13.2.2 Digital Signature XML Signature Partcccceeeeciieecciieeecciieeeeceeesloa e ecvre e e neee e .47
13.2.3 Digital Signature Certificate Part........cceo oD st tte e e e aae e e esaae e e e s neeeeen ... 48
13.2.4 Digital Signature MarkUpoeoccviie et ecree e e a e e e eeataeeeesasaeeeseasaeeesnsseeesassneanns ...48
13.3| Digital Signature EXamMPle......ccieii et ot tte e e e tte e e e ebe e e e e bae e e e raee e eeareeas58
13.4] Generating SiBNAtUIES ...cccceee e N60
13.5] Validating SigNaturesS.....cuuiiii it Ba b s e e s bee e e e sbee e s esabeeeeesnbeeeeesnbeeeesnnseeeesnnsenns ... 61
13.5.1 Signature Validation and Streaming ConsSUMPLiON ... ciiiiiieieiciieeecee e seee e .. 62
13.6| Support for Versioning and EXteNSibilityccee o atm@ i w62
13.6.1 Using RelatioNShip TYPES uuiiiiiiiiie it eaddeee ettt ee sttt e e ettt e st e e e s satae e e ssaeaeeesneaeeesnsaeeesssseeeens .. 62
13.6.2 Markup Compatibility Namespace for Package Digital Signatures........cccccveeeeiiieeeniiieeeeiiieenns .. 62
Annex|A. (normative) Resolving Unicode Strings®o Part Namesccccviiiiiiiiiiiiiiiiinininiiiniiiiininenseeennnnn 65
A.1 | Creating an IRI from @ UniCOOE StriNg im e e iee e ettt ettt et e et e e e e aree e e e abe e e e e snreeeeenbeeeeearenas65
A.2 | Creating @ URIFrom @n IRI ittt e et e e s st e e e s abe e e e s ataeeeenbaeeesnaseeas ... 65
A.3 | Resolving a Relative Reference t0a Part Namecoiviiiiiiiiiiiecceee ettt e e e66
N I W a1 Yo oY 0 1V e o o I o= T 0] o] LT e SRR PR66
Annex|B. (Normative) PAck URI .. ciiiiiiiiiiiiiiiiiiiiiininiiininieenineniniieiimisimisisiseeeseseseisssssssssssssssssssssssssssssssssaes 67
2T I o 1ol U 12 BTl 1= 4 g TSP ...67
B.2 | Resolving @ PACkCURT O @ RESOUICE......c..uiiiiiiiie ettt e ettt et e e e tte e e e etee e e e ebe e e e eeabae e e e abaeeeennbaeaeenseeas69
B.3 | ComMPOSing @ RACK URI......ooiiiiiie ettt ettt et e e e tte e e e e be e e e e abae e e e abaeeeeenbaeeeeenbaeaeenrenas69
330 I TRV 1 1= a1 USSP ... 70
Annex|C. (normative) ZIP Appnote.txt Clarifications.........ccciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeseeeeeeee ... 71
C.1 | ArChiVe File HEader CONSISTENCY ..vvieiicuiiieeeiiiieeeeciteeeeectteeeectte e e ettt e e e ettaeseesasaesesssseeessssaseesansensesannsenenns w71
(O B =1 o] (=N Q1Y SRR w71
Annex D. (normative) Schemas - W3C XIVIL SChemacceeuiiiiiiiiciriiccecreeesrenneeeeenneeeseennsesenassessennsansnenas 82
D.1 CoNtent TYPES SErCaAM e a e 82
D.2 €0 Properties Part ..o a e 83
D.3 Digital Signature XML Signature Markupeuiiieieeii et e e e e e e e e s b e e e e e e e e e s nnaraaee s 84
B S =Y d o] g 1] 11 o L 2= SR 85
Annex E. (informative) Schemas - RELAX NGccoiiiiireeuiiiiiiiiinimeemiiiiniiieismsmssiiissssmmsssimssssssssssssssne 86

iv ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

E.1 Content TYPes STreamM ... 86
N O] {3 o do] oI [=T RO TSP UPPPRUPTR 87
E.3 Digital Signature XML Signature IMarkupccueeeieciiieiicieeeeeiiieeesciee e seeeesseieeeessieeeessbeeeessseeeessssseeessnns 87
N O Yo T 01 g 1T o Tl 2= Y P UPTPRRRNE 88
[T Vo [o [T o =Yl 2= o U ol PRSPPI 89
E.5.1 XMLttt ettt ettt ettt e et e e et e e e et e e e a b bt e e e e b ee e e e hbae e e e nbee e e e nbeeeeenabaeesenaraes 89
E.5.2 XML Digital SigNature COME.....ccciiuiiiiciiieee ettt e ettt e et e e e tte e e e etae e e e e abae e s earaeeeenataeeeesseeeeennseeeesnnsens 89
Annex|F. (normative) Standard Namespaces and Content TYPes......ccccerieerereniiencienisinisreessrenssrenssssnsones 90
Annex|G. (informative) Physical Model Design Considerationsccccoviiiereeeniiieinninenenenesssseseeym bashenes ... 92
LGN I Yol ol T 4V L= URURR 0) BT ...93
(N 1 00 R 11 ¢=Tol 2 Vo{of 1N @] d R U1 2 o] o 1o o] o 1SS S SO ...93
G.L.2 Streaming CONSUMPTION........uuiiiiiiiiiiiiiiiteeeeeeecriieeeeeeeessrrreeeeeeessssnrrneeeeesssssseatosdoeeessssssnneeeeees93
G.L.3 Streaming Creation ...ttt e e e e e e e e e e s snereeeeees e dep et e e e e e e e e s93
G[l.4 Simultaneous Creation and CONSUMPLIONeeveiiiiieiiiiiie e cciiee et b e ...93

LG I I 1Yo YU L] Y L= T e SRS ...93
LG 7 Y 14T o LI @] o =T o T o V-SSP S PRSP ...93
GR.2 INterleaved OrderiNgccii ittt eeeee e esee e e dae e Shasee e e et e e e esabeeeeesabteeeesareeesenasenas .94

G.3 | COMMUNICALION SEYIES ..eiiiiiiiieiiiie et et e e s ee s ba e e e e stae e e e sabaeeessataeeessnsaeeesanseeeean .94
GB.1 SeqUENtIal DEIIVEIY ..cciiieiieee ettt Dbt e e et e e e et ee e e e sabee e e esnbeeeeesbeeesennsenas .94
GB.2 RANUOM ACCESS...cciiuiieiiiiiieeeiiieeeeeiireeeesteeeessseeeessssnss S3ererasesnseeeesssseesesssseeeesssseesssssseesssssseeesssseees w94
Annex|H. (informative) Guidelines for Meeting Conformancetil....ccccviiiiiiiiiiiiiiiiiiinininininieeiineeeeeneeennen, ... 95
[I I o Yol L= 1V o Yo = I < PP ...95

[A B o o WA Tor- | W o= Tl & =T S PP ..103
H.3 | ZIP PhysSical MapPingcccuveeiiiciieeeiiiieeceiiee a3 fd e eeiiee et ee ettt e e e evte e e e svee e e s sbee e e eeabee e e ssnbeeessnnbeeeeeareeas ..108
H.4 | GO PrOPEITIES. . ueitiiiiieiiiiiiteee et e e ettt e et e e st bttt e eeeessssasbebaeeeesssasasbeaaeeeesssasssssteaeeesssssasssaaaeesssnsanssned ..112
H.S | TRUMDBNAI e £ M sttt ettt e st e st e e bt e e sabe e e sabeesabeesbbeesabeeensbeensseessseesaseesnnd . 114
H.6 | Digital SiGNatures.....uviii i i et et e e et e e e et ee e e s eabee e e e nbaee s snbaeeesnseeas .. 114
H.7 | PACK URL.ciiiiiiiiieiiieieeeienenee e ettt et sttt ettt st e st e e st e e sabeesabeesnneesabeesnnd ..125
Annex|l. (informative) Differences Between ISO/IEC 29500 and ECMA-376:2006cccceceeeerecerraneeeeeenns .. 127
LD | XML EIEMENTS ..eeeenteeee e i ettt ettt ettt ettt ettt et e st e e bt e e sabe e e bbeesabeesabbeesabeeensbeesnseesasaeesaseesnnd .. 127
L2 | XIMIL AT I DULES. . i ettt ettt ettt e e sat e e sbe e e sabe e sabeesbbeesabeeenabeessseesasaeesaseesnnd .. 127
[.3 | XML ENUMEratioNValUES ..cc.eeeiiiiiiee ettt ettt st st e st st e e sabe e snaeesabeeened .. 127
0 O I Y LY [0 Y o1 [Y7 o L1 PP .. 127
Annex|). (iNformatiVe) INAeX......ccciiiiiiiiiiiiiiiiiiiiiiiiiinirireerrererererereerereseseseseseseeesesesesesssssssessesssssssesasssaes .. 128

©ISO/IEC 2011 — All rights reserved v

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)

formt

e specialized system for worldwide standardization. National bodies that are members of ISO or IE

~

partici
respec

collabgrate in fields of mutual interest. Other international organizations, governmental and nonigovernn

in liais
establi

Interna

The m

Standards adopted by the joint technical committee are circulated to natidnal bodies for voting. Publicatid

an Intsg

Attent
rights.

ISO/IE
descrif

This se
revised

ISO/IE
descrig

Annex
inform

bate in the development of International Standards through technical committees established hy'th

bn with ISO and IEC, also take part in the work. In the field of information technology,dS© and IEC h
shed a joint technical committee, ISO/IECJTC 1.

tional Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

hin task of the joint technical committee is to prepare International Standards. Draft International

rnational Standard requires approval by at least 75% of the national bodies casting a vote.

on is drawn to the possibility that some of the elements of this document may be the subject of pa
ISO and IEC shall not be held responsible for identifying<any or all such patent rights.

[29500-2 was prepared by ISO/IEC JTC 1, Information technology, Subcommittee SC 34, Document
tion and processing languages.

cond edition cancels and replaces the firstedition (ISO/IEC 29500-2:2008), which has been technicg
by incorporation of the Technical Cafrigendum ISO/IEC 29500-2:2008/Cor.1:2010.

[29500 consists of the following parts, under the general title Information technology — Document
tion and processing languages — Office Open XML File Formats:

Part 1: Fundamentals_and Markup Language Reference
Part 2: Open Packaging Conventions

Part 3: Markup., Compatibility and Extensibility

Part 4: Traasitional Migration Features

bs A, ByC, D, and F form a normative part of this Part of ISO/IEC 29500. Annexes E, G, H, |, and J are
ation only.

Live organization to deal with particular fields of technical activity. ISO and IEC technical committees

e

3
ental,
hve

nas

ent

y

for

This Part of ISO/IEC 29500 includes two annexes (Annex D and Annex E) that refer to data files provided in
electronic form.

©I1s0/I

EC 2011 — All rights reserved

Vi

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC

29500-2:2011(E)

Introduction

ISO/IEC 29500 specifies a family of XML schemas, collectively called Office Open XML, which define the XML

vocab

laries for word-processing, spreadsheet, and presentation documents, as well as the packaging of

documlents that conform to these schemas.

The gofal is to enable the implementation of the Office Open XML formats by the widest set of toels@nd

platforms, fostering interoperability across office productivity applications and line-of-businesssystems, af well
as to spipport and strengthen document archival and preservation, all in a way that is fully.eompatible with the

existing corpus of Microsoft Office documents.

The following organizations have participated in the creation of ISO/IEC 29500 and\their contributions are

gratefy

Apple,

Ily acknowledged:

Barclays Capital, BP, The British Library, Essilor, Intel, Microsoft, NéxtPage, Novell, Statoil, Toshiba, pnd
the Unjited States Library of Congress

viii

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

INTERNATIONAL STANDARD

ISO/IEC 29500-2:2011(E)

Information technology — Document description and
processing languages — Office Open XML File Formats

.

Part

Ope

1.

This P4
the str

The pag
and pe
the pa
specifi
identif,

The ph
physic

This P4
proper
of pacl

Becaus
suppof
suppof
allowir

L

n Packaging Conventions

Scope

Licture and functionality of a package in terms of a packagesnodel and a physical model.

ckage model is a package abstraction that holds a collection of parts. The parts are composed, proc
rsisted according to a set of rules. Parts can have relationships to other parts or external resources,
rkage as a whole can have relationships to parts_iticontains or to external resources. The package m
ps how the parts of a package are named and\related. Parts have content types and are uniquely
ed using the well-defined naming rules provided in this Part of ISO/IEC 29500.

ysical mapping defines the mappingof the components of the package model to the featuresof a s
| format, namely a ZIP archive.

rt of ISO/IEC 29500 also describes certain features that might be supported in a package, including
ties for package metadata, a thumbnail for graphical representation of a package, and digital signat
age contents.

e this Part ofISO/IEC 29500 might evolve, packages are designed to accommodate extensions and {
t compatibility goals in a limited way. The versioning and extensibility mechanisms described in Par
t compatibility between software systems based on different versions of this Part of ISO/IEC 29500
g package creators to make use of new or proprietary features.

rt of ISO/IEC 29500 specifies a set of conventions that are used<y Office Open XML documents to define

essed,
and
odel

pecific

core
ures

(0]
t3
while

This Part of ISO/IEC 29500 specifies requirements for documents, producers, and consumers. Conformance

requirements are identified throughout the text of this Part of ISO/IEC 29500. A formal conformance statement

is given in §2. An informative summary of requirements relevant to particular classes of developers is given in

Annex

H.

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

2. Conformance

Each conformance requirement is given a unique ID comprised of a letter (M — MANDATORY; S — SHOULD; O —
OPTIONAL), an identifier for the topic to which it relates, and a unigue ID within that topic. (Producers an
consurpers might use these IDs to report error conditions.) Mandatory requirements are those stated with the
normative terms "shall," "shall not," or any of their normative equivalents. Should items are those stated With
the nofmative terms "should," "should not," or any of their normative equivalents. Optional requirementd are

those gtated with the normative terms "can," "cannot," "might," "might not," or any of theirnermative

equivalents.

[Example: Package implementers shall not map logical item name(s) mapped to the Content Types stream
ZIP archive to a part name. [M3.11] end example]

na

Each Phrt of this multi-part standard has its own conformance clause, as appropriate. The term conformarce
class id used to disambiguate conformance within different Parts of thi&multi-part standard. This Part of 1I3O/IEC
29500 |has only one conformance class, OPC (that is, Open Packaging‘Conventions).

A document is of conformance class OPC if it obeys all syntacti¢'eonstraints specified in this Part of ISO/IE(
29500

OPC cgdnformance is purely syntactic.

2 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

3.

The fol

ISO/IEC 29500-2:2011(E)

Normative References

lowing referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced do

ument

(includ

Ameriq
Interch

ISO 86
times.

ISO/IE
PublicA

ISO/IE

ISO/IE
File Fo

Dublin
Dublin
Extens
Nameg

RFC 26
Gettys

RFC 39
and L.

RFC 39
http:/

ing any amendments) applies.

an National Standards Institute, Coded Character Set — 7-bit American Standard Code for-Infermat
ange, ANSI X3.4, 1986.

[9594-8 | ITU-T Rec. X.509, Information technology — Open Systems Interconnection — The Directq
key and attribute certificate frameworks.

[10646, Information technology — Universal Coded Character-Set (UCS).

[29500-3, Information technology — Document description.and processing languages — Office Ope
rmats, Part 3: Markup Compatibility and Extensibility.

Core Element Set v1.1. http://purl.org/dc/elements/1.1/

Core Terms Namespace. http://purl.org/dc/terms/

ble Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04 February 2004.
lpaces in XML 1.1, W3C Recommendation, 4 February 2004.

16 Hypertext Transfer Protocol — HTTP/1.1, The Internet Society, Berners-Lee, T., R. Fielding, H. Fry
P. Leach, L. Masinterfand J. Mogul, 1999, http://www.ietf.org/rfc/rfc2616.txt.

86 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fieldi
Masinter, 2005;-http://www.ietf.org/rfc/rfc3986.txt.

ww.ietf.org/rfc/rfc3987.txt.

on

D1, Data elements and interchange formats — Information interchange — Representation of dates and

n XML

styk, J.

ng,

87 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2Q05,

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., (editor), 2005,

http://

www.ietf.org/rfc/rfc4234. txt.

The Unicode Consortium. The Unicode Standard, http://www.unicode.org/standard/standard.html.

W3CN
http://

OTE 19980827, Date and Time Formats, Wicksteed, Charles, and Misha Wolf, 1997,
www.w3.0rg/TR/1998/NOTE-datetime-19980827.

©ISO/IEC 2011 — All rights reserved

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://www.unicode.org/standard/standard.html
https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

XML, Tim Bray, Jean Paoli, Eve Maler, C. M. Sperberg-McQueen, and Francois Yergeau (editors). Extensible
Markup Language (XML) 1.0, Fourth Edition. World Wide Web Consortium. 2006.
http://www.w3.0rg/TR/2006/REC-xmI-20060816/. [Implementers should be aware that a further correction of
the normative reference to XML to refer to the 5th Edition will be necessary when the related Reference
Specifications to which this International Standard also makes normative reference and which also depend upon
XML, such as XSLT, XML Namespaces and XML Base, are all aligned with the 5th Edition.]

XML Npmespaces, Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin (editors). Namespaces.in
XML 1)0 (Third Edition), 8 December 2009. World Wide Web Consortium. http://www.w3.org/TR/2009/RHC-xml-
namest20091208/

XML B@ise, W3C Recommendation, 27 June 2001.

XML Pgth Language (XPath), Version 1.0, W3C Recommendation, 16 November 1999:
XML S¢hema Part 1: Structures, W3C Recommendation, 28 October 2004.

XML S¢hema Part 2: Datatypes, W3C Recommendation, 28 October 2004,
XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.

.ZIP File Format Specification from PKWARE, Inc., version 6.2.0 (2004), as specified in
http://www.pkware.com/documents/APPNOTE/APPNOTE_622.0.txt. [Note: The supported compression
algorithm is inferred from tables C-3 and C-4 in Annex C. end note]

4 ©ISO/IEC 2011 — All rights reserved

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt
https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2

4. Terms and Definitions

011(E)

For the purposes of this document, the following terms and definitions apply. Other terms are defined where

they appear in ita peface. Terms exp defined in this Part of 1SO 9500 are not to be presumed to

refer implicitly to similar terms defined elsewhere.

The tefms base URI and relative reference are used in accordance with RFC 3986.

access|style — The style in which local access or networked access is conducted. The access styles are as fpllows:

streaning creation, streaming consumption, simultaneous creation and consumption, and.direct access
consumption.

behavior — External appearance or action.

behavior, implementation-defined — Unspecified behavior where each implementation shall document {

hat

behavipr, thereby promoting predictability and reproducibility within-any given implementation. (This term is

sometimes called “application-defined behavior”.)
behavior, unspecified —Behavior where this Open Packaging specification imposes no requirements.

communication style — The style in which package contents are delivered by a producer or received by a
consurper. Communication styles include random aceéss and sequential delivery.

consumer — A piece of software or a device that'reads packages through a package implementer. A consd
often designed to consume packages only-fora specific physical package format.

content type — Describes the content.stored in a part. Content types define a media type, a subtype, and
optionpl set of parameters, as defined in RFC 2616.

Content Types stream — Aspecially-named stream that defines mappings from part names to content tyyg
The coptent types streafmis not itself a part, and is not URI addressable.

device|— A piece of-hardware, such as a personal computer, printer, or scanner, that performs a single fu
or set of functions.

format consumer — A consumer that consumes packages conforming to a format designer's specificatior].

mer is

es.

nction

format designer — The author of a particular file format specification built on this Open Packaging Conve
specification.

format producer — A producer that produces packages conforming to a format designer's specification.

growth hint — A suggested number of bytes to reserve for a part to grow in-place.

©ISO/IEC 2011 — All rights reserved

ntions

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

interleaved ordering — The layout style of a physical package where parts are broken into pieces and “mixed-

in” with pieces from other parts. When delivered, interleaved packages can help improve the performance of

the consumer processing the package.

layout style — The style in which the collection of parts in a physical package is laid out: either simple ordering

orinte

local a
single

logical

consisfently regardless of whether those data items can be mapped to parts or not or whetherthe package i

laid ou

netwo
protoc

pack URI — A URI scheme that allows URIs to be used as a uniform mechahism for addressing parts withir
package. Pack URIs are used as Base URIs for resolving relative referentes among parts in a package.

package — A logical entity that holds a collection of parts.

package implementer — Software that implements the physical input-output operations to a package acg

to the
by a pr
alone 4

packag

package relationship — A relationship whose target is a part and whose source is the package as a whole.

Packag

part —
to afil

resour

part nd
packag

physica

rleaved ordering.

— - NE— —— | _

Hevice.

item name — An abstraction that allows package implementers to manipulate physical data items

It with simple ordering or interleaved ordering.

rked access — The access architecture in which a consumer and the producet. cemmunicate over a
pl, such as across a process boundary, or between a server and a desktop-computer.

requirements and recommendations of this Open, Packaging specification. A package implementer i
oducer or consumer to interact with a physicaljpackage. A package implementer can be either a sta
APl or can be an integrated component of a.producer, consumer application, or device.

e model — A package abstraction thatholds a collection of parts.

e relationships are found inthe package relationships part named “/_rels/.rels”.

A stream of bytes with a'MIME content type and associated common properties. Typically corresp
e [Example: on a filesystem end example), a stream [Example: in a compound file end example], or
ce [Example: in‘an HTTP URI end example].

me — The)path component of a pack URI. Part names are used to refer to a part in the context of 3
e, typically as part of a URI.

ona

ording
s used
nd-

bnds
2]

physical package format — A specific file format, or other persistence or transport mechanism, that can

represent all of the capabilities of a package.

piece — A portion of a part. Pieces of different parts can be interleaved together. The individual pieces are

named using a unique mapping from the part name. Piece name grammar is not equivalent to the part name

grammar. Pieces are not addressable in the package model.

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

pipe — A communication mechanism that carries data from the producer to the consumer.

producer — A piece of software or a device that writes packages through a package implementer. A producer is

often designed to produce packages according to a particular physical package format specification.

random access — A style of communication between the producer and the consumer of the package. Random

access

allows the consumer to reference and obtain data from anywhere within a package.

reIatioLship —The kind of connection between a source part and a target part in a package. Relationships

the co
alterin

relationships part — A part containing an XML representation of relationships.

seque
order

signatuire policy — A format-defined policy that specifies what configurationof parts and relationships sh

might
that fo

simple
part ar

simultaneous creation and consumption — A style of access between a producer and a consumer in high

pipelin
strean

strean
before

strean
parts h

thumblnail — A smalbiimage that is a graphical representation of a part or the package as a whole.

well-khown part— A part with a well-known relationship, which enables the part to be found without kn

the log

b the parts themselves. (See also Package Relationships.)

tial delivery — A communication style in which all of the physical bits in the,package are delivered
hey appear in the package.

make

hnections between parts directly discoverable without looking at the content in the parts, andwithout

in the

il or

be included in a signature for that format and what additional behaviors that producers and consumers of

rmat shall follow when applying or verifying signatures followingthat format's signature policy.

ordering — A defined ordering for laying out the parts.in\apackage in which all the bits comprising
e stored contiguously.

ed environments where streaming creation and streaming consumption occur simultaneously.
— Alinearly ordered sequence of bytes:

ing consumption — An access styl€'in which parts of a physical package can be processed by a con
all of the bits of the packagethave been delivered through the pipe.

ing creation — A production style in which a producer dynamically adds parts to a package after ot
ave been added without modifying those parts.

ation ‘'of other parts.

each

pumer

her

bwing

XSD —

WsC XIVIL Schema

ZIP archive — A ZIP file as defined in the ZIP file format specification. A ZIP archive contains ZIP items.

ZIP item — A ZIP item is an atomic set of data in a ZIP archive that becomes a file when the archive is

uncompressed. When a user unzips a ZIP-based package, the user sees an organized set of files and folders.

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

5.

5.1

The following typographical conventions are used in ISO/TEC 29500:

1.

5.2

In som

left, with attributes and child elements to theright. The symbols are described below.

Notational Conventions

Document Conventions

The first occurrence of a new term is written in italics. [Example: The text in ISO/IEC 29500is divid
into normative and informative categories. end example]
In each definition of a term in §4 (Terms and Definitions), the term is written in bold. {Example: be
— External appearance or action. end example]
The tag name of an XML element is written using an Element style. [Example; Thé bookmarkStart
bookmarKkEnd elements specify ... end example]
The name of an XML attribute is written using an Attribute style. [Example: The dropCap attributg
specifies ... end example]

The value of an XML attribute is written using a constant-width style. [Example: The attribute valu
auto specifies ... end example]

The qualified or unqualified name of a simple type, comglex type, or base datatype is written usin
Type style. [Example: The possible values for this attribute are defined by the ST_HexColor simplg
end example]

Diagram Notes

Symbol C)V Description

N

E] Required element: This box represents an element that shall appear

exactly once in markup when the parent element is included. The
“+” and “—” symbols on the right of these boxes have no semantic
meaning.

= Optional element: This box represents an element that shall appear
zero or one times in markup when the parent element is included.

ed

havior

and

e of

&)
type.

e cases, markup semantics are described*using diagrams. The diagrams place the parent element on the

Range indicator: These numbers indicate that the designated

element or choice of elements can appear in markup any number of
times within the range specified.

E atributes Attribute group: This box indicates that the enclosed boxes are each
I:I attributes of the parent element. Solid-border boxes are required

= attributes; dashed-border boxes are optional attributes.

©ISO/IEC 2011 — All rights re

served

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Symbol Description
Eja Sequence symbol: The element boxes connected to this symbol
shall appear in markup in the illustrated sequence only, from top to
bottom.
13 Choice symbol: Only one of the element boxes connected to this

symbol shall appear in markup.

ct_cf Type | Comptex Type ndicator The etements withinthe dashed box are of
| ! the complex type indicated.
|{*I3L B

©ISO/IEC 2011 — All rights reserved 9

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

6. Acronyms and Abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this Part of ISO/IEC 29500:
IEC — the International Electrotechnical Commission

ISO — [the International Organization for Standardization

W3C <+ World Wide Web Consortium

End of|informative text.

10 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

7. General Description

This Open Packaging specification is intended for use by implementers, academics, and application
programmers. As such, it contains a considerable amount of explanatory material that, strictly speaking, is not

necesspary in a formal specification.
This Open Packaging specification is divided into the following subdivisions:

Front matter (clauses 1-7);
Overview (clause 8);

Main body (clauses 9-13);
Annexes

P wnNPR

Examples are provided to illustrate possible forms of the constructions describéd. References are used to fefer
to related clauses. Notes are provided to give advice or guidance to impleémenters or programmers. Annexes
provide additional information and summarize the information contdained in this Open Packaging specification.

The following form the normative part of this Open Packaging. specification:

e | Introduction
e | Clauses 1-5, 7, and 9-13
e | Annex A—Annex D

e | Annex F

The following form the informative part of this Open Packaging specification:

e | Clauses 6 and 8
e | Annex E

e | Annex G-AnnexJ
o | All notes

o [All examples

Conforlmance requirements written as requirements for package implementers (e.g., M1.1) are document]

conformance requirements.

Except for whole clauses or annexes that are identified as being informative, informative text that'is contained

within normative text is indicated in the following ways:

[Example: code fragment, possibly with some narrative ... end example]
[Note: narrative ... end note]

[Rationale: narrative ... end rationale]

[Guidance: narrative ... end guidance]

PN

©ISO/IEC 2011 — All rights reserved 11

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

8. Overview

This clause is informative.

14

This Open Packaging specification describes an abstract model and physical format conventions for the usg of
XML, Unicode, ZIP, and other openly available technologies and specifications to organize the content.and
resourfes of a document within a package. It is intended to support the content types and organization fof
various$ applications and is written for developers who are building systems that process packagé content.

In addition, this Open Packaging specification defines common services that can be included in a package, [such
as Cor¢ Properties and Digital Signatures.

A primpry goal is to ensure the interoperability of independently created software'and hardware systems that
produde or consume package content and use common services. This Open Packaging specification definep the
formallrequirements that producers and consumers must satisfy in order‘to achieve interoperability.

Varioup XML-based building blocks within a package make use of the conventions described in Part 3 to fafilitate
future fenhancement and extension of XML markup. That part must be cited explicitly by any markup
specifigation that bases its versioning and extensibility strategy on Markup Compatibility elements and
attributes.

End of|informative text.

12 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

9.

ISO/IEC 29500-2:2011(E)

Package Model

A package is a logical entity that holds a collection of parts. The purpose of the package is to aggregate all of the

pieces

could e represented physically in a collection of loose files, in a database, or ephemerally in transit over 3

netwo

This O

'k connection. end example]

ben Packaging specification also defines a URI scheme, the pack URI<that allows URIs to be used as

uniform mechanism for addressing parts within a package.

ent

S
he
kage

9.1 Parts
A part |s a stream of bytes with the properties listed in Table-9—1. A stream is a linearly ordered sequence
bytes. Parts are analogous to a file in a file system or to a’resource on an HTTP server.
Table 9-1. Part properties
Name Descriptiqrt\,lr Required/Optional
Name The name of the part Required. The package
implementer shall require a
part name. [M1.1]
Content The type of content stored in the part Required. The package
Type implementer shall require a
content type and the format
designer shall specify the
content type. [M1.2]
Growth Hint {-A'suggested number of bytes to reserve for Optional. The package
the part to grow in-place implementer might allow a
growth hint to be provided by
a producer. [01.1]
9.1.1 Part Names

Each part has a name. Part names refer to parts within a package. [Example: The part name

“/hello/world/doc.xml” contains three segments: “hello”, “world”, and “doc.xml”. The first two segments

in the

sample represent levels in the logical hierarchy and serve to organize the parts of the package, whereas the

©ISO/IEC 2011 — All rights reserved

13

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

third contains actual content. Note that segments are not explicitly represented as folders in the package model,
and no directory of folders exists in the package model. end example]

9.1.1.1 Part Name Syntax

A Part name shall be an IRl and shall be encoded as either a Part IRl or a Part URI. A Part IRl is a physical
representation that permits direct use of Unicode characters. A Part URI is a physical representation that uses a

percent-encading for non-ASCIIl Unicode characters

[Note: [Not all versions of the ZIP specification support a Part name represented as a Part IRIl. To preserve
interoperability, implementers are encouraged to use the currently more prevalent Part URI representatidn. end
note]
9.1.1.11 Part IRI Syntax

The palrt IRI grammar is defined as follows:

paftt-IRI
isegment

1*("/" isegment)
1*(ipchar)

ipchalr is defined in RFC 3987:

ipghar = iunreserved / pct-encoded / sub-delims / ":" / "@"
iunreserved = ALPHA / DIGIT / "-" / "."o/""_" / "~" / ucschar
ucgchar = %XAQ-D7FF / %xF900-FDCF<Y %xFDFO-FFEF
%x10000-1FFFD / 7%x20000-2FFFD / %x30000-3FFFD
%x40000-4FFFD / %X50000-5FFFD / %x60000-6FFFD
%Xx70000-7FFFD */-%x80000-8FFFD / 7%x90000-9FFFD
%xA00OO-AFFFD / %xB0000-BFFFD / 7%xC0000-CFFFD
%xD0O0OO-DEFFD / %xE1000-EFFFD

"%" HEXDTIG HEXDIG

BLVASS S A G A A A AR

~N NN N N N

pct-encoded
sub-delims

The part IRI grammar impliesithe following constraints. The package implementer shall neither create any|part
that viplates these constraints nor retrieve any data from a package as a part if the purported part IRI violgtes
these ¢onstraints.

o [A partiRlLshall not be empty. [M1.1]

o [A partRI shall not have empty isegments. [M1.3]

e | A'part IRl shall start with a forward slash (“/”) character. [M1.4]

e A part IRl shall not have a forward slash as the last character. [M1.5]

e Anisegment shall not hold any characters other than ipchar characters. [M1.6]

Part IRl isegments have the following additional constraints. The package implementer shall neither create any
part with a part IRl comprised of an isegment that violates these constraints nor retrieve any data from a
package as a part if the purported part IRl contains an isegment that violates these constraints.

14 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

An isegment shall not contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.

[M1.7]

An isegment shall not contain percent-encoded iunreserved characters. [M1.8]
An isegment shall not end with a dot (“.”) character. [M1.9]

An isegment shall include at least one non-dot character. [M1.10]

9.1.1.1.2 Part URI Syntax

The paLt URI grammar is defined as follows:

par
seg

pchanr

pch
unf
pct
sul

The pa
that vi
these ¢

Part U
part w
as a pa

t-URI = 1*("/" segment)

ment = 1*(pchar)

is defined in RFC 3986:

ar = unreserved / pct-encoded / sub-delims / ":" J{’@"

eserved = ALPHA / DIGIT / "-" / “." / " " J "~"

-encoded = "%" HEXDIG HEXDIG

_delims = II! 11} / Il$ll / Il&ll / mn / II(II / Il)ll / Il*ll / Il+ll / IIJII / ll;ll / Il=
rt URI grammar implies the following constraints. The package‘implementer shall neither create an
blates these constraints nor retrieve any data from a package as a part if the purported part URI vio
onstraints.

A part URI shall not be empty. [M1.1] [Note: The*Mx.x notation is discussed in §2. end note]
A part URI shall not have empty segments.<{M1.3]

A part URI shall start with a forward slash-(“/”) character. [M1.4]

A part URI shall not have a forward-slash as the last character. [M1.5]

A segment shall not hold any characters other than pchar characters. [M1.6]

RI segments have the following additional constraints. The package implementer shall neither creat
th a part URI comprised 0f'a segment that violates these constraints nor retrieve any data from a p
rt if the purported part URI contains a segment that violates these constraints.

A segment shall/not contain percent-encoded forward slash (“/”), or backward slash (“\”) characte
[M1.7]

A segment shall not contain percent-encoded unreserved characters. [M1.8]

Asegment shall not end with a dot (“.”) character. [M1.9]

part
ates

P any
hckage

A Segment shallinclude at least one non-dot character [I\/I1 1n]

[Example:

Examp

le 9-1. A part name

/a/%D1%86 .xml
/xml/iteml.xml

©I1s0/I

EC 2011 — All rights reserved

15

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Example 9-2. An invalid part name

//xml/.

end example]

9.1.1.2 Part IRI and Part URI Mapping

AR ey

A P t Rl) ool d D o i)) . " . alael ool ot
ar NTLaiT VT LUTIVETITU LU a TdT U UNT Uy CUTIVETLITTE ULSTTTAT UlTadT atlTi S TU PTTLTTIUTTTICUUTU UTTYITLS, a5

definegd in Step 2 in §3.1 of RFC 3987.

A Part URI can be converted to a Part IRl by converting percent-encoded triplets to ucschar charatcters, as
definegd in §3.2 of RFC 3987.

9.1.1.3 Part Name Equivalence
Part ngmes shall be mapped to either the Part IRl or Part URI form for comparison{Part names represented in

different forms cannot be compared.

[Note:[Equivalence rules for the Part IRl and Part URI forms guarantee uniformity of the comparison result| for
Part Names converted either to Part IRl or to Part URI form. end note]

Packages shall not contain equivalent part names, and package implementers shall neither create nor recggnize
packages with equivalent part names. [M1.12]

9.1.1.3.1 Part IRI Equivalence

Part IRl equivalence is determined by comparing paft'IRIls character-by-character:

o | pct-encoded and ALPHA characters asiease-insensitive ASCII
e | ucschar characters as case-sensitive-Unicode

9.1.1.3.2 Part Name Equivalence

Part URI equivalence is determined by comparing part URIs as case-insensitive ASCII strings.

9.1.1.4 Part Natwnthg

A packpge implementer’shall neither create nor recognize a part with a part name derived from another part
name by appending segments to it. [M1.11] [Example: If a package contains a part named
”/seg:rntl/segment2/.../segmentn”, then other parts in that package shall not have names such as:

“/segmentl”; “segmentl/segment2”, or “/segmentl/segment2/.../segmentn-1". end example]

9.1.2 Content Types

Every part has a content type, which identifies the type of content that is stored in the part. Content types
define a media type, a subtype, and an optional set of parameters. Package implementers shall only create and
only recognize parts with a content type; format designers shall specify a content type for each part included in
the format. Content types for package parts shall fit the definition and syntax for media types as specified in RFC
2616, §3.7. [M1.13] This definition is as follows:

16 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

media-type = type "/" subtype *(";" parameter)
where parameter is expressed as
attribute "=" value

The type, subtype, and parameter attribute names are case-insensitive. Parameter values might be case-
sensitive, depending on the semantics of the parameter attribute name.

The value of the content type is permitted to be the empty string.

Content types shall not use linear white space either between the type and subtype or between an attribdte and
its valJe. Content types also shall not have leading or trailing white space. Package implementers shall crepte

~+

only sUch content types and shall require such content types when retrieving a part from'a)package; forms
designgrs shall specify only such content types for inclusion in the format. [M1.14]

The package implementer shall require a content type that does not include comments, and the format designer
shall specify such a content type. [M1.15]

Formatg designers might restrict the usage of parameters for content tyges. [01.2]

Content types for package-specific parts are defined in Annex F.

9.1.3 Growth Hint

Somet|mes a part is modified after it is placed in a package. Depending on the nature of the modification, the
d

part might need to grow. For some physical package formats, this could be an expensive operation and col
damage an otherwise efficiently interleaved package. Ideally, the part should be allowed to grow in-place,
moving as few bytes as possible.

To support these scenarios, a package implementer can associate a growth hint with a part. [01.1] The growth
hint identifies the number of byteshy which the producer predicts that the part might grow. In a mapping|to a
particdlar physical format, this information might be used to reserve space to allow the part to grow in-place.
This nymber serves as a hintonly. The package implementer might ignore the growth hint or adhere only [oosely
to it when specifying thé-physical mapping. [01.3] If the package implementer specifies a growth hint, it is|set
when 3 part is creatéd,and the package implementer shall not change the growth hint after the part has heen
createql. [M1.16}

9.14 XML Usage

A” XMbiecoentent dofinad in +hic A Daclaging cnncificadinns chall canf s bt Foallnapinag vy lid i] .
L CUTTLOUTTUUCTITICuIrTr Lnrnmmo \Jrl_ll T U\-I\Usllls JP_\-III\-ULIUII STTUTT CUTITUTTIT LU LiTe I\JII\JVVIIIS vaimTudaltivIiT TurcCo.

1. XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding
declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any
encoding other than UTF-8 or UTF-16. Package implementers shall enforce this requirement upon
creation and retrieval of the XML content. [M1.17]

©ISO/IEC 2011 — All rights reserved 17

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable

Denial of Service attacks, typically through the use of an internal entity expansion technique. As
mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined

in this

Open Packaging specification. Package implementers shall enforce this requirement upon creation and

retrieval of the XML content and shall treat the presence of DTD declarations as an error. [M1.18]
If the XML content contains the Markup Compatibility namespace, as described in Part 3, it shall b

pracessed by the package implementer to remove Markup Compatibility elements and attributes

e

9.2

Parts g
and an
asS0Cid

9.2.1

A relat]

containing the reference.

Relatiy
partis

If the f]
allowe
them.
xsd:an|

ignorable namespace declarations, and ignored elements and attributes before applying subseque
validation rules. [M1.19]

XML content shall be valid against the corresponding XSD schema defined in this Open Packaging
specification. In particular, the XML content shall not contain elements or attributes@drawn from
namespaces that are not explicitly defined in the corresponding XSD unless the XSB-allows elemer
attributes drawn from any namespace to be present in particular locations inthe’ XML markup. Pa
implementers shall enforce this requirement upon creation and retrieval.efthe XML content. [M1
XML content shall not contain elements or attributes drawn from “xml?_or “xsi” namespaces unleg
are explicitly defined in the XSD schema or by other means described\in this Open Packaging
specification. Package implementers shall enforce this requirement upon creation and retrieval of
XML content. [M1.21]

Part Addressing

ften contain references to other parts. [Example: A'package might contain two parts: an XML mark
image. The markup file holds a reference to theimage so that when the markup file is processed, t
ted image can be identified and located. end'éxample.]

Relative References

ve reference is expressed so that the address of the referenced part is determined relative to the p

e references from a part are interpreted relative to the base URI of that part. By default, the base U
derived from the name-of the part, as defined in §B.3.

brmat designef\permits it, parts can contain Unicode strings representing references to other parts
d by the fortmat designer, format producers can create such parts, and format consumers shall cons
01.4] Invparticular, XML markup might contain Unicode strings referencing other parts as values of|
yURI'data type. Format consumers shall convert these Unicode strings to URIs, as defined in Annex

before

nt

ts or

ckage
20]

s they

the

Lp file
he

art

Rl of a

f
ume
the
A

resolving them relative to the base URI of the part containing the Unicode string. [M1.23]

Some types of content provide a way to override the default base URI by specifying a different base in the

content. [Example: XML Base or HTML end example]. In the presence of one of these overrides, format

consumers shall use the specified base URI instead of the default. [M1.24]

[Example:

18

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Example 9-3. Part names and relative references
A package includes parts with the following names:

e /markup/page.xml
e /images/picture.jpg
e /images/other_picture.jpg

If /marlkup/page.xml contains a reference to ../images/picture.jpg, then this reference is interpreted as referring
to the part name /images/picture.jpg.

end expmple]

9.2.2 Fragments

Somet|mes it is useful to address a portion of, or a specific point in, a part. In URIs;&@ fragment identifier is|used
for thig purpose. (See RFC 3986.)

[Example: In an XML part a fragment identifier might identify a portion of the XML content using an XPath
expresgion. end example]

9.3 Relationships

Parts dften contain references to other parts in the package@nd to resources outside of the package. In ggneral,
these feferences are represented inside the referring partiin ways that are specific to the content type of the
part, t:L

externfl links between parts from consumers that.do not understand the content types of the parts contajning

at is, in arbitrary markup or an application-defined encoding. This effectively hides the internal ang

such r¢ferences.

The palckage introduces a higher-level mechanism to describe references from parts to other internal or external
resourfes, namely, relationships. Relationships represent the type of connection between a source part and a
target resource. They make the eonnection directly discoverable without looking at the part contents, so they
are independent of content-specific schemas and are quick to resolve.

Relatignships provide asecond important function: relating parts without modifying their content. Sometimes
relatiopships act as@label where the content type of the labeled part does not define a way to attach the[given
informition. Somescenarios require information to be attached to an existing part without modifying that part,
either pecause the part is encrypted and cannot be decrypted, or because it is digitally signed and changing it
would [invalidate the signature.

9.3.1 Relationships Part

Each set of relationships sharing a common source is represented by XML stored in a Relationships part. The
Relationships part is URI-addressable and it can be opened, read, and deleted. The Relationships part shall not
have relationships to any other part. Package implementers shall enforce this requirement upon the attempt to
create such a relationship and shall treat any such relationship as invalid. [M1.25]

©ISO/IEC 2011 — All rights reserved 19

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

The content type of the Relationships part is defined in Annex F.

A relationship whose source is a package as a whole is known as a package relationship. Package relationships
are used to identify the “starting” parts in a package for a given context. This method avoids relying on naming
conventions for finding parts in a package.

9.3.2 Relationship Markup

Relatidnships are represented using Relationship elements nested in a single Relationships element. These
elements are defined in the Relationships namespace, as specified in Annex F. The W3C XML Schemafor
relatiopships is described in Annex D.

A Relationships Part shall not be an empty file. If present, a Relationships Part shall hold, at,asminimum, a fingle
Relatignships root element with no child elements.

The palckage implementer shall require that every Relationship element has an Id dttribute, the value of Which
is unigbe within the Relationships part, and that the Id datatype is xsd:ID, thevalue of which conforms to the

naming restrictions for xsd:ID as described in the W3C Recommendation “XML'Schema Part 2: Datatypes.’
[M1.26]

The natture of a Relationship element is identified by the Type attribute. Relationship Type is defined in the
same way that namespaces are defined for XML namespaces.Byyusing types patterned after the Internet
domain-name space, non-coordinating parties can safely créate non-conflicting relationship types.

Relatignship types can be compared to determine whether two Relationship elements are of the same type.
This cdmparison is conducted in the same way as when comparing URIs that identify XML namespaces: th¢ two
URIs are treated as strings and considered identical if and only if the strings have the same sequence of
characters. The comparison is case-sensitive'and no escaping is done or undone.

The Tqrget attribute of the Relationship element holds a URI that points to a target resource. Where the|URl is
expresped as a relative reference,(it)is resolved against the base URI of the Relationships source part. The
xml:bgse attribute shall not be used to specify a base URI for relationship XML content.

9.3.2.1 Relatignships Element

The stiucture of a Relationships element is shown in the following diagram:

diagramn T
g CT_Relationships _|

[Relationships I}:Jf—m—:lﬂfﬂﬂla‘tiunship |
=

Do

annotation | The root element of the Relationships part.

20 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

9.3.2.2 Relationship Element

ISO/IEC 29500-2:2011(E)

The structure of a Relationship element is shown in the following diagram:

diagram

=Relationship

CT_Relationship

| Bl sttributes |

|
|
|
1

Use

TargetMode |ST TargetMode |optional

Default |Fixed |Annotation

The pa;:kége implementer might allow
aTargetMode to be provided by §
{producer. [01.5]

The TargetMode indicates whethe
or not the target describes a resource
inside the package or outside the

=

package. The valid values, in the
Relationships schema, are Internpl
and External.

The default value is Internal. When
set to Internal, the Target attribute
shall be a relative reference and that
reference is interpreted relative tg
the “parent” part. For package
relationships, the package
implementer shall resolve relative
references in the Target attribute
against the pack URI that identifies
the entire package resource. [M1.29]

©ISO/IEC 2011 — All rights reserved

Eor more infnrm:finn, see AnnexB.

When set to External, the Target
attribute can be a relative reference
or a URL. If the Target attribute is a
relative reference, then that
reference is interpreted relative to

21

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

the location of the package.

Target xsd:anyURI required The package implementer shall
require the Target attribute to be a
URI reference pointing to a target
resource. The URI reference shall be a

URI or a relative reference. [M1:28]

Target attribute values are
dependent on the TargetMode
attribute value.

Type xsd:anyURI required The package-in;plementer shall
require’the Type attribute to be a|URI
thatdefines the role of the

| relationship and the format designer
f:shall specify such a Type. [M1.27]

Id xsd:ID required] The package implementer shall
require a valid XML identifier. [M1].26]
The Id type is xsd:ID and it shall
conform to the naming restrictionf
for xsd:ID as specified in the W3C
Recommendation “XML Schema Pprt
' 2: Datatypes.” The value of the Id

attribute shall be unique within th

[¢)

Relationships part.

annotgtion Represents,a sirigle relationship.

A format designer might allow fragment identifiers in the value of the Target attribute of the Relationship

elementC[0O1.6] If a fragment identifier is allowed in the Target attribute of the Relationship element, a

package implementer shall not resolve the URTto a scope Tess than an entire part. [M1.32]

9.3.3 Representing Relationships

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one
or more relationships can have an associated Relationships part. This part holds the list of relationships for the
source part. For more information on the Relationships namespace and relationship types, see Annex F.

22 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

A special naming convention is used for the Relationships part. First, the Relationships part for a part in a given
folder in the name hierarchy is stored in a sub-folder called “_rels”. Second, the name of the Relationships part
is formed by appending “.rels” to the name of the original part. Package relationships are found in the package
relationships part named “/_rels/.rels”.

The package implementer shall name relationship parts according to the special relationships part naming
convention and require that parts with names that conform to this naming convention have the content type for
a Relaﬂionships part. [M1.30]

[Example:
Example 9—4. Sample relationships and associated markup

The figure below shows a Digital Signature Origin part and a Digital Signature XML Signature part. The Digital
Signatyire Origin part is targeted by a package relationship. The connection from thé Digital Signature Origjn to
the Digital Signature XML Signature part is represented by a relationship.

Package Relationships Part PACKAGE
/_rels/.rels

v

Digital Signature
Origin Part
Jorigin

Relationships Part
{_rels/origin.rels

l

Digital Signatyre
XML Signature
Part
fsignature .xml

The relationshiptargeting the Digital Signature Origin part is stored in /_rels/.rels and the relationship for the
Digital[Signatire XML Signature part is stored in /_rels/origin.rels.

The Relationships part associated with the Digital Signature Origin contains a relationship that connects the
Digital Signature Origin part to the Digital Signature XML Signature part. This relationship is expressed as follows:

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship
Target="./Signature.xml”
Id="A5FFC797514BC"

©ISO/IEC 2011 — All rights reserved 23

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Type="http://schemas.openxmlformats.org/package/2006/relationships/
digital-signature/signature"/>
</Relationships>

end example)

[Example:

Example 9-5. Targeting resources

Relatignships can target resources outside of the package at an absolute location and resources Jocated rdlative
to the furrent location of the package. The following Relationships part specifies relationshipsthat conneqt a

part to picl.jpg at an external absolute location, and to my_house.jpg at an external locatign relative to the
location of the package:

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships™
<Relationship
TargetMode="External"
Id="A9EFC627517BC"
Target="http://www.custom.com/images/picl:jpg"
Type="http://www.custom.com/external-resource"/>
<Relationship
TargetMode="External™
Id="A5EFC797514BC"
Target="./images/my_house.jpg"
Type="http://www.custom.com/external-resource"/>
</Relationships>

end expimple)
[Example:
Example 9-6. Re-using attribute values

The foLowing Relationships part contains two relationships, each using unique Id values. The relationshipg share
the same Target, but have different relationship types.

<Relationships

ymlns="httn://cschomas aonenxmlformats orag/nackace/2006/relationshins"s
P77 M i M 57 P 57 7 P

<Relationship
Target="./Signature.xml"
Id="A5FFC797514BC"
Type="http://schemas.openxmlformats.org/package/2006/
relationships/digital-signature/signature”/>
<Relationship

24 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Target="./Signature.xml"
Id="B5F32797CC4B7"

Type="http://www.custom.com/internal-resource"/>
</Relationships>

end example]

9 3 4 C L L XL - H P I s alazlza
[Te JUpPpPuUItiIvul vl DlUlllllS dllIu LAWCIISIUILILY

Produgers might generate relationship markup that uses the versioning and extensibility mechanisms.defiped in
Part 3 fo incorporate elements and attributes drawn from other XML namespaces. [01.7]

Consumers shall process relationship markup in a manner that conforms to Part 3. [M1.31]

©ISO/IEC 2011 — All rights reserved 25

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

10. Physical Package

del

The phlysical model abstractly describes the capabilities of a particular physical format and how prodtcers|and
consurpers can use a package implementer to interact with that physical package format. The(physical mofdel
includes the access style, or the manner in which package input-output is conducted, as wélhas the
communication style, which describes the method of interaction between producers and.consumers acros$s a
commuinications pipe. The physical model also includes the layout style, or how part centents are physically
stored|within the package. The layout style can either be simple ordering, where-the parts are arranged
contigliously as atomic blocks of data, or interleaved ordering, where the partsiare broken into individual pieces
and the pieces are stored as interleaved blocks of data in an optimized fashion. The performance of a physical
package design is reliant upon the physical model capabilities.

[Note:|See Annex G for additional discussion of the physical model. end note]

Physical mappings describe the manner in which the packagé’contents are mapped to the features of that
specifit physical format. Details of how package comporents are mapped are described, as well as comman
mapping patterns and mechanisms for storing part cantent types. This Open Packaging specification descrfibes
both the specific considerations for physical mapping to a ZIP archive as well as generic physical mapping
considgrations applicable to any physical package format.

10.1| Physical Mapping Guidelines

Wherelas the package model defines a package abstraction, an instance of a package is based on a physical
representation. A physical package format is a particular physical representation of the package contents [n a
file.

Many physical package.formats have features that partially match the packaging model components. In d¢fining
mappings from thé/package model to a physical package format, it is advisable to take advantage of any
similarfties in-capabilities between the package model and the physical package medium while using layery of

mapping t6 provide additional capabilities not inherently present in the physical package medium. [Examgle:

map many part names directly to identical physical file names. end example]

Designers of physical package formats face some common mapping problems. [Example: Associating arbitrary
content types with parts and supporting part interleaving end example] Package implementers might use the
common mapping solutions defined in this Open Packaging specification. [02.3]

26 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

10.1.1 Mapped Components

The package implementer shall define a physical package format with a mapping for the required components
package, part name, part content type and part contents. [M2.2] [Note: Not all physical package formats support
the part growth hint. end note]

Table 10-1. Mapped components

N+me Description Required/Optional '\'\
Packaée URI-addressable resource that identifies package Required. The package implementér shall
as a whole unit provide a physical mapping,for the

package. [M2.2]

Part ngme Names a part Required. The package implementgr shall
provide a physicalimapping for each
part’s name,[M2.2]

Part cdntent Identifies the kind of content stored in the part Required.jThe package implementgr shall
type provide/a physical mapping for each
part’s content type. [M2.2]

Part cgntents Stores the actual content of the part Required. The package implementér shall
provide a physical mapping for each
part’s contents. [M2.2]

Part growth Number of additional bytes to reserve forpossible | Optional. The package implementef
hint growth of part might provide a physical mapping fpr a

growth hint that might be specified by a
producer. [02.2]

10.1.p Mapping Content Type's

Methods for mapping part content types to a physical format are described below.

10.1.2.1 Identifyingtlte’Part Content Type

The pajckage implementershall define a format mapping with a mechanism for associating content types Wwith
parts. [M2.3]

Some physical package formats have a native mechanism for representing content types. [Example: the cqntent
type header intMIME. end example] For such packages, the package implementer should use the native

mecharism to map the content type for a part. [S2.1]

For all other physical package formats, the package implementer should include a specially-named XML stream
in the package called the Content Types stream. [S2.2] The Content Types stream shall not be mapped to a part
by the package implementer. [M2.1] This stream is therefore not URI-addressable. However, it can be
interleaved in the physical package using the same mechanisms used for interleaving parts.

©ISO/IEC 2011 — All rights reserved 27

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

10.1.2.2 Content Types Stream Markup

The Content Types stream identifies the content type for each package part. The Content Types stream contains
XML with a top-level Types element, and one or more Default and Override child elements. Default elements
define default mappings from the extensions of part names to content types. Override elements are used to
specify content types on parts that are not covered by, or are not consistent with, the default mappings.
Package producers can use pre-defined Default elements to reduce the number of Override elements on a part,

but ar¢g Mot TEqUITET O 00 50, (02:4]

—

The palckage implementer shall require that the Content Types stream contain one of the following-fer every

part in|the package:

e | One matching Default element

e [One matching Override element

e | Both a matching Default element and a matching Override element, in whichCase the Override
element takes precedence. [M2.4]

The palckage implementer shall require that there not be more than one Défault element for any given
extensjon, and there not be more than one Override element for any given part name. [M2.5]

The orfler of Default and Override elements in the Content Types stream is not significant.
If the gackage is intended for streaming consumption:

e | The package implementer should not allow Default elements; as a consequence, there should be pne
Override element for each part in the package.
o | The format producer should write the Override elements to the package so they appear before tHe
parts to which they correspond, orin-Close proximity to the part to which they correspond.

[S2.3]
The package implementer can define Default content type mappings even though no parts use them. [02]5]

10.1.3.2.1 Types.Element

The stjucture of a Types element is shown in the following diagram:

diagram re- 1
| CT_Types |
f;;.__\':d—‘[lefault [+ |

@ “oaepeT L Override
e

annotation 'The root element of the Content Types stream.

28 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

10.1.2.2.2 Default Element

The structure of a Default element is shown in the following diagram:

[CT_Default |

diagram

| & sttriputes

ISO/IEC 29500-2:2011(E)

ContemtType

[

attributes | Name Type Use Default |Fixed Annotation

Extension ST_Extension required

ContentType |ST ContentType [required
\

annotdtion pefines default-mappings from the extensions of part names to content types.

10.1.2.2.3 Override Element

The stqucturesofian Override element is shown in the following diagram:

diagram

||package implementer shall requi
| Inon-empty extension in a Defaul

A part name extension. A Defaulf
element'matches any part whosd
name'ends with a period followe
the Value of this attribute. The

element. [M2.6]

A content type as defined in RFC
Indicates the content type of any
matching parts (unless overridde
The package implementer shall
require a content type in a Defau
element and the format designer]
specify the content type. [M2.6]

0616.

n).

It
shall

|
TCT_OVerTiae [

| B asttriputes

Override ContentType

T

PartHame

©ISO/IEC 2011 — All rights reserved

29

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

attributes |\ Name Type Use Default [Fixed |Annotation

ContentType ST_ContentType required A content type as defined in RFC 2616.
Indicates the content type of the
matching part. The package
implementer shall require a content

type and the format designer shall
specify the content type in an
Override element. [M2.7]

PartName xs:anyURI required A part name. An Qverride elemeht
matches the_part whose name is pqual
to the valde of this attribute. The
package,implementer shall requife a
parthame. [M2.7]

annotgtion | specifies content types on parts that are not covered byor are not consistent with,
the default mappings.

10.1.2.2.4 Content Types Stream Markup.Example

[Example:
Example 10-7. Content Types stream markup

<Types
xmlns="http://schemass@penxmlformats.org/package/2006/content-types">
<Default Extension="txt" ContentType="text/plain" />

<Default Extension="jpeg" ContentType="image/jpeg" />

<Default Extension="picture" ContentType="image/gif" />

<Override PartName="/a/b/sampled.picture” ContentType="image/jpeg" />
</Types>

The Tyjpes element is not a container for generic types, but specifically for content types to be used within the
package.

The following is a sample list of parts and their corresponding content types as defined by the Content Types
stream markup above.

Part name Content type
/a/b/samplel.txt text/plain
/a/b/sample2.jpg image/jpeg

30 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Part name Content type

/a/b/sample3.picture | image/gif

/a/b/sample4.picture | image/jpeg

bart is
D

nsitive
6, or it

Types

rride

end example)
10.1.2.3 Setting the Content Type of a Part
When pdding a new part to a package, the package implementer shall ensure that a content type for that
specifigd in the Content Types stream; the package implementer shall perform the following steps te~do s
[M2.8]}
1. | Get the extension from the part name by taking the substring to the right of the rightmost occurrgnce of
the dot character (.) from the rightmost segment.
2.| If a part name has no extension, a corresponding Override element shall be @dded to the Content| Types
stream.
3.| Compare the resulting extension with the values specified for the Extension attributes of the Default
elements in the Content Types stream. The comparison shall be case-insensitive ASCII.
4. | If there is a Default element with a matching Extension attribdte, then the content type of the ngdw part
shall be compared with the value of the ContentType attribute. The comparison might be case-se
and include every character regardless of the role it playsiin the content-type grammar of RFC 261
might follow the grammar of RFC 2616.
a. If the content types match, no further agtion is required.
b. If the content types do not match, axiew Override element shall be added to the Content
stream.
5.| If there is no Default element withna:matching Extension attribute, a new Default element or Ove
element shall be added to the Content Types stream.
10.1.2.4 Getting the Centént Type of a Part
To get|the content type of a part, the package implementer shall perform the following steps [M2.9]:
1. [Compare the part'/name with the values specified for the PartName attribute of the Override elements.
The compafison shall be case-insensitive ASCII.
2.| If thereds’an Override element with a matching PartName attribute, return the value of its
ContentType attribute. No further action is required.
3. | if.there is no Override element with a matching PartName attribute, then

a. Get the extension from the part name by taking the substring to the right of the rightmost
occurrence of the dot character (.) from the rightmost segment.

b. Check the Default elements of the Content Types stream, comparing the extension with the

value of the Extension attribute. The comparison shall be case-insensitive ASCII.

©ISO/IEC 2011 — All rights reserved

31

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

4. |If there is a Default element with a matching Extension attribute, return the value of its ContentType
attribute. No further action is required.

5. If neither Override nor Default elements with matching attributes are found for the specified part
name, the implementation shall not map this part name to a part.

10.1.2.5 Support for Versioning and Extensibility

The package implementer shall not use the versioning and extensibility mechanisms defined in Part 3 to

incorpprate elements and attributes drawn from other XML-namespaces into the Content Types stream mjarkup.
[M2.10]

10.1.8 Mapping Part Names to Physical Package Item Names

The mapping of part names to the names of items in the physical package uses an intermiediate logical item
name abstraction. This logical item name abstraction allows package implementers to-manipulate physical| data
items qonsistently regardless of whether those data items can be mapped to parts.@arnot or whether the
package is laid out with simple ordering or interleaved ordering. See §10.1.4 fot_interleaving details.

[Example:

Figure [10-1 illustrates the relationship between part names, logicabitem names, and physical package iter

=)

names|

Figure [10-1. Part names and logical item names

Pdrt names Logical item Physical package
[Public,|case-insensitive) names]tem names
)lfuo.xarnl - - S g xaml ~ - Physical itern name
Jbar.xa ml Sbar ¥aml/[0]. piece - - Physical item name

&
v

fbar.xaml/[1]. piece Physical item name

‘\x [) * /bar.xaml/[2].Piece -+ - Physical item name
.\\
N Y fBar.xaml/[3]. plece - - Physical item name
Ay {bar. XAML/[4].last. piece |« - Physical item name
!/ [ContentTypes]. xmil £t " Physical itern name
end example]
10.1.3.1 Logical [tem Names

Logical item names have the following syntax:

LogicalItemName = PrefixName [SuffixName]

32 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

PrefixName = *AChar
AChar = %x20-7E
SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"
PieceNumber = "@" | NonZeroDigit [1*Digit]
Digit = "@" | NonZeroDigit
NOnZePODigit = ||1|| | ||2|| | ||3|| | ||4|| | ||5|| | ||6|| | ||7|| I "8" | ll9ll
[Note: [Piece numbers identity the individual pieces of an interleaved part. end note]
The package implementer shall compare prefix names as case-insensitive ASCII strings. [M2.12]
The package implementer shall compare suffix names as case-insensitive ASCII strings. [M2.13]
Logical item names are considered equivalent if their prefix names and suffix names are egquivalent. The package
implementer shall not allow packages that contain equivalent logical item names. [M2.14] The package
implementer shall not allow packages that contain logical items with equivalentprefix names and with eqtal
piece numbers, where piece numbers are treated as integer decimal values. [M2715]
Logical item names that use suffix names form a complete sequence if and’only if:
The prefix names of all logical item names in the sequence\are equivalent, and
The suffix names of the sequence start with “/[0].piece?and end with “/[n].last.piece” and includ¢ a
piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted
as decimal integer values.
10.1.3.2 Mapping Part Names to Logica} Item Names
Non-interleaved part names are mapped to legical item names that have an equivalent prefix name and np
suffix name.
Interlepved part names are mapped:torthe complete sequence of logical item names with an equivalent prefix
name.
[Note: |Prefix names mapp€dsto part names correspond to the part names grammar (§9.1.1). In particular, [prefix
names|can hold percent-€ncoded characters. For example, a logical name of “%C3%B1.ext” results in a ZIA item
name of “%C3%B1.ext”; not “fi.ext” (interpreted as a 2-byte UTF-8 sequence). end note]
10.1.3.3 ¥Mapping Logical Item Names and Physical Package Item Names
The mapping of logical item names and physical package item names is specific to the particular physical
package:
10.1.3.4 Mapping Logical Item Names to Part Names

A logical item name without a suffix name is mapped to a part name with an equivalent prefix name provided

that th

e prefix name conforms to the part name syntax.

©ISO/IEC 2011 — All rights reserved

33

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

A complete sequence of logical item names is mapped to the part name that is equal to the prefix name of the
logical item name having the suffix name “/[0].piece”, provided that the prefix name conforms to the part name
syntax.

The package implementer might allow a package that contains logical item names and complete sequences of
logical item names that cannot be mapped to a part name because the logical item name does not follow the
part naming grammar or the logical item does not have an associated content type. [02.7] The package
implementer shall not map logical items to parts if the logical item names violate the part naming rules;[N12.16]

The palckage implementer shall consider naming collisions within the set of part names mapped fromlogidal
item ngmes to be an error. [M2.17]

10.1.4 Interleaving

Not allphysical packages natively support interleaving of the data streams of parts, The package implementer
should|use the mechanism described in this Open Packaging specification to allow'interleaving when mapping to
the physical package for layout scenarios that support streaming consumptiof-[S2.4]

The inferleaving mechanism breaks the data stream of a part into pieces, ‘which can be interleaved with pjeces
of other parts or with whole parts. Pieces are named using a unique‘mapping from the part name, defined
§10.1.3. This enables a consumer to join the pieces together in their original order, forming the data stregm of
the paft.

in

The indlividual pieces of an interleaved part exist only in the physical package and are not addressable in the
packaging model. A piece might be empty.

An ind|vidual part shall be stored either in an_interleaved or non-interleaved fashion. The package implemgnter
shall npt mix interleaving and non-interleaving for an individual part. [M2.11] The format designer specifieg

[%)

whether that format might use interleaving. [02.1]

The grammar for deriving piece ndmes from a given part name is defined by the logical item name grammar as
defined in §10.1.3.1. A suffix name is mandatory.

The pajckage implementer,should store pieces in their natural order for optimal efficiency. [S2.5] The packpge
implementer might ereate a physical package containing interleaved parts and non-interleaved parts. [026]

[Example:

Example-10<8. ZIP archive contents

A ZIP archive might contain the following item names mapped to part pieces and whole parts:

spine.xml/[@].piece
pages/page0d.xml
spine.xml/[1].piece
pages/pagel.xml
spine.xml/[2].1last.piece

34 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

pages/page2.xml
end example]

Under certain scenarios, interleaved ordering can provide important performance benefits, as demonstrated in
the following example.

[Example:

Example 10-9. Performance benefits with interleaved ordering

The figure below contains two parts: a page part (markup/page.xml) describing the contents of 3 page, anfl an
image part (images/picture.jpg) referring to an image that appears on the page.

mfirkup/page. xmi

L]

Imagesipictine jpeg

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. THe
figure pelow illustrates this scenario. The consumer is unable,to display the image until it has received all ¢f the
page pprt and the image part. In some circumstances, suect.as small packages on a high-speed network, thfs
might be acceptable. In others, having to read through-all of markup/page.xml to get to the image results |n
unaccdptable performance or places unreasonables-memory demands on the consumer’s system.

byyte O
markup/page.xmi
Y imagesigiciurejpeg
Byta n

With interleaved ordering,‘performance is improved by splitting the page part into pieces and inserting th

L1%

image part immediately.following the reference to the image. This allows the consumer to begin processing the
image ps soon as it encounters the reference.

byte D markup/page.xml
A Y partt
(% 4
< Amaaesitheiing fpad
 J markup/page. xml
bwyte n part 2
end example)

©ISO/IEC 2011 — All rights reserved 35

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

10.2 Mapping to a ZIP Archive

This Open Packaging specification defines a mapping for the ZIP archive format. Future versions of this Open
Packaging specification might provide additional mappings.

A ZIP archive is a ZIP file as defined in the ZIP file format specification excluding all elements of that specification
related to encryption decryption or digital signatures. A ZIP archive contains ZIP items. [Note: ZIP items become
elders that

ﬁles whenr tha are nzinnad \Whan ieare timgin A 71D bhacad nacliaga thay can o catr of £filac o
FeftRe-afFeRtY eSS HRAPPe W RERUSerSHhRZPa-4At—BaseapPackagethey-seea-seto+Hhesah

reflectp the parts in the package and their hierarchical naming structure. end note]

Table 10-2, Package model components and their physical representations, shows the various components of
the pagkage model and their corresponding physical representation in a ZIP archive.

Table 10-2. Package model components and their physical representations

Paclage model Physical representation \§</
component A
Package ZIP archive file
Part ZIP item
Part ngme Stored in item header (and ZIP central directory as appropriate).

See §10.2.3 for conversion rules.

Part cdntent type ZIP item containing XML that identifiesithe content types for each part
according to the pattern described in §10.1.2.1.

Growth hint Padding reserved in the ZIP Extfa field in the local header that precedes
the item. See §10.2.7 for a-detailed description of the data structure.

10.2.1 Mapping Part Data

In a ZIR archive, the data associatedwith a part is represented as one or more items.

A packpge implementer shall.storé a non-interleaved part as a single ZIP item. [M3.1] When interleaved, a
package implementer shallrepresent a part as one or more pieces, using the method described in §10.1.4

[M2.18] Pieces are named using the specified pattern, making it possible to rebuild the entire part from its
constitluent pieces. Each piece is stored within a ZIP archive as a single ZIP item.

In the ZIP archive; the chunk of bits that represents an item is stored contiguously. A package implementef

might {nteftionally order the sequence of ZIP items in the archive to enable an efficient organization of thg part
data ir]

order to achieve correct and optimal interleaving. [03.1]

10.2.2 ZIP Item Names

ZIP item names are case-sensitive ASCII strings. Package implementers shall create ZIP item names that conform
to ZIP archive file name grammar. [M3.2] Package implementers shall create item names that are unique within
a given archive. [M3.3]

36 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

10.2.

ISO/IEC 29500-2:2011(E)

3 Mapping Part Names to ZIP Item Names

To map part names to ZIP item names the package implementer shall perform, in order, the following steps
[M3.4]:

1.

Convert the part name to a logical item name or, in the case of interleaved parts, to a complete
sequence of logical item names.

Remove the leading forward slash (Hfrom the logicalitem name or inthe case of interleaved parts,

from each of the logical item names within the complete sequence.

The package implementer shall not map a logical item name or complete sequence of logical item'names gharing

a common prefix to a part name if the logical item prefix has no corresponding content type..[IM3.5]

10.2.

Toma

[M3.6]

1.

10.2.

The package implementer shall map all ZIP items to parts‘except MS-DOS ZIP items, as defined in the ZIP

specifi

[Note:
by” fie

value af 0. end note]

In ZIP archives, the package implementer shall not exceed 65,535 bytes for the combined length of the item

name,
65,535

Packa

to be stored as ZIP:items. [S3.1]
[Example:

Examples-of these limitations are:

& Mapping ZIP Item Names to Part Names

b ZIP item names to part names, the package implementer shall perform, inorder, the following steps

Map the ZIP item names to logical item names by adding a forwardslash (/) to each of the ZIP itenmp
names.

Map the obtained logical item names to part names. For more’information, see §10.1.3.4.

b ZIP Package Limitations

Cation, that are not MS-DOS files. [M3.7]

The ZIP specification specifies that ZIP item’s recognized as MS-DOS files are those with a “version made
d and an “external file attributes” field,in the “file header” record in the central directory that have|a

Extra field, and Comment.fields. [M3.8] Accordingly, part names stored in ZIP archives are limited t¢
characters, subtracting-the size of the Extra and Comment fields.

e implementers should restrict part naming to accommodate file system limitations when naming parts

“uxn “w.n

On Windows file systems, the asterisk (“*”) and colon (“:”) are not supported, so parts named with this
character do not unzip successfully.
On Windows file systems, many programs can handle only file names that are less than 256 characters

including the full path; parts with longer names might not behave properly once unzipped.

end example]

©ISO/IEC 2011 — All rights reserved 37

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)
ZIP-based packages shall not include encryption as described in the ZIP specification. Package implementers
shall enforce this restriction. [M3.9]

The compression algorithm supported is DEFLATE, as described in the .ZIP specification. The package
implementer shall not use any compression algorithm other than DEFLATE.

10.2.6 Mapping Part Content Type

Part cdntent types are used for associating content types with part data within a package. In ZIP archives,
content type information is stored using the common mapping pattern that stores this information_ifasingle
XML stream as follows:

e | Package implementers shall store content type data in an item(s) mapped to the lagical item namé with
the prefix_name equal to “/[Content_Types].xml” or in the interleaved case to the‘complete sequence
of logical item names with that prefix_name. [M3.10]

Package implementers shall not map logical item name(s) mapped to the Contént Types stream in a ZIP arghive
to a pdrt name. [M3.11] [Note: Bracket characters "[" and "]" were chosendorthe Content Types stream ngme
specifitally because these characters violate the part naming grammary thus reinforcing this requirement. lend

note]

10.2.[7 Mapping the Growth Hint

In a ZIR archive, the growth hint is used to reserve additional bytes that can be used to allow an item to grpw in-
place. The padding is stored in the Extra field, as definedin the ZIP file format specification. If a growth hint is
used for an interleaved part, the package implementer should store the Extra field containing the growth hint
padding with the item that represents the first piece of the part. [S3.2]

The fofmat of the ZIP item's Extra field, wheh used for growth hints, is shown in Table 10-3, Structure of the
Extra fleld for growth hints below.

Table 10-3. Structure of the Extra field for growth hints

N/
Field r\6 Size Value

Headef ID 2 bytes A220

Lengthl of Extra field 2 bytes The signature length (2 bytes) + the padding initial
value length (2 bytes) + Length of the padding
(variable)

Signatyre’{for 2 bytes A028

verification)

Padding Initial Value 2 bytes Hex number value is set by the producer when the
item is created

<padding> [Padding Should be filled with NULL characters

Length]

38 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

10.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption

Several substantial conditions that represent a package unfit for streaming consumption might be detected mid-

processing by a streaming package implementer. These include:

A duplicate ZIP item name is detected the moment the second ZIP item with that name is encount
Duplicate ZIP item names are not allowed. [M3.3]

laintarlaavunad nackaagnc An tnecamanlata caninnen Af 71D itamne ic Aatactad whaon tha [hct 71D i+am ic
e —Heet -4 r—temS WHeR—tRe-rasStAr—te

ered.

When
regard

containing any of these conditions when generating a package intended for streaming consumption. [M3.

10.2.

The ZIP format includes a number of features that packages.do not support. Some ZIP features are clarifie

the pa

veopotikagToor T pPreteoTtoqutTT J-octeeteos

received. Because one of the interleaved pieces is missing, the entire sequence of ZIP items canno
mapped to a part and is therefore invalid. [M2.16]

An inconsistency between the local ZIP item headers and the ZIP central directory file headers is
detected at the end of package consumption, when the central directory is processed:

A ZIP item that is not a file, according to the file attributes in the ZIP central directory, is detected
end of package consumption, when the central directory is processed. Only, 4 ZJP item that is a file
be mapped to a part in a package.

hny of these conditions are detected, the streaming package implemeénteér shall generate an error,
ess of any processing that has already taken place. Package implementers shall not generate a pac

D ZIP Format Clarifications for Package$

tkage context. See Annex C for package-specific ZIP information.

t be

qt the
shall

age
13]

l in

©ISO/IEC 2011 — All rights reserved

39

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

11

. Core Properties

Core properties enable users to get and set well-known and common sets of property metadata within
packages. The core properties and the Standard that describes them are shown in Table 11-1, “Core
properfties”. The namespace for the properties in this table in the Open Packaging Conventions domain‘are
define¢ in Annex F.
Core pfoperty elements are non-repeatable. They can be empty or omitted. The Core Properties Part can|be
omitted if no core properties are present.
Table 11-1. Core properties
Property Domain Description C\O\
category Open A categorization of the content of this package.
Packaging
Conventions [Example: Example values for this‘property might include:
Resume, Letter, Financial Forecast, Proposal, Technical
Presentation, and so on. This ¥alue might be used by an
application's user interfacé to facilitate navigation of a large
set of documents. endexample]
contertStatus | Open The status of the:cantent. [Example: Values might include
Packaging “Draft”, “Reviewed”, and “Final”. end example]
Conventions
created Dublin Core Date of creation of the resource.
creatof Dublin Core An.entity primarily responsible for making the content of
the' resource.
descrigtion Dublin Core An explanation of the content of the resource. [Example:
Values might include an abstract, table of contents,
reference to a graphical representation of content, and a
free-text account of the content. end example]
identifler Dublin Core An unambiguous reference to the resource within a given
context.
40 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Property

Domain

Description

keywords

Open
Packaging
Conventions

A delimited set of keywords to support searching and
indexing. This is typically a list of terms that are not
available elsewhere in the properties.

The definition of this element uniquely allows for:
e Use of the xml:lang attribute to identify languages

e A mixed content model, such that keywords can be
flagged individually

[Example: The following instance of the keywords element
has keywords in English (Canada), English (U.S.), and French
(France):

<keywords xml:lang="en-US">
color
<value xml:lang="en-CA">colour</value>
<value xml:lang="fr-FR">couleur</value>
</keywords>

end example]

langua

UQ
(]

Dublin Core

The language of the intellectual content of the resource.
[Note: IETF RFC 3066 proevides guidance on encoding to
represent languages.\end note]

lastMqdifiedBy

Open
Packaging
Conventions

The user who performed the last modification. The
identification isyenvironment-specific. [Example: A name,
email address, or employee ID. end example] It is
recommeénded that this value be as concise as possible.

lastPrinted Open The date and time of the last printing.
Packaging
Conventions

modifigd Dublin Core Date on which the resource was changed.

revisioh Open The revision number. [Example: This value might indicate
Packaging the number of saves or revisions, provided the application
Conventions updates it after each revision. end example]

subjec Dublin Core The topic of the content of the resource.

title Dublin Core The name given to the resource.

versior Open The Version number. This vatue 15 Set by the USer of by the
Packaging application.
Conventions

11.1 Core Properties Part

Core properties are stored in XML in the Core Properties part. The Core Properties part content type is defined

in Annex F.

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

The structure of the CoreProperties element is shown in the following diagram:

CT_coreProperties

category .

coreProperties [%](—EE} ‘erssssssssss

annotdtion | Producers might provide all or a sukset of these metadata properties to describe the contents of a
package.

[Example:
Examp|e 11-1. Core properties markup
An example of a core preperties part is illustrated by this example:

<cgreProperties

xmlns=hittp://schemas.openxmlformats.org/package/2006/metadata/
core-properties”

xmlIns:dcterms="http://purl.org/dc/terms/"

xfrns—de="httpFFpurtorgidcietements/ =3/
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<dc:creator>Alan Shen</dc:creator>
<dcterms:created xsi:type="dcterms:W3CDTF">

2005-06-12

</dcterms:created>

4?2 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

<dc:title>0OPC Core Properties</dc:title>

<dc:subject>Spec defines the schema for OPC Core Properties and their
location within the package</dc:subject>

<dc:language>eng</dc:language>

<version>1.0</version>

<lastModifiedBy>Alan Shen</lastModifiedBy>

<dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>

<contentStatus>Reviewed</contentStatus>

<category>Specification</category>

</qoreProperties>

end exppmple]

11.2| Location of Core Properties Part

The logation of the Core Properties part within the package is determined by traversing a well-defined pad
relatiopship as listed in Annex F. The format designer shall specify and the fofmat producer shall create at

kage
most

one cofe properties relationship for a package. A format consumer shall consider more than one core properties

relatiopship for a package to be an error. If present, the relationship shall target the Core Properties part.

11.3| Support for Versioning and Extensibility

The fofmat designer shall not specify and the format producer shall not create Core Properties that use th
Markup Compatibility namespace as defined in Annex F. Aformat consumer shall consider the use of the
Markup Compatibility namespace to be an error. [M4.2] Instead, versioning and extensibility functionality
accomplished by creating a new part and using a relationship with a new type to point from the Core Prop
part tothe new part. This Open Packaging specification does not provide any requirements or guidelines f
parts dr relationship types that are used to-extend core properties.

11.4| Schema Restrictiens for Core Properties

The following restrictions apply‘to every XML document instance that contains Open Packaging Conventio
core properties:

1. | Producers shall'not create a document element that contains refinements to the Dublin Core elen
except forithe two specified in the schema: <dcterms:created> and <dcterms:modified> Consume
consider.@ document element that violates this constraint to be an error. [M4.3]

2. | Produecers shall not create a document element that contains the xml:lang attribute at any other
lecation than on the keywords or value elements. Consumers shall consider a document element

[M4.1]

is
erties
br new

ents,
rs shall

that

violates this constraint to be an error. [M4.4] For Dublin Core elements, this restriction is enforced by

applications.

3. Producers shall not create a document element that contains the xsi:type attribute, except for a
<dcterms:created> or <dcterms:modified> element where the xsi:type attribute shall be present
shall hold the value dcterms:W3CDTF, where dcterms is the namespace prefix of the Dublin Core

©ISO/IEC 2011 — All rights reserved

and

43

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

namespace. Consumers shall consider a document element that violates this constraint to be an error.
[M4.5]

44 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

12. Thumbnails

The format designer might allow images, called thumbnails, to be used to help end-users identify parts of a
package or a package as a whole, These images can be generated by the producer and stored as parts, [05.1]

12.1| Thumbnail Parts

The fofmat designer shall specify thumbnail parts that are identified by either a part relationship or a package
relatiohship. The producer shall build the package accordingly. [M5.1] For information about the relationship
type fgr Thumbnail parts, see Annex F.

©ISO/IEC 2011 — All rights reserved 45

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

13. Digital Signatures

Format designers might allow a package to include digital signatures to enable consumers to validate the

integri

ty of the contents. The producer might include the digital signature when allowed by the format de

igner.

[06.1]
signaty
signed

actions.

Produg
descril]
Syntax
with th
in §13,

13.1

Any pa
An ent
can be

Becaus
include
specifi
ensure
that s¢
digital
allowir

13.2

The dig
Digital
in pack

Consumers can identify the parts of a package that have been signed and the process for validating
res. Digital signatures do not protect data from being changed. However, consumers can detect wH
data has been altered and notify the end-user, restrict the display of altered content, or take other

ers incorporate digital signatures using a specified configuration of parts and relationships. This cla
es how the package digital signature framework applies the W3C Recommendation “XML-Signatur
and Processing” (referred to here as the “XML Digital Signature specification”). In addition to comp
e XML Digital Signature specification, producers and consumers also apply the modifications specif
P.4.1.

Choosing Content to Sign

rt or relationship in a package can be signed, including Digital Signature XML Signature parts thems
re Relationships part or a subset of relationships canbe signed. By signing a subset, other relations
added, removed, or modified without invalidating the signature.

e applications use the package format to store various types of content, application designers that
digital signatures should define signature-policies that are meaningful to their users. A signature p

validity, some clients require that'all of the parts and relationships in a package be signed. Others |
ected parts or relationships be\signed and validated to indicate that the content has not changed. 1
signature infrastructure in packages provides flexibility in defining the content to be signed, while
g parts of the packagé to'remain changeable.

Digital Signature Parts

rital signatute-parts consist of the Digital Signature Origin part, Digital Signature XML Signature part|
Signature Certificate parts. Relationship names and content types relating to the use of digital signd
ages are defined in Annex F.

bs which portions of a package should Aot change in order for the content to be considered intact. T

the
ether

lise

D

ying

blves.
hips

blicy

o
equire
[he

5, and
tures

[Example:

Figure 13-1 shows a signed package with signature parts, signed parts, and an X.509 certificate. The example

Digital Signature Origin part references two Digital Signature XML Signature parts, each containing a signature.

The signatures relate to the signed parts.

Figure

46

13-1. A signed package

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

s "y
Fe Bibaship Felation s hip
Digitfal Signature Cigital Signature
Xl Signature ¥l Signature -
Part Part -‘_\UH Signed Part
303 \
LiFl e
i Signed Fart URI
e Lation i p \\ \ Signed Fart
Rl
X.50% Signed Part
= rtificate
M vy
end expmple]

13.2.11 Digital Signature Origin Part

The Digital Signature Origin part is the starting point fofthavigating through the signatures in a package. The
package implementer shall include only one Digital.Signature Origin part in a package and it shall be targeted
from the package root using the well-defined relationship type specified in Annex F. [M6.1] When creating the
first Digital Signature XML Signature part, the package implementer shall create the Digital Signature Originh part,
if it doges not exist, in order to specify a relationship to that Digital Signature XML Signature part. [M6.2] If there
are no|Digital Signature XML Signature.parts in the package, the Digital Signature Origin part is optional. [(6.2]
Relatignships to the Digital Signature XML Signature parts are defined in the Relationships part. The prodycer
should|not create any content.inthe Digital Signature Origin part itself. [S6.1]

The prpducer shall create-Digital Signature XML Signature parts that have a relationship from the Digital
Signatdire Origin partiand the consumer shall use that relationship to locate signature information within the
package. [M6.3]

13.2.p Digital Signature XML Signature Part

D|g|ta| Sighature XML Signature partsare targeted from-the Digital Signature Origin part by a relationship that
=] 5 1 5 5 5 S Y 1

uses the well-defined relationship type specified in Annex F. The Digital Signature XML Signature part contains
digital signature markup. The producer might create zero or more Digital Signature XML Signature partsin a
package. [06.4]

©ISO/IEC 2011 — All rights reserved 47

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

13.2.

3 Digital Signature Certificate Part

If present, the Digital Signature Certificate part contains an X.509 certificate for validating the signature.
Alternatively, the producer might store the certificate as a separate part in the package, might embed it within
the Digital Signature XML Signature part itself, or might not include it in the package if certificate data is known

or can

The p

be obtained from a local or remote certificate store. [06.5]

l(ngn rligif::l sighature infrastructure supports X.509 certificate fnrhnnlng\ll for sigher authentication.

If the dertificate is represented as a separate part within the package, the producer shall target that Certifi

fromt
specifi
might
the rel
might
[06.7]

the tar

additig

Signatdire part that has a Digital Signature Certificate relationship tot:[S6.2]

13.2.

The m
specifi

13.2.4.1 Modifications to the XML Digjtal Signature Specification

The pa

1.

e appropriate Digital Signature XML Signature part by a Digital Signature Certificate relatignhship as

& Digital Signature Markup

hrkup described here includes a subset of elements.and attributes from the XML Digital Signature
Fation and some package-specific markup. For a complete example of a digital signature, see §5.

ckage modifications to the XML Digital\Signature specification are summarized as follows:

The producer shall create Reference elements within a SignedInfo element that reference eleme
within the same Signature element. The consumer shall consider Reference elements within a
SignedInfo element that reference any resources outside the same Signature element to be in er
[M6.5] The producershould only create Reference elements within a Signedinfo element that refq
an Object element.56.5] The producer shall not create a reference to a package-specific Object
element that €ontains a transform other than a canonicalization transform. The consumer shall co
a reference.to a package-specific Object element that contains a transform other than a canonica
transfotm’to be an error. [M6.6]

The producer shall create one and only one package-specific Object element in the Signature eler]

cate

bd in Annex F and the consumer shall use that relationship to locate the certificate. [M6.4] The producer
bign the part holding the certificate. [06.6] The content types of the Digital SignatureCertificate pant and
btionship targeting it from the Digital Signature XML Signature part are defined.in Annex F, Producelrs
hare Digital Signature Certificate parts by using the same certificate to create more than one signature.

Producers generating digital signatures should not create Digital Signature,Certificate parts that arg not

et of at least one Digital Signature Certificate relationship from a Digital Signature XML Signature part. In
n, producers should remove a Digital Signature Certificate part if removing the last Digital Signature XML

nts

for.
rence

nsider

nent.

TFhe consumer shall consider zero or more than one package-specific Object element in the Signature

48

element to be an error. [M6.7]

The producer shall create package-specific Object elements that contain exactly one Manifest element

and exactly one SignatureProperties element. [Note: This SignatureProperties element can contain

multiple SignatureProperty elements. end note] The consumer shall consider package-specific Object

elements that contain other types of elements to be an error. [M6.8] [Note: A signature can conta
other Object elements that are not package-specific. end note]

in

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

a. The producer shall create Reference elements within a Manifest element that reference with

their URI attribute only parts within the package. The consumer shall consider Reference
elements within a Manifest element that reference resources outside the package to be a

n

error. [M6.9] The producer shall create relative references to the local parts that have query

components that specifies the part content type as described in §13.2.4.6. The relative
reference excluding the query component shall conform to the part name grammar. The

consumer shall consider a relative reference to a local part that has a query compaonent th

at

[Note:
allows
note]

13.2.4

The structure of a Signature element is defined in §4.1 of XML-Signature Syntax and Processing.

The pr

incorrectly specifies the part content type to be an error. [M6.10] The producer shall great
Reference elements with a query component that specifies the content type that matche
content type of the referenced part. The consumer shall consider signature validation to f
the part content type compared in a case-sensitive manner to the content type’specified i
query component of the part reference does not match. [M6.11]

b. The producer shall not create Reference elements within a Manifestrelement that contair
transforms other than the canonicalization transform and relationships transform. The
consumer shall consider Reference elements within a Manifest element that contain tran
other than the canonicalization transform and relationships transform to be in error. [M6

c. A producer that uses an optional relationships transform shall follow it by a canonicalizati
transform. The consumer shall consider any relationships transform that is not followed b
canonicalization transform to be an error. [M6.13]

d. The producer shall create exactly one SignatureProperty element with the Id attribute va
set to idSignatureTime. The Target attrilbute value of this element shall be either empty
contain a fragment reference to the value of the Id attribute of the root Signature eleme
SignatureProperty element shall contain exactly one SignatureTime child element. The
consumer shall consider a SignatureProperty element that does not contain a Signature]
element or whose Target attribute value is not empty or does not contain a fragment refe
the Id attribute of the ancestor Signature element to be in error. [M6.14].

All modifications to XML Digital Signature markup occur in locations where the XML Signature sche

any namespace. Therefore) package digital signature XML is valid against the XML Signature schem

2 Sign@biire Element

bducepshall create a Signature element that contains exactly one local-data, package-specific Obje

elemelpt and zero or more application-defined Object elements. If a Signature element violates this const

e
the
il if
n the

sforms
12]

bNn

y a

lue
or
nt. A

[ime
rence

ma
h. end

ct
raint, a

consumer shall consider this to be an error. [M6.15]

13.2.4.3 SignedInfo Element

The structure of a SignedInfo element is defined in §4.3 of XML-Signature Syntax and Processing.

The SignedInfo element specifies the data in the package that is signed. This element holds one or more

references to Object elements within the same Digital Signature XML Signature part. The producer shall create a

©ISO/IEC 2011 — All rights reserved

49

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

SignedInfo element that contains exactly one reference to the package-specific Object element. The consumer
shall consider it an error if a SignedInfo element does not contain a reference to the package-specific Object
element. [M6.16]

13.2.4.4 CanonicalizationMethod Element

The structure of a CanonicalizationMethod element is defined in §4.3.1 of XML-Signature Syntax and
Processing

Since YML allows equivalent content to be represented differently, a producer should apply a canonicalization
transfgrm to the SignedInfo element when it generates it, and a consumer should apply the cangniealizatjon
transfgrm to the SignedInfo element when validating it. [S6.3]

[Note: [Performing a canonicalization transform ensures that SignedInfo content can be-validated even if the
content has been regenerated using, for example, different entity structures, attribute jordering, or charagter
encoding.

Produders and consumers should also use canonicalization transforms for references to parts that hold XMIL
documlents. [S6.4]These transforms are defined using the Transform element. end note]

The following canonicalization methods shall be supported by proddcérs and consumers of packages with|digital
signatyres:

e [XML Canonicalization (c14n)
e [XML Canonicalization with Comments (c14n with comments)

Consurers validating signed packages shall fail the validation if other canonicalization methods are
t

encoumtered. [M6.34]

13.2.4.5 SignatureMethod Element
The strjucture of a SignatureMethod element is defined in §4.3.2 of XML-Signature Syntax and Processing
The SignatureMethod elemént defines the algorithm that is used to convert the SignedInfo element into

hashed value containedqn'the SignatureValue element. Producers shall support DSA and RSA algorithms fo
produde signatures. -Consumers shall support DSA and RSA algorithms to validate signatures. [M6.17]

Q

13.2.4.6 Reference Element

The stiucture of a Reference element is defined in §4.3.3 of XML-Signature Syntax and Processing.

13.2.4.6.1 Usage of <Reterence> Element as <Manifest> Child Element

The producer shall create a Reference element within a Manifest element with a URI attribute and that
attribute shall contain a part name, without a fragment identifier. The consumer shall consider a Reference
element with a URI attribute that does not contain a part name to be an error. [M6.18]

References to package parts include the part content type as a query component. The syntax of the relative
reference is as follows:

50 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

/pagel.xml?ContentType="value"

where

[Note:

value is the content type of the targeted part.

See §13.2.4.1 for additional requirements on Reference elements. end note]

[Example:

Examp)
In the

UR]
pag

end ex|

13.2.4

The stiucture of a Transforms element is defined in §4.3.3.4 of XML-Signature Syntax and Processing.

The following transforms shall be supported by producers and consumers of packages with digital signatu

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relatid

transfd

element of a Manifest element [M6.19]

13.2.4

The stijucture of a Transform elément is defined in §4.3.3.4 of XML-Signature Syntax and Processing.

The stjucture of a Transform element defining Relationships Transform is shown in the following diagram:

e 13-2. Part reference with query component
I”.

ollowing example, the content type is “application/vnd.ms-package.relationships+xm

="/ _rels/document.xml.rels?ContentType=application/vnd.ms-
kage.relationships+xml™

hmple)

7 Transforms Element

XML Canonicalization (c14n)
XML Canonicalization with Comments (c14n with cefaments)
Relationships transform (package-specific)

rms shall only be supported by producers-and consumers when the Transform element is a descer

.8 Transform ElemeRt

diagram = attriputes
ETrﬂnsforn': =] —
! JEETN ;Relationshipﬂeference
) —= 13- = = = |
Ell 7 = —Eﬂmrmmpsﬁmnpﬂm-a |
namespa |http://www.w3.0rg/2000/09/xmldsig#

ce

©ISO/IEC 2011 — All rights reserved

nships
dant

51

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

attributes | Name Type Use Fixed

Algorith |xs:anyU |require | http://schemas.openxmlformats.org/package/2005/06/Relationship
m RI d Transform

annotatio | pescribes how the Relationship elements from the Relationships XML are filtered

n using ID and/or Type attribute values. For algorithm details, see §13.2.4.22.

13.2.49 DigestMethod Element

The stucture of a DigestMethod element is defined in §4.3.3.5 of XML-Signature Syntax]and Processing.

The DigestMethod element defines the algorithm that yields the DigestValue from‘the object data after
transfqrms are applied. Package producers and consumers shall support RSA-SHA1 algorithms to produce for
validate signatures. [M6.17]

13.2.4.10 DigestValue Element

The stqucture of a DigestValue element is defined in §4.3.3.6 of XML-Signature Syntax and Processing.
The DigestValue element contains the base-64 encoded value of the digest.

13.2.411 SignatureValue Element

The stjucture of a SignatureValue element is defined in §4.2 of XML-Signature Syntax and Processing.
This element contains the actual value of the-digital signature, base-64 encoded.

13.2.4.12 Object Element

The strjucture of a Object elementis defined in §4.2 of XML-Signature Syntax and Processing.
The Object element can bg-either package-specific or application-defined.

13.2.4.13 PaeRage-Specific Object Element

The stqucture of'aypackage-specific Object element is shown in the following diagram:

dlagranln) E attriputes

Manifest =

,SignatureProperties

52 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

namespace http://www.w3.0rg/2000/09/xmldsig#
attributes | |Name Type Use Default [Fixed Annotation

Id xs:ID Shall have value of "idPackageObiject".

annotation | |Holds the Manifest and SignatureProperties elements that are package-specific.

[Note: |Although the diagram above shows use of the Id attribute as optional, as does the XMDigital Signature
schemp, for package-specific Object elements, the Id attribute shall be specified and have-the value of
“idPackageObject”. This is a package-specific restriction over and above the XML Djgital Signature schema| end
note]

The prpducer shall create each Signature element with exactly one package-specific Object. For a signed
package, consumers shall treat the absence of a package-specific Object, of the presence of multiple package-
specifit Object elements, as an invalid signature. [M6.15]

13.2.4.14 Application-Defined Object Element

The application-defined Object element specifies application-defined information. The format designer might
permitfone or more application-defined Object elements. If allowed by the format designer, format producers
can cr¢ate one or more application-defined Object.elements. [06.8] Producers shall create application-defined
Object] elements that contain XML-compliant data; consumers shall treat data that is not XML-compliant as an
error. [M6.20] Format designers and producers might not apply package-specific restrictions regarding UR|s and
Transform elements to application-defined Object element. [06.9]

13.2.4.15 KeyInfo Elemegit

The stiucture of a KeyInfo element is defined in §4.4 of XML-Signature Syntax and Processing.

Produgers and consumeftsshall use the certificate embedded in the Digital Signature XML Signature part when it
is specjfied. [M6.21]

13.2.4.16 Manifest Element

The strlucture of a Manifest element is defined in §4.4 of XML-Signhature Syntax and Processing.

The Manifest element within a package-specific Object element contains references to the signed parts of the
package. The producer shall not create a Manifest element that references any data outside of the package. The
consumer shall consider a Manifest element that references data outside of the package to be in error. [M6.22]

13.2.4.17 SignatureProperties Element

The structure of a SignaturePropertieselement is defined in §5.2 of XML-Signature Syntax and Processing.

©ISO/IEC 2011 — All rights reserved 53

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

The SignatureProperties element contains additional information items concerning the generation of
signatures placed in SignatureProperty elements.

13.2.4.18 SignatureProperty Element

The structure of a SignatureProperty element within a package-specific Object element is shown in the
following diagram:

dlagralln B attribntes

IESiglmtur&Pn:rpﬁ-rt:.,-r

,SignatureTime

namespace http://www.w3.0rg/2000/09/xmldsig#

attributes | |IName Type Use Default |Fixed /Annotation
Target |xs:anyURI required Contains & unique identifier of the

Signature element.

Id xs:ID optional Contains signature property’s unique
{ identifier.

annotation | contains additional informatior-concerning the generation of signatures.

13.2.4.19 SignatureTigte Element

The stucture of a SignatureTime element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | Ho|ds the date/time stamp for the signature.

54 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

13.2.4.20 Format Element

The structure of a Format element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotgtion | specifies the format of the date/time stamp. The producer shall create a data/time format thht
conforms to the syntax described in the W3C Note "Date and Time Formats". The consumer ghall
consider a format that does not conform to the syntax described in that WC3note to be in erfor.
[M6.23]

The dalte and time format definition conforms to the syntax described in the W3C Note “Date and Time

”

Formats.

13.2.4.21 Value Element

The stijucture of a Value element is shown in the following diagram:

namesjpace http://schemas.openxmIformats.org/package/2006/digitaI-signature

annotgtion | Ho|ds the value of the date/tirhe stamp. The producer shall create a value that conforms to the
format specified in the.Format element. The consumer shall consider a value that does not
conform to that format'to be in error. [M6.24]

13.2.4.22 RelatiénshipReference Element

The stijucture of a RefationshipReference element is shown in the following diagram:

diagram | FﬂelmionshipRe’ference |

namespace http://schemas.openxmlformats.org/package/2006/digital-signature
attributes | Name Type Use Default |Fixed |Annotation

Sourceld xsd:string required Specifies the value of the Id attribute of the

©ISO/IEC 2011 — All rights reserved 55

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Relationship element.

annotation | specifies the Relationship element with the specified Id value is to be signed.

13.2.zj
The stqucture of a RelationshipsGroupReference element is shown in the following diagram:

dlagralm |§Helationship—sﬁroupl-'leference |

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

attributes | Name Type Use Default [Fixed Annotation

annotd

Forma

as a whole. [06.10] To sign a subset of relationships, the producer shall use the package-specific relations

transfd
subset
only rg

specified SourceType values. A producer shall not specify more than one relationship transform for a par

relatio
relatio

Produg
consuf

23 RelationshipsGroupReference Element

SourceType xsd:anyURI required Specifies the value of the Type attributg
Relationship elements.

tion Specifies that the group of Relationship eleme_n.t-s with the specified Type value is to
be signed.

designers might permit producensto sign individual relationships in a package or the Relationships

lationships that haveld’values matching the specified Sourceld values or Type values matching th

nships part. A'eonsumer shall treat the presence of more than one relationship transform for a part
nships part\as an error. [M6.35]

ersshall specify a canonicalization transform immediately following a relationships transform and

ners that encounter a relationships transform that is not immediately followed by a canonicalizatio

transform shall generate an error. [M6.26]

13.2.4.24 Relationships Transform Algorithm

of

part
ips

rm. The consumer shall use the package-specific relationships transform to validate the signature when a
of relationships are signed! [M6.25] The transform filters the contents of the Relationships part to include

icular
cular

The relationships transform takes the XML document from the Relationships part and converts it to another
XML document.

56

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

The package implementer might create relationships XML that contains content from several namespaces, along

with versioning instructions as defined in Part 3, “Markup Compatibility and Extensibility”. [06.11]

The relationships transform algorithm is as follows:

Step 1:

1.

Process versioning instructions

The package implementer shall process the versioning instructions, considering that the only know

n

Step 2

Step 3

namespace is the Relationships namespace.
The package implementer shall remove all ignorable content, ignoring preservation attributes)
The package implementer shall remove all versioning instructions.

Sort and filter relationships

The package implementer shall remove all namespace declarations except the Relationships name
declaration.

The package implementer shall remove the Relationships namespace-prefix, if it is present.

The package implementer shall sort relationship elements by Id value in lexicographical order,
considering Id values as case-sensitive Unicode strings.

The package implementer shall remove all Relationship elements that do not have either an Id v4
that matches any Sourceld value or a Type value that matches any SourceType value, among the
Sourceld and SourceType values specified in the transform definition. Producers and consumers
compare values as case-sensitive Unicode strings«[IM6.27] The resulting XML document holds all
Relationship elements that either have an Idvalue that matches a Sourceld value or a Type valu
matches a SourceType value specified in the transform definition.

Prepare for canonicalization

The package implementer shallremove all characters between the Relationships start tag and th
Relationship start tag.

The package implementenshall remove any contents of the Relationship element.

The package implementer shall remove all characters between the last Relationship end tag and

Relationships end-\tag.

If there are no\Relationship elements, the package implementer shall remove all characters betw
the Relationships start tag and the Relationships end tag.

The package implementer shall remove comments from the Relationships XML content.

Thé package implementer shall add a TargetMode attribute with its default value, if this optional

space

lue

shall

e that

b first

he

Een

attribute is missing from the Relationship element.

The package implementer can generate Relationship elements as start-tag/end-tag pairs with em
content, or as empty elements. A canonicalization transform, applied immediately after the
Relationships Transform, converts all XML elements into start-tag/end-tag pairs.

©ISO/IEC 2011 — All rights reserved

pty

57

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

13.3 Digital Signature Example

The contents of digital signature parts are defined by the W3C Recommendation “XML-Signature Syntax and
Processing” with some package-specific modifications specified in §13.2.4.1.

[Example:

Digital signature markup for packages is illustrated in this example. For information about namespaces used in

this example, see Annex F.

<Signature Id="SignatureId" xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference
URI="#idPackageObject"
Type="http://www.w3.0rg/2000/09/xmldsig#0bject">
<Transforms>
<Transform Algorithm="http://www.w3.:org/TR/2001/
REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsigi#shal"/>
<DigestValue>..</DigestValue>
</Reference>
<Reference
URI="#Application"
Type="http://www:w3.0rg/2000/09/xmldsig#0bject">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/
RE€=xml-c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue>..</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>..</SignatureValue>

<KeyInfo>
<X509Data>
<X509Certificate>..</X509Certificate>
</X509Data>

58 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

</KeyInfo>

<Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org
/package/2006/digital-signature”>
<Manifest>
<Reference URI="/document.xml?ContentType=application/
vnd.ms-document+xml" >

<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal”/>
<DigestValue>..</DigestValue>
</Reference>
<Reference
URI="/_rels/document.xml.rels?ContentType=application/
vnd.ms-package.relationships+xml">
<Transforms>
<Transform Algorithm="http://schemas.openxmlformats.org/
package/2005/06/RelationshipTransform">
<pds:RelationshipReference Sourceld="B1"/>
<pds:RelationshipRefé&rence SourceId="A1"/>
<pds:RelationshipReference SourceIld="A11"/>
<pds:RelationshipsGroupReference SourceType=
"http://schémas.custom.com/required-resource"/>
</Transform>
<TransformyAlgorithm="http://www.w3.0rg/TR/2001/
REC-Xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsigt#shal"/>
¢«DigestValue>..</DigestValue>
</Reference>
</Manifest>
<SignatureProperties>

<SignatureProperty Id="idSignatureTime" Target="#Signatureld">

<pds:SignatureTime>
<pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>
<pds:Value>2003-07-16T19:20+01:00</pds:Value>
</pds:SignatureTime>
</SignatureProperty>
</SignatureProperties>

©ISO/IEC 2011 — All rights reserved

59

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

</Object>
<Object Id="Application">..</Object>
</Signature>

end example)

13.4 Generating Signatures

The st¢ps for signing package contents follow the algorithm outlined in §3.1 of the W3C Recommendation “XML-
Signatlire Syntax and Processing,” with some modification for package-specific constructs.

The stgps below might not be sufficient for generating signatures that contain application-defined’Object
elements. Format designers that utilize application-defined Object elements shall also define.the additiona
steps that shall be performed to sign the application-defined Object elements.

To gengrate references:
1. | For each package part being signed:

a. The package implementer shall apply the transforms, d@s determined by the producer, to the
contents of the part. [Note: Relationships transforms\are applied only to Relationship parts.
When applied, the relationship transform filtersithe subset of relationships within the ent|re
Relationship part for purposes of signing. end note]

b. The package implementer shall calculate'the digest value using the resulting contents of the
part.

2. | The package implementer shall create a.Reference element that includes the reference of the part with
the query component matching the ggntent type of the target part, necessary Transform elements, the
DigestMethod element and the DigestValue element.
3. | The package implementer shall construct the package-specific Object element containing a Manifest
element with both the child)Reference elements obtained from the preceding step and a child
SignatureProperties.element, which, in turn, contains a child SignatureTime element.

4. | The package implementer shall create a reference to the resulting package-specific Object elemer

—+

When pigning Objectelement data, package implementers shall follow the generic reference creation alggrithm
descrijed in §3.1 of the W3C Recommendation “XML-Signature Syntax and Processing”. [M6.28]

To generatetsignatures:

1. Fhk ement
CanonicalizationMethod element, and at least one Reference element.

2. The package implementer shall canonicalize the data and then calculate the SignatureValue element
using the SignedInfo element based on the algorithms specified in the SignedInfo element.

3. The package implementer shall construct a Signature element that includes SignedInfo, Object, and
SignatureValue elements. If a certificate is embedded in the signature, the package implementer shall

also include the KeylInfo element.

60 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

13.5 Validating Signatures

Consumers validate signatures following the steps described in §3.2 of the W3C Recommendation “XML-
Signature Syntax and Processing.” When validating digital signatures, consumers shall verify the content type
and the digest contained in each Reference descendant element of the SignedInfo element, and validate the
signature calculated using the SignedInfo element. [M6.29]

olication—dafin

The steps halowrmicht nat bao cufficiant +o vyalidatn cignatiirac that ~apmdain o
(¢ it ot f pr€atoR—aeHh

PR CTOW T ST e O IOt U eTreT T toO v otot T ot ot C o tro T CoTrtoTTT

ap ements.
Format designers that utilize application-defined Object elements shall also define the additional steps.that shall

P

be performed to validate the application-defined Object elements.
To valiflate references:

1. [The package implementer shall canonicalize the SignedInfo element based on the
CanonicalizationMethod element specified in the SignedInfo element.
2. | For each Reference element in the SignedInfo element:

The package implementer shall obtain the Object element.tobe digested.
For the package-specific Object element, the package implementer shall validate references to
signed parts stored in the Manifest element. The package implementer shall consider
references invalid if there is a missing part. [M6:9] [Note: If a relationships transform is spgcified
for a signed Relationships part, only the specified subset of relationships within the entire
Relationships part are validated. end note]

c. Forthe package-specific Object elemerit; validation of Reference elements includes verifyling
the content type of the referenced.part and the content type specified in the reference guery
component. Package implementers shall consider references invalid if these two values are
different. The string comparison shall be case-sensitive and locale-invariant. [M6.11]

d. The package implementer shall digest the obtained Object element using the DigestMethpd
element specified in_the Reference element.

e. The package implementer shall compare the generated digest value against the DigestValue
element in the Reference element of the SignedInfo element. Package implementers shall
consider references invalid if there is any mismatch. [M6.30]

To valiflate signatures:

1. | The package implementer shall obtain the public key information from the KeyInfo element or frgm an
external source.

2. | Fhe package implementer shall obtain the canonical form of the SignatureMethod element using|the

CanonicalizationMethod element. The package implementer shall use the result and the previously
obtained KeyInfo element to confirm the SignatureValue element stored in the SignedInfo element.
The package implementer shall decrypt the SignatureValue element using the public key prior to
comparison.

©ISO/IEC 2011 — All rights reserved 61

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

13.5.1 Signature Validation and Streaming Consumption

Streaming consumers that maintain signatures shall be able to cache the parts necessary for detecting and
processing signatures. [M6.31]

13.6 Support for Versioning and Extensibility

The package digital signature infrastructure supports the exchange of signed packages between current and
future [package clients.

13.6.11 Using Relationship Types

Future|versions of the package format might specify distinct relationship types for revised signature parts.|Using
these :lelationships, producers would be able to store separate signature information for current and prevjous

versions. Consumers would be able to choose the signature information they know how t¢ validate.

Figure[13-2, “Part names and logical item names”, illustrates this versioning capability that might be available in
futureversions of the package format.

Figure [13-2. A package containing versioned signatures

. ™y
Pelatiorchip Pebtiorchp
{verman i iWarmon 2i
Digital Signature Digital Mznature
XML Signature XML Sigrature
Part Part
“Wersion 1) fWersion 2
S A

13.6.2 MarKuap Compatibility Namespace for Package Digital Signatures

The palckage implementer shall not use the Markup Compatibility namespace, as specified in Annex F wit)li)n the
package-specific Object element. The package implementer shall consider the use of the Markup Compatipility

namesjpace within the package-specific Object element to be an error. [M6.32]

Format designers might specify an application-defined package part format that allows for the embedding of
versioned or extended content that might not be fully understood by all present and future implementations.
Producers might create such embedded versioned or extended content and consumers might encounter such
content. [06.12] [Example: An XML package part format might rely on Markup Compatibility elements and
attributes to embed such versioned or extended content. end example]

62 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

If an application allows for a single part to contain information that might not be fully understood by all
implementations, then the format designer shall carefully design the signing and verification policies to account
for the possibility of different implementations being used for each action in the sequence of content creation,
content signing, and signature verification. Producers and consumers shall account for this possibility in their
signing and verification processing. [M6.33]

©ISO/IEC 2011 — All rights reserved 63

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

(Blank page)

6n

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2

Annex A.
(normative)

Resolving Unicode Strings to Part Names

Package clients might use strings of Unicode characters to represent relative references to parts,;in a/packs
Furthef in this Annex, such strings are referred to as Unicode strings. [Example: Values of xsd:anyURI datg
within XML markup are Unicode strings. end example]

This an

The did

identifyy string transformations.

Figure |A—1. Strings are converted to part names for referencing parts

nex specifies how such Unicode strings shall be resolved to part names.

gram below illustrates the conversion path from the Unicode string to a part name. The numbered

1] 2] 3] 4]
U]"C.ode (12t Rl —[23Fs] URF | —[3-4}* PartName
dtring
A Unicpde string representing a URI can be,passed to the producer or consumer. The producing or consun
applicgtion shall convert the Unicodestring to a URI. If the URI is a relative reference, the application shall
resolve it using the base URI of the'part, which is expressed using the pack scheme, to the URI of the refer
part. [IM1.33]
The prpcess for resolving-a.hicode string to a part name follows Arcs [1-2], [2-3], and [3-4].
A.1 | Creatiggan IRI from a Unicode String
With referencexto’Arc [1-2] in Figure A—1, a Unicode string is converted to an IRl by percent-encoding each

charac

Ler that does not belong to the set of reserved or unreserved characters as defined in RFC 3986.

011(E)

ge.
type

arcs

ing

enced

ASCII

A.2

Creating a URI from an IRI

With reference to Arc [2-3] in Figure A—1, an IRl is converted to a URI by converting non-ASCII characters as
defined in Step 2 in §3.1 of RFC 3987

If a consumer converts the URI back into an IRI, the conversion shall be performed as specified in §3.2 of RFC
3987. [M1.34]

©ISO/IEC 2011 — All rights reserved

65

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

A.3 Resolving a Relative Reference to a Part Name

If the URI reference obtained in §A.2 is a URI, it is resolved in the regular way, that is, with no package-specific
considerations. Otherwise, if the URI reference is a relative reference, it is resolved (with reference to Arc [3-4]
in Figure A—1) as follows:

Percent-encode each open bracket ([) and close bracket (]).

ancadaaach - narcan + {0/ clharactnr that et £Aall v dhyv
€eRcote-CatpereeRt 7o triafattertRatTiS ROtToHOwWeao

N
o
D
9
D
D

>

at

an-octet

Un-percent-encode each percent-encoded unreserved character.
Un-percent-encode each forward slash (/) and back slash (\).
Convert all back slashes to forward slashes.

“n a n,

If present in a segment containing non-dot (“.”) characters, remove trailing dot (") characters frgm

o vk w

each segment.
Replace each occurrence of multiple consecutive forward slashes (/) with:a‘single forward slash.

® N

If a single trailing forward slash (/) is present, remove that trailing forward slash.
9. | Remove complete segments that consist of three or more dots.

10| Resolve the relative reference against the base URI of the partsholding the Unicode string, as it is defined
in §5.2 of RFC 3986. The path component of the resulting absolute URI is the part name.

A.4 | String Conversion Examples

[Example:

Examples of Unicode strings converted to IRIs, URIsand part names are shown below:

Unicode string IRI ‘ (5{‘\ URI Part name
/a/b.xml /a/b.xml /a/b.xml /a/b.xml
/a/u.xml /a/u.xml /a/%D1%86.xml| | /a/%D1%86.xml
/%41/%61.xml [%41/%61.xml /%41/%61.xml JA/a.xml
/%25XY.xml J/%25XY.xml /%25XY.xml /%25XY.xml
J%XY.xml J%XY.xml /%25XY.xml /%25XY.xml
/%2541.xml /%2541 .xml /%2541 .xml /%2541 .xml
/../a.xml /../a.xml /../a.xml Ja.xml
/./usxml /./u.xml /./%D1%86.xm| | /%D1%86.xml
19%2e/%2ef/a.xml | /%2e/%2e/a.xml| | /%2e/%2e/a.xml| | /a.xml
\a.xml %5Ca.xml %5Ca.xml Ja.xml
\%41.xml %5C%41.xml %5C%41.xml JA.xml
/%D1%86.xml /%D1%86.xml /%D1%86.xml /%D1%86.xml
\%2e/a.xml %5C%2e/a.xml %5C%2e/a.xml Ja.xml

end example]

66 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2

Annex B.
(normative)
Pack URI

A packpge is a logical entity that holds a collection of parts. This Open Packaging specification defines a wa

use UR

the guldelines in RFC 3986.

The fol

characters, sub-delims, unreserved characters, pchar, pct-encoded characters, query; fragment, and resou

B.1

RFC 3986 provides an extensible mechanism for defining new kinds of UURIs based on new schemes. Schem

the pre

specififation defines a specific URI scheme used to refer to partsiin a package: the pack scheme. A URI tha
the pagk scheme is called a pack URI.

The Pajck URI scheme "pack" is a provisional URI schemein the IANA-maintained registry of URI Schemes |
://www.iana.org/assignments/uri-schemes.html. A provisional registration does not have an expirarion

at http
date. H

The pajck URI grammar is defined as follows:

padk URI = "pack://" authority ["/" | path]
authority = *(unreserved | sub-delims | pct-encoded)
path = 1*("/"(rsegment)
segment = 1*(pchar)

unreserved, sub<deYims, pchar and pct-encoded are defined in RFC 3986

The authority.component contains an embedded URI that points to a package. The package implementer

create

Is to reference part resources inside a package. This approach defines a new scheme infaccordance

lowing terms are used as they are defined in RFC 3986: scheme, authority, path,;segment, reserved

Pack URI Scheme

” .

fix in a URI before the colon. [Example: “http”, “ftp”, and “file"/ end example] This Open Packaging

urther information on provisional registrations can be found at http://www.rfc-editor.org/rfc/rfc43

an embedded URI that meets the requirements defined in RFC 3986 for a valid URI. [M7.1] §B.3 de{

the rulesfor composing pack URIs by combining the URI of an entire package resource with a part name.

011(E)

y to
with

ce.

es are

It uses

bcated

O5.txt.

hall
cribes

The pa

ckage implementer shall not create an authority component with an unescaped colon (:) character.

[M7.4] Consumer applications, based on the obsolete URI specification RFC 2396, might tolerate the presence of

an une

scaped colon character in an authority component. [07.1]

©ISO/IEC 2011 — All rights reserved

67

http://www.iana.org/assignments/uri-schemes.html
http://www.rfc-editor.org/rfc/rfc4395.txt
https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

The optional path component identifies a particular part within the package. The package implementer shall
only create path components that conform to the part naming rules. When the path component is missing, the
resource identified by the pack URI is the package as a whole. [M7.2]

In order to be able to embed the URI of the package in the pack URI, it is necessary either to replace or to
percent-encode occurrences of certain characters in the embedded URI. For example, forward slashes (/) are
replaced with commas (,). The rules for these substitutions are described in §B.3.

The opgtional query component in a pack URI is ignored when resolving the URI to a part.

A pack|URI might have a fragment identifier as specified in RFC 3986. If present, this fragment applies to
whateyer resource the pack URI identifies.

[Example:
Example B—1. Using the pack URI to identify a part

The following URI identifies the “/a/b/foo.xml” part within the “http://www:openxmlformats.org/my.confainer”
package resource:

pagk://http%3c, ,www.openxmlformats.org,my.containér/a/b/foo.xml
end expmple]
[Example:
Examp|e B—2. Equivalent pack URIs
The following pack URIs are equivalent:

pagk://http%3c, ,www.openxmlformats.org,my.container
pagk://http%3c, ,www.openxilformats.org,my.container/

end expmple]
[Example:
Example B—3. A pack URI with percent-encoded characters

The following-URI identifies the “/c/d/bar.xml” part within the
“http://myalias:pswr@www.my.com/containers.aspx?my.container” package:

pack://http%3c, ,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container
/c/d/bar.xml

end example]

68 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

B.2 Resolving a Pack URI to a Resource

The following is an algorithm for resolving a pack URI to a resource (either a package or a part):

1. Parse the pack URI into the potential three components: scheme, authority, path, as well as any
fragment identifier.

2. Inthe authority component, replace all commas (,) with forward slashes (/).

3. (UA-pereent-encodeASCH-charactersrtheresultingautheritycompenent

4. | The resultant authority component is the URI for the package as a whole.

5.| If the path component is empty, the pack URI resolves to the package as a whole and the résolutign
process is complete.

6. | A non-empty path component shall be a valid part name. If it is not, the pack URI is.invalid.

7. | The pack URI resolves to the part with this part name in the package identified by-the authority
component.

[Example:

Example B—4. Resolving a pack URI to a resource
Given the pack URI:

pagk://http%3c, ,www.my.com,packages.aspx%3fmyrpackage/a/b/foo.xml
The components:

<authority>= http%3c, ,www.my.com, packages.aspx%3fmy.package
<p3dth>= /a/b/foo.xml

Are copverted to the package URI:
http://www.my.com/packages.aspx?my.package
And thg path:
/a/b/foo.xml

Therefpre, this URI refers to a part named “/a/b/foo.xml” in the package at the following URI:
http://www.mycom/packages.aspx?my.package.

end expmplel

B.3 Composing a Pack URI

The following is an algorithm for composing a pack URI from the URI of an entire package resource and a part
name.

In order to be suitable for creating a pack URI, the URI reference of a package resource shall conform to
RFC 3986 requirements for absolute URIs.

©ISO/IEC 2011 — All rights reserved 69

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

To compose a pack URI from the absolute package URI and a part name, the following steps shall be performed,

in order:

The re

Remove the fragment identifier from the package URI, if present.

Percent-encode all percent signs (%), question marks (?), at signs (@), colons (:) and commas (,) in
package URI.

Replace all forward slashes (/) with commas (,) in the resulting string.

the

Append the resulting string to the string “pack://”.

Append a forward slash (/) to the resulting string. The constructed string represents a pack URI wi
blank path component.

Using this constructed string as a base URI and the part name as a relative reference, @pply the ru
defined in RFC 3986 for resolving relative references against the base URI.

ult of this operation is the pack URI that refers to the resource specified by the part name.

[Example:

Examp|e B-5. Composing a pack URI

Given the package URI:

http://www.my.com/packages.aspx?my.package

And th

/a

e part name:

foo.xml

The pack URI is:

pagk://http%3c, ,www.my.com,packages.aspx%3fmy.package/a/foo.xml

end ex|

B.4

In som
equiva

hmple)

Equivalence

e scenarios, suehnas caching or writing parts to a package, it is necessary to determine if two pack U
Jent without résolving them.

The package implementer shall consider pack URIs equivalent if:

[M7.3]

70

ha

1]

S

RlIs are

ond

The scheme components are octet-by-octet identical after they are both converted to lowercase;

The URIs, decoded as described in §B.2 from the authority components are equivalent (the equivalency

rules by scheme, as per RFC 3986); and
The path components are equivalent when compared as case-insensitive ASCII strings.

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Annex C.
(normative)
ZIP Appnote.txt Clarifications

The ZIH
in the
require
C1

Data d

specification includes a number of features that packages do not support. Some ZIP features/are c
context of this Open Packaging specification. Package producers and consumers shall adhére to the
ments noted below.

Archive File Header Consistency

bscribing files stored in the archive is substantially duplicated in the Local Rile Headers and Data

Descriptors, and in the File headers within the Central Directory Record. ForaZIP archive to be a physical

forap
fields g

hckage, the package implementer shall ensure that the ZIP archive fiolds equal values in the approp
f every File Header within the Central Directory and the corresponding Local File Header and Data

Descriptor pair. [M3.14]

C.2

Table Key

“Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex C indicates
package implementer shall support readingthe ZIP archive containing this record or field, howeve
support might mean ignoring. [M3.15] D@ping production of a package, a “Yes” value for a field in
in Annex C indicates that the packageimplementer shall write out this record or field. [M3.16]
“No” — A “No” value for a field ih a‘table in Annex C indicates the package implementer shall not
this record or field during consumption or production of packages. [M3.17]

“Optional” — An “Optional” value for a record in a table in Annex C indicates that package implem
might write this record ddring production. [03.2]

“Partially, details betow” — A “Partially, details below” value for a record in a table in Annex Cind
that the record-cohtains fields that might not be supported by package implementers during prod
or consumption. See the details in the corresponding table to determine requirements. [M3.18]
“Only used'when needed” — The value “Only used when needed” associated with a record in a ta
Annex C indicates that the package implementer shall use the record only when needed to store d
the'ZIP archive. [M3.19]

arified

ayer
riate

a

r

h table

use

enters

cates
Liction

ble in
ata in

Table C-1,“Support for records”, specifies the requirements for package production, consumption, and editing

in regard to particular top-level records or fields described in the ZIP Appnote.txt. [Note: Editing, in this context,

means in-place modification of individual records. A format specification can require editing applications to

instead modify content in-memory and re-write all parts and relationships on each save in order to maintain

more rigorous control of ZIP record usage. end note]

©ISO/IEC 2011 — All rights reserved

71

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Table C-1. Support for records

Record name

Supported on

Supported on

Pass through on

Consumption Production editing
Local File Header Yes (partially, details Yes (partially, details Yes
below) below)
File data Yes Yes Yes
Data dpscriptor Yes Optional Optional
Archive decryption No No No
heade
Archive extra data No No No
record
Central directory Yes (partially, details Yes (partially, details Yes
structyre: below) below)
File hepder
Central directory Yes (ignore the Optional Optional
structyre: signature data)
Digitallsignature
Zip64 ¢nd of central Yes (partially, details Yes (partially, details Optional
directqry record V1 below) below, used'only when
(from gpec version needed)
4.5)
Zip64 ¢nd of central No No No
directqry record V2
(from gpec version
6.2)
Zip64 ¢nd of central Yes (partially, details Yes (partially, details Optional
directqry locator below) below, used only when
needed)
End of|central Yes (partially, details Yes (partially, details Yes

directqry record

below)

below, used only when
needed)

Table ¢-2, “Support for record components”, specifies the requirements for package production, consumption,

and eqiting in regard to individual record components described in the ZIP Appnote.txt.

Table C-2. Support for record components

Record Field Supported on Supported on Pass through
Consumption Production on editing
Local File Header Local file header signature | Yes Yes Yes

72

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Record Field Supported on Supported on Pass through
Consumption Production on editing
Version needed to extract | Yes (partially, see | Yes (partially, see | Yes (partially,
Table C-3) Table C-3) see Table C-3)
General purpose bit flag Yes (partially, see | Yes (partially, see | Yes (partially,
Table C-5) Table C-5) see Table C-5)
Compression method Yes(partiatty, see [Yes(partiatly, see | Yes(partially,
Table C-4) Table C-4) see Fable C-4)
Last mod file time Yes Yes Yes
Last mod file date Yes Yes Yes
Crc-32 Yes Yes Yes
Compressed size Yes Yes Yes
Uncompressed size Yes Yes Yes
File name length Yes Yes Yes
Extra field length Yes Yes Yes
File name (variable size) Yes Yes Yes
Extra field (variable size) Yes (partially, see | Yes (partially, see | Yes (partially,
Tablel€36) Table C-6) see Table C-6)
Centra] directory Central file header Yes Yes Yes
structyre: File header signature
version made by: high Yes Yes (0 =MS-DOS | Yes
byte is default
publishing value)
Version made(by: low byte | Yes Yes Yes
Version néeded to extract | Yes (partially, see | Yes(1.0,1.1,2.0, | Yes
(see Table'C-3 for details) | Table C-3) 4.5)
General purpose bit flag Yes (partially, see | Yes (partially, see | Yes (partially,
Table C-5) Table C-5) see Table C-5)
Compression method Yes (partially, see | Yes (partially, see | Yes (partially,
Table C-4) Table C-4) see Table C-4)
Last mod file time (Pass Yes Yes Yes
through, no
interpretation)
[ast mod file date (Pass Yes Yes Yes
through, in interpretation)
Crc-32 Yes Yes Yes
Compressed size Yes Yes Yes
Uncompressed size Yes Yes Yes
File name length Yes Yes Yes
©ISO/IEC 2011 — All rights reserved 73

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Record Field Supported on Supported on Pass through
Consumption Production on editing
Extra field length Yes Yes Yes
File comment length Yes Yes Yes
(always set to 0)

Disk number start Yes (partial — no | Yes (always 1 Yes (partial —
muttdisk atsky no mutt] disk
archives) archives)

Internal file attributes Yes Yes Yes

External file attributes Yes Yes Yes

(Pass through, no (MS DOS defgult

interpretation) value)

Relative offset of local Yes Yes Yes

header

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see)| Yes (partially, see | Yes (partially,
Table C-6) Table C-6) see Table C-6)

File comment (variable Yes Yes (always set to | Yes

size) empty)

Zip64 ¢nd of central Zip64 end of central Yes Yes Yes
directqry V1 (from spec | directory signature

versm:ll 4.5, only used Size of zip64 end of central”| Yes Yes Yes
when needed) directory

Version made by:igh Yes Yes (0 = MS-DOS | Yes

byte (Pass through, no is default

interpretation) publishing value)

Version made by: low byte | Yes Yes (always 4.5 or | Yes

above)

Vlersion needed to extract | Yes (4.5) Yes (4.5) Yes (4.5

(see Table C-3 for details)

Number of this disk Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no mult{ disk
archives) archives)

Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —

the start of the central multi disk disk) no multi disk

directory archives) archives)

Total number of entriesin | Yes Yes Yes

the central directory on

this disk

Total number of entriesin | Yes Yes Yes

the central directory

74

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Record Field Supported on Supported on Pass through
Consumption Production on editing
Size of the central Yes Yes Yes
directory
Offset of start of central Yes Yes Yes
directory with respect to
the starting disk number
Zip64 extensible data Yes No Yes
sector
Zip64 ¢nd of central Zip64 end of central dir Yes Yes Yes
directqry locator (only locator signature
used when needed) Number of the disk with Yes (partial — no | Yes (always1 Yes (partial —
the start of the zip64 end multi disk disk) no mult(disk
of central directory archives) archives)
Relative offset of the zip64 | Yes Yes Yes
end of central directory
record
Total number of disks Yes (partiak/no | Yes (always 1 Yes (partial —
multi disk disk) no multj disk
archives) archives)
End of|central directory | End of central dir Y€s Yes Yes
record signature
Number of this disk Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no mult{ disk
archives) archives)
Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —
the start of. the central multi disk archive) | disk) no mult{ disk
directary archive)
Total'number of entriesin | Yes Yes Yes
the“central directory on
this disk
Total number of entriesin | Yes Yes Yes
the central directory
Size of the central Yes Yes Yes
directory
Offsetof startofcentrat Yes Yes Yes
directory with respect to
the starting disk number
ZIP file comment length Yes Yes Yes
ZIP file comment Yes No Yes

©ISO/IEC 2011 — All rights reserved

75

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Table C-3, “Support for Version Needed to Extract field”, specifies the detailed production, consumption, and
editing requirements for the Extract field, which is fully described in the ZIP Appnote.txt.

Table C-3. Support for Version Needed to Extract field

Version Feature Supported on Supported on Pass through on
Consumption Production editing
1.0 Default value Yes Yes Yes
1.1 File is a volume label Ignore No (rewrite/remove)
2.0 File is a folder (directory) Ignore No (rewrite/removg)
2.0 File is compressed using Yes Yes Yes
Deflate compression
2.0 File is encrypted using No No No
traditional PKWARE
encryption
2.1 File is compressed using No No No
Deflate64(tm)
2.5 File is compressed using No No No
PKWARE DCL Implode
2.7 File is a patch data set No No No
4.5 File uses ZIP64 format Yes Yes Yes
extensions
4.6 File is compressed using No No No
BZIP2 compression
5.0 File is encrypted using DES No No No
5.0 File is encrypted using 3DES | No No No
5.0 File is encrypted using No No No
original RC2 encryption
5.0 File is encryptedusing RC4 No No No
encryption
5.1 File is encpypted using AES No No No
encryption
5.1 Filetis'encrypted using No No No
corrected RC2 encryption
5.2 T fiteisencryptedusing No No No
corrected RC2-64
encryption
6.1 File is encrypted using non- | No No No
OAEP key wrapping
6.2 Central directory encryption | No No No
76 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Table C-4, “Support for Compression Method field”, specifies the detailed production, consumption, and editing
requirements for the Compression Method field, which is fully described in the ZIP Appnote.txt.

Table C—4. Support for Compression Method field

Code Method Supported on | Supported Pass
Consumption on through
Pl Uduut;uu Ul Cd;t;lls
0 The file is stored (no compression) Yes Yes Yes
1 The file is Shrunk No No No
2 The file is Reduced with compression No No No
factor 1
3 The file is Reduced with compression No No No
factor 2
4 The file is Reduced with compression No No No
factor 3
5 The file is Reduced with compression No No No
factor 4
6 The file is Imploded No No No
7 Reserved for Tokenizing compression No No No
algorithm
8 The file is Deflated Yes Yes Yes
9 Enhanced Deflating using Deflate64™ No No No
10 PKWARE Data Compression Library No No No
Imploding
11 Reserved by PKWARE No No No
Table €5, “Support for modgésy/structures defined by general purpose bit flags”, specifies the detailed
produdtion, consumptionjand editing requirements when utilizing these general-purpose bit flags within
recordp.
Table ¢-5. Support'for modes/structures defined by general purpose bit flags
Bit &\) Feature Supported Supported Pass
O_; on on through
Consumption | Production on
editing
0 If set, indicates that the file is encrypted. No No No

©ISO/IEC 2011 — All rights reserved 77

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
1, Bit | Bit Yes Yes Yes
2 2 1
0 Al LL \ H i
J I‘lUIIIIClI\ CII’ \.UIIIPICDDIUIIUPLIUII
was used.
0 1 Maximum (-exx/-ex) compression
option was used.
1 0 Fast (-ef) compression option was
used.
1 1 Super Fast (-es) compression
option was used.
3 | this bit is set, the fields crc-32, compressed size Yes Yes Yes
apd uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data. (PKZIP version 2.04g for DOS only recognizes
this bit for method 8 compression, newer versions
of PKZIP recognize this bit for any compression
ethod.)
4 Rbserved for use with method 8, for enhanced Ignore Bitssetto | Yes
deflating 0
5 | this bit is set, this indicates that the file:is Ignore Bits setto | Yes
cpmpressed patched data. (Requires PKZIP version 0
2170 or greater.)
6 Strong encryption. If this bitds'set, you should set Ignore Bits setto | Yes
the version needed to extract value to at least 50 0
apd you shall set bit Q.. If AES encryption is used,
the version needed-to-extract value shall be at
Ig@ast 51.
7 Currently unused Ignore Bitssetto | Yes
0
8 Currently unused Ignore Bitssetto | Yes
0
9 Currently unused Ignore Bits setto | Yes
0
10 | Currently unused Ignore Bits setto | Yes
0
11 | Currently unused Ignore Bits setto | Yes
0

78 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
12 | Reserved by PKWARE for enhanced compression Ignore Bitssetto | Yes
0
13 | Used when encrypting the Central Directary ta lgnore Bits set to Yes
indicate selected data values in the Local Header 0
afe masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.
14 | Reserved by PKWARE Ignore Bits setto | Yés
0
15 | Reserved by PKWARE Ignore Bits set’to~ | Yes
0

Table -6, “Support for Extra field (variable size), PKWARE-reserved”, specifies the detailed production,
consurpption, and editing requirements for the Extra field entries reserved by PKWARE and described in th

Appnote.txt.

Table (6. Support for Extra field (variable size), PKWARE=reserved

>N
Field Field description Supporte ‘oh Supported on Pass through
ID Consg@p ion Production on editing

0x0001 | ZIP64 extended information | Yes Yes Optional
extra field

0x0007 | AV Info Ignore No Yes

0x0008 | Reserved for future Unicode | Ignore No Yes
file name data (PFS)

0x0009 | 0S/2 Ignore No Yes

0x0003 | NTFS Ignore No Yes

0x000¢ | OpenVMS Ignore No Yes

0x000d | Unix Ignore No Yes

0x000¢ |Reserved for file stream and | Ignore No Yes
fork descriptors

0x000f | Patch Descriptor Ignore No Yes

0x0014 | PKCS#7 Store for X.509 Ignore No Yes
Certificates

0x0015 | X.509 Certificate ID and Ignore No Yes
Signature for individual file

©ISO/IEC 2011 — All rights reserved

eZIP

79

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Field Field description Supported on Supported on Pass through
ID Consumption Production on editing
0x0016 | X.509 Certificate ID for Ignore No Yes
Central Directory
0x0017 | Strong Encryption Header Ignore No Yes
0x0018 | Record Management Ignore No Yes
CONtrots
0x0019 | PKCS#7 Encryption Ignore No Yes
Recipient Certificate List
0x006% | IBM S/390 (Z390), AS/400 Ignore No Yes
(1400) attributes —
uncompressed
0x0066 | Reserved for IBM S/390 Ignore No Yes
(2390), AS/400 (1400)
attributes — compressed
0x469(0 | POSZIP 4690 (reserved) Ignore No Yes

Table (-7, “Support for Extra field (variable size), third-party extensions”, specifies the detailed productioh

<

consurpption, and editing requirements for the Extra field entries reserved by third parties and described|in the

ZIP Appnote.txt.

Table ¢-7. Support for Extra field (variable size), thitd<party extensions

"4
Field Field description Supportgﬂ}h Supported on Pass through on
ID Consumption Production editing
0x07cq | Macintosh Ignore No Yes
0x260% | Ziplt Macintosh Ignore No Yes
0x270% | Ziplt Macintosh Ignore No Yes
1.3.5+
0x280% | Ziplt Macintesh Ignore No Yes
1.3.5+
0x334d | Info-ZIPYMacintosh Ignore No Yes
0x434] | Acorn/SparkFS Ignore No Yes
0x4453 Y"Windows NT security | Ignore No Yes
descriptor (binary
ACL)
0x4704 | VM/CMS Ignore No Yes
0x470f | MVS Ignore No Yes
0x4b46 | FWKCS MD5 (see Ignore No Yes
below)

80

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Field Field description Supported on Supported on Pass through on
ID Consumption Production editing
Ox4c41 | 0S/2 access control Ignore No Yes
list (text ACL)
0x4d49 | Info-ZIP OpenVMS Ignore No Yes
Ox4f4c | Xceed original Ignore No Yes
focatiomextra fietd
0x5356 | AOS/VS (ACL) Ignore No Yes
0x545% | extended timestamp Ignore No Yes
0x554¢ | Xceed unicode extra Ignore No Yes
field
0x585% | Info-ZIP Unix (original, | Ignore No Yes
also 0S/2, NT, etc)
0x6542 | BeOS/BeBox Ignore No Yes
0x756¢ | ASi Unix Ignore No Yes
0x785% | Info-ZIP Unix (new) Ignore No Yes
0xa22Q | Padding, Microsoft Optional Optional Optional
Oxfd4d | SMS/QDOS Ignore No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order &
[M3.20]

The palckage implementer shall ensure that allfields that contain “number of entries” do not exceed
2,147483,647. [M3.21]

©ISO/IEC 2011 — All rights reserved

t

81

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

W 00 N O U1 A W N -

W W W W WNNRNRNNNNNNRNNIERRRRR R R P P
D W NP O OVOWNOUWUHBRWNIEROWOOWBDNO®DOULS-AMWWN RO

ISO/IEC 29500-2:2011(E)

Annex D.
(normative)
Schemas - W3C XML Schema

This Pqrt of ISO/IEC 29500 includes a family of schemas defined using the W3C XML Schema 1.0 syntax. Th
normative definitions of these schemas follow below, and they also reside in an accompanyingfile named

[0)

OpenPackagingConventions-XMLSchema.zip, which is distributed in electronic form.

D.1 | Content Types Stream

<xs:schema xmlns="http://schemas.openxmlformats.org/package/2006/content-types"
xmlng:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.openxmlformats.org/package/2006/content-types"
elemgntFormDefault="qualified" attributeFormDefault="unqualified"-“blockDefault="#all">
<xs:element name="Types" type="CT Types"/>
<xs:element name="Default" type="CT Default"/>
<xs:element name="Override" type="CT Override"/>
<x$:complexType name="CT_Types">
<xs:choice minOccurs="0" maxOccurs="unbounded{>
<xs:element ref="Default"/>
<xs:element ref="Override"/>
</xs:choice>
</Xxs:complexType>
<x$:complexType name="CT_Default">
<xs:attribute name="Extension}~type="ST Extension" use="required"/>
<xs:attribute name="ContentTypeé" type="ST ContentType" use="required"/>
</Xxs:complexType>
<x$:complexType name="CT_Qverride">
<xs:attribute name="ContentType" type="ST ContentType" use="required"/>
<xs:attribute name="PartName" type="xs:anyURI" use="required"/>
</Xxs:complexType>
<x$:simpleType name="ST_ ContentType">
<xs:restri€tion base="xs:string">
<xs:pattenn value=" (((([\p{IsBasicLatin}-
[\p{Cc[r\CY)&1t;8>@, ; : \\" /\[\I\?=\{\}\s\t]1])+))/((([\p{IsBasiclLatin}-
[\p{Ccpӹ\(\)&1t;>@, ; : \\" /\[\I\?=\{\}\s\t]])+)) ((\s+)*; (\s+)*(((([\p{IsBasicLatin}-
[\p{Ccp\(\)&1t;> @, ; : \\" /\[\]\?=\{\}\s\t]]1)+))=((([\p{IsBasicLatin}-
[\p{Cch#F275 T8t 8t B P Saros A=Y s O H&auets (i p{Estatinm————————
1Supplement}\p{IsBasiclLatin}-[\p{Cc}"\n\r]]|(\s+))|(\\[\p{IsBasiclLatin}]))*"))))*)"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ST_Extension">
<xs:restriction base="xs:string">
<xs:pattern value=" ([!$& ' \(\)*\+,:=]|(%[0-9a-fA-F][0-9a-fA-F])|[:@]|[a-zA-Z0-9\-_~])+"/>

82 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

35
36
37

O 00 N O U1 A W N -

DA DA DWW W W W W W W WWNNNDNNNDNNDNDNNNDNIRRRRRRPR R B B
W N P O VL 0 N OO UL A WNRFP O OO NOO ULE WN PP O OV NGO U A WNN = O

ISO/IEC 29500-2:2011(E)

</xs:restriction>
</xs:simpleType>

</xs:schema>

D.2 Core Properties Part

xmlns="http://schemas.openxmlformats.org/package/2006/metadata/core-properties"
xmlngTxs= 5 W3 o= 5 3 5

xmlng:dcterms="http://purl.org/dc/terms/" elementFormDefault="qualified" blockDefault="#all">

<x$:import namespace="http://purl.org/dc/elements/1.1/"
4chemalLocation="http://dublincore.org/schemas/xmls/qdc/2003/04/02/dc.xsd"/>
<x$:import namespace="http://purl.org/dc/terms/"
4chemalLocation="http://dublincore.org/schemas/xmls/qdc/2003/04/02/dcterms.xsd"/>
<x$:import id="xml" namespace="http://www.w3.org/XML/1998/namespace"/>
<xs:element name="coreProperties" type="CT CoreProperties"/>
<x$:complexType name="CT_CoreProperties">
<xs:all>

<xs:element name="category" minOccurs="0" maxOccurs="1" type="xs:string"/>

<xs:element ref="dcterms:created" minOccurs="0" maxOccurs="1"/>

<xs:element ref="dc:creator" minOccurs="0" maxOccurs=#1"/>

<xs:element ref="dc:description" minOccurs="0" max@ecurs="1"/>

<xs:element ref="dc:identifier" minOccurs="0" maxOccurs="1"/>
<xs:element name="keywords" minOccurs="0" maxOcclrs="1" type="CT Keywords"/>

<xs:element ref="dc:language" minOccurs="0"CmaxOccurs="1"/>

<xs:element ref="dcterms:modified" minOccurs="0" maxOccurs="1"/>
<xs:element name="revision" minOccurs="0" maxOccurs="1" type="xs:string"/>
<xs:element ref="dc:subject" minOccurs="0" maxOccurs="1"/>
<xs:element ref="dc:title" niihOccurs="0" maxOccurs="1"/>
<xs:element name="version"\ minOccurs="0" maxOccurs="1" type="xs:string"/>
</xs:all>
</Xxs:complexType>
<x$:complexType name="CT_{Keywords" mixed="true">
<XSs:sequence>
<xs:element name="*walue" minOccurs="0" maxOccurs="unbounded" type="CT Keyword"/>
</Xs:sequence>
<xs:attribute\ ref="xml:lang" use="optional"/>
</Xxs:complexType>
<x$:complexType name="CT_Keyword">
<xs :simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="xml:lang" use="optional"/>

<xs:element name="contentStatus" minOccurs="0" maxOccurs="1"type="xs:string"/>

<xs:element name="lastModifiedBy" minOccurs="0" maxOccurs="1" type="xs:string"/>
<xs:element name="lastPrinted" minOccurs="0" maxOccurs="1" type="xs:dateTime"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:schema>

<xs:schema targetNamespace="http://schemas.openxmlformats.org/package/2006/metadata/core-properties”

©ISO/IEC 2011 — All rights reserved

83

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

O 00 N OO U A W N R

v b B B D DD SR DD D WWWWWWWWWWNNDNDNNDNDNNDNNDNRRRRRRRRR 2
P O W 00 N OO Ll b W N P O O 00O N OO U WN P O O OWWNO U P WNRPRPRO OOONO UM WN R O

ISO/IEC 29500-2:2011(E)

D.3

Digital Signature XML Signature Markup

<xsd:schema xmlns="http://schemas.openxmlformats.org/package/2006/digital-signature"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.openxmlformats.org/package/2006/digital-signature"
elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all">

<X

</xsd:
</

<X

</
<X

</

<X

</

<X

d:complexType name="CT_SignatureTime">
<xsd:sequence>

<xsd:element name="Format" type="ST Format"/>
<xsd:element name="Value" type="ST Value"/>
Kequence>

sd:complexType>

d:complexType name="CT_RelationshipReference">
<xsd:simpleContent>

</xsd:simpleContent>

sd:complexType>

d:complexType name="CT_RelationshipsGroupReference">
<xsd:simpleContent>

</xsd:simpleContent>
sd:complexType>

d:simpleType name="ST_Format">
<xsd:restriction base="xsd:string!»

</xsd:restriction>

sd:simpleType>

d:simpleType name="ST Nalue">
<xsd:restriction base="xsd:string">

<xsd:element name="SignatureTime" type="CT SignatureTime"/>
<xsd:element name="RelationshipReference" type="CT RelationshipReference"/>

<xsd:extension base="xsd:string">
<xsd:attribute name="SourceId" type="xsd:string" use="required"/>
</xsd:extension>

<xsd:extension base="xsd:string">
<xsd:attribute name="SourceType" type="X8d:anyURI" use="required"/>
</xsd:extension>

<xsd:pattern value="(YYYY)|(Y¥YY-MM) | (YYYY-MM-DD) | (YYYY-MM-DDThh:mmTZD) | (YYYY-MM-
DDThh:mm:ssTZD) | (YYYY-MM-DDThh:mm:ss.sTZD)"/>

<xsd:pattern_Calue="(([0-9][0-9][@-9]1[©-9]))|(([0-9][0-9][©-9][0-9])-((O[1-
91)1(1(ea12)))) [(([e-9]1[e-9]1[0-9][0-9])-((e[1-9])[(1(8]1]2)))-((0[1-9])|(1[e-9])|(2[e-
91 [(3(el1)))) | (([e-9][e-9][e-9][0-9])-((0[1-9])](1(8[1]2)))-((0[1-9])[(1[0-9])](2[e-
91) [¢3(e|1)))T((e[0-91) | (1[0-9]1)|(2(0]1]2]3))): ((0[0-9])|(1[0-9])|(2[0-9]1)[(3[0-9])|l (4[0-
9l (5[e-91)) (((\+|-)((e[e-9]1)|(1[0-91)[(2(@|1]2]3))):((0[0-9])[(1[e-9])|(2[0-9]) | (3[e-
91 | (4[0-91)|(5[0-91)))|2)) | (([@-9]1[@-9][@-9]1[@-9])-((8[1-9])|(1(0|1[2)))-((o[1-9]) (1[0~
91)[(2[e-91)1(3(8]1)))T((e[0-91)[(1[e-91)|(2(8[1]2]3))): (([@-9])|(1[0-9])|(2[@-9])|| (3[e-
91)1(4[0-91)|(5[0-91)):((0[0-9])|(1[0-9])|(2[0-9]1)|(3[0-9])|(4[0-9])[(5[8-91)) (((\+4

)((e[e-91) [(1[6-91)[(2(0|1]2]3))): ((e[e-91) | (1[6-91)[(2[@-91) | (3[0-9])[(4[e-91)|(5[e-
9N z))1(([e-9][e-9]1[6-9]1[0-9])-((8[1-9])|(1(0]1]2)))-((0[1-9])|(1[0-9])](2[0-
91)1(3(e[1)))T((e[0-9]1) | (1[0-91)|(2(0|1]|2]3))): ((0[0-9])[(1[0-91)](2[0-9])|(3[0-9]1)](4[e-
91y (5[0-91)): (((e[e-9]1)](1[0-9])[(2[0-9])|(3[0-91)|(4[0-91)|(5[0-91))\.[0-9]) (((\+]-
)((e[e-91)[(1[6-91)[(2(0|1]2]3))):((e[0-91)|(1[0-9])[(2[@-91)|(3[0-9])|(4[e-91)|(5[e-
anNlzN"/>

</xsd:restriction>

</xsd:simpleType>

84

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

O 00 N O U1 A W N -

N NN NNNNNDNRRR R B B B B B
0 N O U Ds WN R O LOWwWSNOO U HAMWN R O

ISO/IEC 29500-2:2011(E)

| </xsd:schema>

D.4 Relationships Part

<xsd:schema xmlns="http://schemas.openxmlformats.org/package/2006/relationships"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.openxmlformats.org/package/2006/relationships™"
eleme s P . 0 s s m
<xsd:element name="Relationships" type="CT Relationships"/>
<xsd:element name="Relationship" type="CT Relationship"/>
<x$d:complexType name="CT_Relationships">
<xsd:sequence>
<xsd:element ref="Relationship" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<x$d:complexType name="CT_Relationship">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="TargetMode" type="ST TargetMode" use="optiohal"/>
<xsd:attribute name="Target" type="xsd:anyURI" use="required"/>
<xsd:attribute name="Type" type="xsd:anyURI" use="required"/>
<xsd:attribute name="Id" type="xsd:ID" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</Xsd:complexType>
<x$d:simpleType name="ST_TargetMode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="External"/>
<xsd:enumeration value="Internal"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

©ISO/IEC 2011 — All rights reserved

85

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

O 00 N O U1 A W N B

N NN NNNNNNRRR R B B B B B
0 N O U WN R O WL ®MNOO U A WN R O

ISO/IEC 29500-2:2011(E)

Annex E.
(informative)
Schemas - RELAX NG

This clause is informative.

This Pqrt of ISO/IEC 29500 includes a family of schemas defined using the RELAX NG syntax: The definition
these 4chemas follow below, and they also reside in an accompanying file named

OpenP

If discr|
Schem

E.1

bckagingConventions-RELAXNG.zip, which is distributed in electronic form.

epancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the
b is the definitive version.

Content Types Stream

5 of

KML

defaul
"htt

start
Types
Defaul
Overri
CT_Typ
CT_Def
attr
attr
CT_Ove
attr
attr
ST_Con
xsd:

pa

[\p{Cc
[\p{Cc
[\p{Cc
[\p{Cc
b
ST_Ext
xsd:

pa

t namespace =
b://schemas.openxmlformats.org/package/2006/content-types"

Types

element Types { CT_Types }

= element Default { CT_Default }

e = element Override { CT_Override }
s = (Default | Override)*

pult =

ibute Extension { ST_Extension \},
ibute ContentType { ST_ContentType }
rride =

ibute ContentType { ST(CantentType },
ibute PartName { xsdTanyURI }
entType =

Ktring {

tern =

[(°J = e S ||
1l

"(((([\p{IsBasicLatin}-[\p{CcI\x{127}\(\)<>@,; :\\"/\[\I\?=\{\}\s\t]1])+))/((([\p{IsBasicLat

W{1273NON) <@, 5 : \N\/ANNIN2=\NNs\E] 1) +)) ((\s+)*5 (\s+)*(((([\p{IsBasiclatin}-
DAR7FINO) 0@, 5 : \\"/NNI\N2=\{\}\s\t]])+))=((([\p{IsBasiclatin}-

VL2731 (\) <@, 5 : \\"/\[\I\2=\{\ }\s\t]11)+) | ("(([\p{IsLatin-1Supplement}\p{IsBasicLatin}-
\x{1273"\n\r11| (\s+)) [(\\[\p{IsBasicLatin}]))*"))))*)"

in}-

ension =
string {
ttern =
“(LIB&N(\)\¥\+, :=]| (%[0-9a-fA-F][0-9a-fA-F])|[:@] | [a-zA-Z8-9\-_~])+"

86

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

O 00 N OO U A W N R

W W W W WwWwwwNNNNNNNNNNERRRRERR R B B B
N O 0D W N R O VOO NO U RS WNROWLOWNOOOLDIRWNREL O

O 00 N O U1 h W N B

=
= O

E.2 Core Properties Part

ISO/IEC 29500-2:2011(E)

default namespace =
"http://schemas.openxmlformats.org/package/2006/metadata/core-properties”

namespace dc = "http://purl.org/dc/elements/1.1/"

namespace dcterms = "http://purl.org/dc/terms/"

namespace xsi = "http://www.w3.org/2001/XMLSchema-instance"

include "xml.rnc"

start coreProperties
corePrpperties = element coreProperties { CT_CoreProperties }
CT_CorgeProperties =
elempnt category { xsd:string }?
& elpment contentStatus { xsd:string }?
& elpment dcterms:created {
pttribute xsi:type { xsd:QName "dcterms:W3CDTF" }, xml_lang?, W3CDTF
}?
elpment dc:creator { SimpleLiteral }?
elpment dc:description { SimpleLiteral }?
elpment dc:identifier { SimplelLiteral }?
elpment keywords { CT_Keywords }?
elpment dc:language { SimplelLiteral }?
elpment lastModifiedBy { xsd:string }?
elpment lastPrinted { xsd:dateTime }?
elpment dcterms:modified {
pttribute xsi:type { xsd:QName "dcterms:W3CDTF" @}, xml_lang?, W3CDTF

20 0 Q0 Q0 0 o Qo Q0

}?

& elpment revision { xsd:string }?
& elpment dc:subject { SimpleLiteral }?
& elpment dc:title { SimplelLiteral }?
& elpment version { xsd:string }?
CT_Keypords =
mixed {
xmll_lang?,

elpment value { CT_Keyword A&
}
CT_Keypord = xsd:string, xml, lang?
Simpleliteral = xml_langlsy xsd:string
W3CDTF| = xsd:gYear | Xsd:gYearMonth | xsd:date | xsd:dateTime

E.3 | DigitabSignature XML Signature Markup

defaulft nameSpace =
"http: //Aschemas.openxmlformats.org/package/2006/digital-signature”
namesppc€)ds = "http://www.w3.org/2000/09/xmldsig#"

include "xmldsig-core-schema.rnc" {

SignaturePropertyType =
SignatureTime,
attribute Id { xsd:ID }?,
attribute Target { xsd:anyURI }

©ISO/IEC 2011 — All rights reserved

87

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

00 N O U~ W N

ISO/IEC 29500-2:2011(E)

TransformType =
element ds:XPath { xsd:string }?,
(RelationshipReference | RelationshipsGroupReference)*,
attribute Algorithm { xsd:anyURI }

}

SignatureTime = element SignatureTime { CT_SignatureTime }
RelationshipReference =

elempmt—RelationmstripReference {CT_RetationstiipReference f
RelatipnshipsGroupReference =

element RelationshipsGroupReference { CT_RelationshipsGroupReference }
CT_SighatureTime =

element Format { ST _Format },

elemEnt Value { ST_Value }
CT_RelptionshipReference =

xsd:ptring,

attrfibute Sourceld { xsd:string }
CT_RelptionshipsGroupReference =

xsd:ptring,

attrfibute SourceType { xsd:anyURI }
ST_Forfnat =

xsd:ptring {

pafttern =

"(YYYY) | (YYYY-MM) | (YYYY-MM-DD) | (YYYY-MM-DDThh :mmTZD)\ YYYY-MM-DDThh:mm:ssTZD) | (YYYY-MM-
DDThh:mm:ss.sTZD)"

}
ST_Valpe =

xsd:gtring {

pajttern =

"(([6-91[6-91[6-9]1[0-91)) | (([e-9][e-9](@-91[0-9])-((e[1-91)|(1(0|1]|2))))|(([0-9]1[0-9][0-9]
91)-((pl1-91)(2(el1]2)))-((0[1-91) | (1[0-21)1(2[0-9]1)](3(0[1)))) [(([0-91[0-9]1[0-9]1[0-9])-((P[1-
9l (1(el1]2)))-((e[1-91) [(1[0-9]1) [(2[@=91) | (3(@]1)))T((6[0-9])|(1[0-9]1)[(2(0]1]2]3))): ((O[0-
91yl (1fe-91) [(2[6-91) | (3[0-91) | (4[@-91)| (5[@-91)) (((\+|-)((e[6-91)|(1[0-91)|(2(@|1]|2]3))): ((O[P;
91y (1fe-91)[(2[e-91) [(3[e-91) | (4[@-91) | (5[@-91)))1Z)) | (([@-9][0-91[0-91[6-9])-((0[1-9])|(1(e]|1
((e[1-p1)I(1[0-91)[(2[0-91) | (3({1)))T((e[0-91)|(1[0-91)|(2(8|1|2]3))):((0[0-91)|(1[0-91)](2[e-
91) 1 (3[e-91) [(4[e-91) | (5[e-91)) ((e[0-9])|(1[0-91)[(2[0-91)|(3[0-91)|(4[0-9]1) | (5[0-91)) (((\+]|-)
ol (1fe-91)[(2(e]1]2]3))) t(e[0-91)|(1[6-91)|(2[0-91) | (3[0-9]1) | (4[@-91)](5[€-91)))1Z)) | (([e-9]
9][e-9fI[e-91)-((e[1-91)|%1(@|1]|2)))-((0[1-9])|(1[6-91)|(2[0-91)|(3(0|1)))T((0[0-9])](1[e-
ol 1 (2(el1]2]3))):((e[e@39]1)](1[0-91)|(2[0-91)[(3[0-91) | (4[0-91)|(5[@-9])): (((B[0-9])](1[0-9])] (2
91 (3[6-91) | (4[0-91)J(5[0-91))\.[0-91) (((\+|-)((8[0-9])[(1[0-9])|(2(8[1]2]3))): ((0[0-9])|(1[O-
91)1(2fe-91)1(3[@>91) | (4[6-91) | (5[0-91)))12))"

}

[e-

2)))-

(o[0-
e_

0-

—

E.4 | ~Relationships Part

default namespace =
"http://schemas.openxmlformats.org/package/2006/relationships™"

start = Relationships

Relationships = element Relationships { CT_Relationships }
Relationship = element Relationship { CT_Relationship }
CT_Relationships = Relationship*

CT_Relationship =

88 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

10
11
12
13
14

v A W N P

ISO/IEC 29500-2:2011(E)

xsd:
attr
attr
attr
attr

string,

ibute TargetMode { ST_TargetMode }?,
ibute Target { xsd:anyURI },

ibute Type { xsd:anyURI },

ibute Id { xsd:ID }

ST_TargetMode = string "External" | string "Internal"

E.5 Additional Resources

E.5.1 XML

xml_lahg = attribute xml:lang { xsd:language | xsd:string "" }
xml_sppce = attribute xml:space { "default" | "preserve" }
xml_base = attribute xml:base { xsd:anyURI }

xml_id| = attribute xml:id { xsd:ID }

xml_sppcialAttrs = xml_base?, xml_lang?, xml_space?, xml_id?
E.5.2 XML Digital Signature Core
xmldsig-core-schema.rnc (a RELAX NG schema in the compact syntax) can be.created from xmldsig-core-
schemp.rng (a RELAX NG schema in the XML syntax), which is available,at
http://www.w3.org/Signature/2002/07/xmldsig-core-schema.rng.

End of|informative text.

©ISO/IEC 2011 — All rights reserved

89

http://www.w3.org/Signature/2002/07/xmldsig-core-schema.rng
https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Annex F.
(normative)
Standard Namespaces and Content Types

The namespaces available for use in a package are listed in Table F-1, Package-wide namespaces

Table §—1. Package-wide namespaces

Dpscription Namespace URI ,C) v
Content Types http://schemas.openxmliformats.org/package/2006/content-types
Core Pfoperties http://schemas.openxmliformats.org/package/2006/metadata/core-properties
Digital|Signatures http://schemas.openxmliformats.org/package/2006/digital-signature
Relatignships http://schemas.openxmlformats.org/package/2006/relationships
Markup Compatibility | http://schemas.openxmliformats.org/markup-compatibility/2006

The content types available for use in a package are listed in Table F-2, Package-wide content types

Table §—2. Package-wide content types

Description _(\() Content Type
Core Pfoperties part application/vnd.openxmliformats-package.core-properties+xml
Digital|Signature Certificate application/vnd.openxmlformats-package.digital-signature-
part certificate
Digital|Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin

Digital|Signature XML Signature | application/vnd.openxmlformats-package.digital-signature-
part xmlsignature+xml

Relatignships part application/vnd.openxmlformats-package.relationships+xml

Package'implementers and format designers shall not create content types with parameters for the package-

specific parts defined in this Open Packaging specification and shall treat the presence of parameters in these
content types as an error. [M1.22]

The relationship types available for use in a package are listed in Table F-3, Package-wide relationship types.

90 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Table F-3. Package-wide relationship types

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/signature

Digital|Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-

Certifigate signature/certificate

Digital|Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-

Origin signature/origin

ThumUnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

©ISO/IEC 2011 — All rights reserved 91

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Annex G.
(informative)
Physical Model Design Considerations

This an

The ph
three ¢

Figure

nex is informative.

ysical model defines the ways in which packages are produced and consumed. This\model is based
omponents: a producer, a consumer, and a pipe between them.

G—1. Components of the physical model

// irterprocess pipe O

je == [rocess

a3

A prod
that re|
or set

In loca

local-area network 5]

printer

intemet

diredt connedion

ktop printer

ods packages.A-device is a piece of hardware, such as a printer or scanner that performs a single fu
bf functions.'Data is carried from the producer to the consumer by a pipe.

actess, the pipe carries data directly from a producer to a consumer on a single device.

pn

Licer is a piece ofsoftware or a device that writes packages. A consumer is a piece of software or a device

hction

In networked access the consumer and the producer communicate with each other over a protocol. The

significant communication characteristics of this pipe are speed and request latency. For example, this

communication might occur across a process boundary or between a server and a desktop computer.

In order to maximize performance, designers of physical package formats consider access style, layout style, and

communication style.

92

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

G.1 Access Styles

The access style in which local access or networked access is conducted determines the simultaneity possible
between processing and input-output operations.

G.1.1 Direct Access Consumption

Direct access consumption allows consumers to request the specific portion of the package desired, without

sequentially processing the preceding parts of the package. For example a byte-range request. This is the most
comma@n access style.

G.1.2 Streaming Consumption

Streanming consumption allows consumers to begin processing parts before the entire package has arrived
Physical package formats should be designed to allow consumers to begin interpreting and processing the|data
they rgceive before all of the bits of the package have been delivered through the pipe’

G.1.3 Streaming Creation

Streanming creation allows producers to begin writing parts to the packagewithout knowing in advance all|of the
parts that are to be written. For example, when an application begins-té build a print spool file package, it|might
not knpw how many pages the package contains. Likewise, a progfam that is generating a report might not know
initially how long the report is or how many pictures it has.

In ordgr to support streaming creation, the package implementer should allow a producer to add parts after
other parts have already been added. A Consumer shallnot require a producer to state how many parts they
might ¢reate when they start writing. The package implementer should allow a producer to begin writing the
conterts of a part without knowing the ultimateé\ength of the part.

G.1.4 Simultaneous Creationyand Consumption

Simult@gneous creation and consumption allows streaming creation and streaming consumption to happen|at the
same tjme on a package. Because of the benefits that can be realized within pipelined architectures that use it,
the pagkage implementer should support simultaneous creation and consumption in the physical package

G.2 | Layout Sgyles

The style in which'parts are ordered within a package is referred to as the layout style. Parts can be arranged in
one of|two styles/simple ordering or interleaved ordering.

G.2.1 Simple Ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes
for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package
uses simple ordering, all of the bytes for each part are stored contiguously.

©ISO/IEC 2011 — All rights reserved 93

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

G.2.2 Interleaved Ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios.
For example, interleaved ordering improves performance for multi-media playback, where video and audio are
delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup.

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing

easy reconstruction of the nngmnl contiguous part

Becauge of the performance benefits it provides, package implementers should support interleaving(in the
physical package. The package implementer might handle the internal representation of interleaving differently
in diffgrent physical models. Regardless of how the physical model handles interleaving, a part that is broken
into multiple pieces in the physical file is considered one logical part; the pieces themselves_are not parts and
are nof addressable.

G.3 | Communication Styles

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to
as the rommunication style. Communication can be based on sequential delivery of or random access to pjarts.
The communication style used depends on the capabilities of both the)pipe and the physical package format.

G.3.1 Sequential Delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appearin th
Generally, all pipes support sequential delivery.

[

G.3.2 Random Access

Randoin access allows consumers to request-the delivery of a part out of sequential physical order. Some pipes
are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. Ip order
to maximize performance, the package implementer should support random access in both the pipe and the
physical package. In the absence 6f this support, consumers need to wait until the parts they need are del|vered
sequentially.

End of|informative text:

94 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

Guidelines for Meeting Conformance

Annex H.
(informative)

ISO/IEC 29500-2:2011(E)

This an

This an

norma

The to

Nou ks wNR

Additiq
the req

H.1

nex is informative.

ive in all cases.

Package Model requirements
Physical Packages requirements

ZIP Physical Mapping requirements

Core Properties requirements
Thumbnail requirements
Digital Signatures requirements
Pack URI requirements

uirement:

Package Model

Table H-1. Package model confermance requirements

b-level topics and their identifiers are described as follows:

nex summarizes best practices for producers and consumers implementing the Open‘\Packaging

Conve[tions. It is intended as a convenience; the text in the referenced clause or subclause is considered

nally, these tables identify, as does the réferenced text, who is burdened with enforcing or supporiing

1D

Ru@v
(\%

Reference

Package
Implementer

Format
Designer

Format
Producer

Fd
Cor

rmat
sumer

M1.1

The packageé implementer shall
requir€ aypart name. A part IRI
shall'not be empty. A part URI

shall not be empty.

9.1,9.1.1.1.1,
9.1.1.1.2

X

M1.2

Thepackageimptementershatt
require a content type and the
format designer shall specify
the content type.

w
b

©I1s0/I

EC 2011 — All rights reserved

95

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

ID Rule Reference Package Format Format Format
Implementer | Designer | Producer | Consumer

M1.3 | A part IRl shall not have empty | 9.1.1.1.1, X
isegments. A part URI shall not 9.1.1.1.2
have empty segments. A part
URI shall not have empty
segments.

M1.4 || A part IRl shall start with a 9.1.1.1.1, x
forward slash (“/”) character. A | 9.1.1.1.2
part URI shall start with a
forward slash (“/”) character.

M1.5 || A part IRl shall not have a 9.1.1.1.1, X
forward slash as the last 9.1.1.1.2
character. A part URI shall not
have a forward slash as the last
character.

M1.6 || Anisegment shall not holdany | 9.1.1.1.1, x
characters other than ipchar 9.1.1.1.2
characters. A segment shall not
hold any characters other than
pchar characters. .

M1.7 || An isegment shall not contain 9.1.1.1.1, X
percent-encoded forward slash | 9.1.1.1.2
(“/”), or backward slash (“\”)
characters. A segment shall not
contain percent-encoded
forward slash (“/”), or
backward slash (“\”) characters.

M1.8 || A segment shall not contain 9.1.1.1.1, X
percent-encoded unreserved 9.1.1.1.2
characters.

M1.9 || Anisegment shall rot end with | 9.1.1.1.1, X
a dot (“.”) character. A segment | 9.1.1.1.2
shall not end-with a dot (“.”)
character!

M1.10| | Anisegment shall include at 9.1.1.1.1, x
least one non-dot character. A 9.1.1.1.2
segmentshatHneludeatteast
one non-dot character

M1.11 | A package implementer shall 9.1.14 x
neither create nor recognize a
part with a part name derived
from another part name by
appending segments to it.

96 ©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.12

Packages shall not contain
equivalent part names, and
package implementers shall
neither create nor recognize
packages with equivalent part

9.1.1.3

X

names.

M1.13

Package implementers shall
only create and only recognize
parts with a content type;
format designers shall specify a
content type for each part
included in the format. Content
types for package parts shall fit
the definition and syntax for
media types as specified in RFC
2616, §3.7.

9.1.2

M1.14

The value of the content type is
permitted to be the empty
string.

Content types shall not use
linear white space either
between the type and subtype
or between an attribute and its
value. Content types also shall
not have leading or trailing
white space. Package
implementers shall create only
such content types and shall
require such content types
when retrieving a part from a
package; format designers shall
specify only suchycontent types
for inclusionin‘the format.

9.1.2

M1.15

The package implementer shall
require-a content type that
does not include comments,
and the format designer shall

9.1.2

specify such a content type.

M1.16

If the package implementer
specifies a growth hint, it is set
when a part is created, and the
package implementer shall not
change the growth hint after
the part has been created.

9.1.3

©ISO/IEC 2011 — All rights reserved

97

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Rule

Reference

Package
Implementer

Designer

Format
Consumer

Format
Producer

Format

M1.17

XML content shall be encoded
using either UTF-8 or UTF-16. If
any part includes an encoding
declaration, as defined in §4.3.3
of the XML 1.0 specification,

9.14

X

that declaration shall not name
any encoding other than UTF-8
or UTF-16. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

M1.18

DTD declarations shall not be
used in the XML markup
defined in this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content
and shall treat the presence of
DTD declarations as an error.

9.14

M1.19

If the XML content contains the
Markup Compatibility
namespace, as described in
Part 3, it shall be processed by
the package implementer to
remove Markup Compatibility
elements and attributes,
ignorable namespace
declarations, and ignored
elements and attributesbefore
applying subsequéntvalidation
rules.

9.14

98

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.20

XML content shall be valid
against the corresponding XSD
schema defined in this Open
Packaging specification. In
particular, the XML content

9.14

X

shall not contain elements or
attributes drawn from
namespaces that are not
explicitly defined in the
corresponding XSD unless the
XSD allows elements or
attributes drawn from any
namespace to be present in
particular locations in the XML
markup. Package implementers
shall enforce this requirement
upon creation and retrieval of
the XML content.

M1.21

XML content shall not contain
elements or attributes drawn
from “xml” or “xsi” namespaces
unless they are explicitly
defined in the XSD schema or
by other means described in
this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

9.14

M1.22

Package implemehters and
format designérs)shall not
create content'types with
parametéps-for the package-
specific\parts defined in this
Opéen-Packaging specification
and shall treat the presence of

Annex F

parameters i these content
types as an error.

©ISO/IEC 2011 — All rights reserved

99

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.23

XML markup might contain
Unicode strings referencing
other parts as values of the
xsd:anyURI data type. Format
consumers shall convert these

9.2.1

X

Unicode strings to URlIs, as
defined in Annex A before
resolving them relative to the
base URI of the part containing
the Unicode string.

M1.24

Some types of content provide
a way to override the default
base URI by specifying a
different base in the content. In
the presence of one of these
overrides, format consumers
shall use the specified base URI
instead of the default.

9.21

M1.25

The Relationships part shall not
have relationships to any other
part. Package implementers
shall enforce this requirement
upon the attempt to create
such a relationship and shall
treat any such relationship as
invalid.

9.3.1

M1.26

A Relationships Part shall not
be an empty file. If present;:a
Relationships Part shall hold, at
a minimum, a singlé
Relationships rootelement with
no child elements.

The package-implementer shall
requirethat every Relationship
element’has an Id attribute, the
value of which is unique within
the Relationships part, and that

9.3.2

the Id datatype is xsd:ID, the
value of which conforms to the
naming restrictions for xsd:ID
as described in the W3C
Recommendation “XML
Schema Part 2: Datatypes.”

100

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.27

The package implementer shall
require the Type attribute to be
a URI that defines the role of
the relationship and the format
designer shall specify such a

9.3.2.2

X

X

Type.

M1.28

The package implementer shall
require the Target attribute to
be a URI reference pointing to a
target resource. The URI
reference shall be a URl ora
relative reference.

9.3.2.2

M1.29

When set to Internal, the
Target attribute shall be a
relative reference and that
reference is interpreted relative
to the “parent” part. For
package relationships, the
package implementer shall
resolve relative references in
the Target attribute against the
pack URI that identifies the
entire package resource.

9.3.2.2

M1.30

The package implementer shall
name relationship parts
according to the special
relationships part naming
convention and require that
parts with names that conform
to this naming convention have
the content type\for a
Relationshipspart

9.33

M1.31

Consumers'shall process
relatighship markup in a
mapner that conforms to
Part 3.

9.34

M1.32

It a fragment identifier is
allowed in the Target attribute
of the Relationship element, a
package implementer shall not
resolve the URI to a scope less
than an entire part.

9.3.2.2

©ISO/IEC 2011 — All rights reserved

101

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

ISO/IEC 29500-2:2011(E)

Rule

Reference

Package
Implementer

Format
Consumer

Format
Producer

Format
Designer

M1.33

A Unicode string representing a
URI can be passed to the
producer or consumer. The
producing or consuming
application shall convert the

Annex A

X X

Unicode string to a URI. If the
URI is a relative reference, the
application shall resolve it using
the base URI of the part, which
is expressed using the pack
scheme, to the URI of the
referenced part.

M1.34

If a consumer converts the URI
back into an IRI, the conversion
shall be performed as specified
in §3.2 of RFC 3987.

A2

Table |

1—2. Package model optional requirements

1D

Rule

Reference. |

N

(\‘0

Package

Implementer

Format

Format FoEmat
Designer n

Producer | Consumer

011

The package implementer might
allow a growth hint to be provided
by a producer.

9.1,9:1.3

X

01.2

Format designers might restrict the
usage of parameters for content
types.

9.1.2

013

The package implementer'might
ignore the growth hint-or adhere
only loosely to ittwhen specifying
the physical mapping.

9.13

014

If the format designer permits it,
parts eah’Contain Unicode strings
representing references to other

parts. If allowed by the format

9.21

designer, format producers can
create such parts, and format
consumers shall consume them.

015

The package implementer might
allow a TargetMode to be provided
by a producer.

9.3.2.2

102

©ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=da541e619006182a294792648293c9fd

	Table of Contents
	Foreword
	Introduction
	1. Scope
	2. Conformance
	3. Normative References
	4. Terms and Definitions
	5. Notational Conventions
	5.1 Document Conventions
	5.2 Diagram Notes

	6. Acronyms and Abbreviations
	7. General Description
	8. Overview
	9. Package Model
	9.1 Parts
	9.1.1 Part Names
	9.1.1.1 Part Name Syntax
	9.1.1.1.1 Part IRI Syntax
	9.1.1.1.2 Part URI Syntax

	9.1.1.2 Part IRI and Part URI Mapping
	9.1.1.3 Part Name Equivalence
	9.1.1.3.1 Part IRI Equivalence
	9.1.1.3.2 Part Name Equivalence

	9.1.1.4 Part Naming

	9.1.2 Content Types
	9.1.3 Growth Hint
	9.1.4 XML Usage

	9.2 Part Addressing
	9.2.1 Relative References
	9.2.2 Fragments

	9.3 Relationships
	9.3.1 Relationships Part
	9.3.2 Relationship Markup
	9.3.2.1 Relationships Element
	9.3.2.2 Relationship Element

	9.3.3 Representing Relationships
	9.3.4 Support for Versioning and Extensibility

	10. Physical Package
	10.1 Physical Mapping Guidelines
	10.1.1 Mapped Components
	10.1.2 Mapping Content Types
	10.1.2.1 Identifying the Part Content Type
	10.1.2.2 Content Types Stream Markup
	10.1.2.2.1 Types Element
	10.1.2.2.2 Default Element
	10.1.2.2.3 Override Element
	10.1.2.2.4 Content Types Stream Markup Example

	10.1.2.3 Setting the Content Type of a Part
	10.1.2.4 Getting the Content Type of a Part
	10.1.2.5 Support for Versioning and Extensibility

	10.1.3 Mapping Part Names to Physical Package Item Names
	10.1.3.1 Logical Item Names
	10.1.3.2 Mapping Part Names to Logical Item Names
	10.1.3.3 Mapping Logical Item Names and Physical Package Item Names
	10.1.3.4 Mapping Logical Item Names to Part Names

	10.1.4 Interleaving

	10.2 Mapping to a ZIP Archive
	10.2.1 Mapping Part Data
	10.2.2 ZIP Item Names
	10.2.3 Mapping Part Names to ZIP Item Names
	10.2.4 Mapping ZIP Item Names to Part Names
	10.2.5 ZIP Package Limitations
	10.2.6 Mapping Part Content Type
	10.2.7 Mapping the Growth Hint
	10.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption
	10.2.9 ZIP Format Clarifications for Packages

	11. Core Properties
	11.1 Core Properties Part
	11.2 Location of Core Properties Part
	11.3 Support for Versioning and Extensibility
	11.4 Schema Restrictions for Core Properties

	12. Thumbnails
	12.1 Thumbnail Parts

	13. Digital Signatures
	13.1 Choosing Content to Sign
	13.2 Digital Signature Parts
	13.2.1 Digital Signature Origin Part
	13.2.2 Digital Signature XML Signature Part
	13.2.3 Digital Signature Certificate Part
	13.2.4 Digital Signature Markup
	13.2.4.1 Modifications to the XML Digital Signature Specification
	13.2.4.2 Signature Element
	13.2.4.3 SignedInfo Element
	13.2.4.4 CanonicalizationMethod Element
	13.2.4.5 SignatureMethod Element
	13.2.4.6 Reference Element
	13.2.4.6.1 Usage of <Reference> Element as <Manifest> Child Element

	13.2.4.7 Transforms Element
	13.2.4.8 Transform Element
	13.2.4.9 DigestMethod Element
	13.2.4.10 DigestValue Element
	13.2.4.11 SignatureValue Element
	13.2.4.12 Object Element
	13.2.4.13 Package-Specific Object Element
	13.2.4.14 Application-Defined Object Element
	13.2.4.15 KeyInfo Element
	13.2.4.16 Manifest Element
	13.2.4.17 SignatureProperties Element
	13.2.4.18 SignatureProperty Element
	13.2.4.19 SignatureTime Element
	13.2.4.20 Format Element
	13.2.4.21 Value Element
	13.2.4.22 RelationshipReference Element
	13.2.4.23 RelationshipsGroupReference Element
	13.2.4.24 Relationships Transform Algorithm

	13.3 Digital Signature Example
	13.4 Generating Signatures
	13.5 Validating Signatures
	13.5.1 Signature Validation and Streaming Consumption

	13.6 Support for Versioning and Extensibility
	13.6.1 Using Relationship Types
	13.6.2 Markup Compatibility Namespace for Package Digital Signatures

	Annex A. (normative) Resolving Unicode Strings to Part Names
	A.1 Creating an IRI from a Unicode String
	A.2 Creating a URI from an IRI
	A.3 Resolving a Relative Reference to a Part Name
	A.4 String Conversion Examples

	Annex B. (normative) Pack URI
	B.1 Pack URI Scheme
	B.2 Resolving a Pack URI to a Resource
	B.3 Composing a Pack URI
	B.4 Equivalence

	Annex C. (normative) ZIP Appnote.txt Clarifications
	C.1 Archive File Header Consistency
	C.2 Table Key

	Annex D. (normative) Schemas - W3C XML Schema
	D.1 Content Types Stream
	D.2 Core Properties Part
	D.3 Digital Signature XML Signature Markup
	D.4 Relationships Part

	Annex E. (informative) Schemas - RELAX NG
	E.1 Content Types Stream
	E.2 Core Properties Part
	E.3 Digital Signature XML Signature Markup
	E.4 Relationships Part
	E.5 Additional Resources
	E.5.1 XML
	E.5.2 XML Digital Signature Core

	Annex F. (normative) Standard Namespaces and Content Types
	Annex G. (informative) Physical Model Design Considerations
	G.1 Access Styles
	G.1.1 Direct Access Consumption
	G.1.2 Streaming Consumption
	G.1.3 Streaming Creation
	G.1.4 Simultaneous Creation and Consumption

	G.2 Layout Styles
	G.2.1 Simple Ordering
	G.2.2 Interleaved Ordering

	G.3 Communication Styles
	G.3.1 Sequential Delivery
	G.3.2 Random Access

	Annex H. (informative) Guidelines for Meeting Conformance
	H.1 Package Model
	H.2 Physical Packages
	H.3 ZIP Physical Mapping
	H.4 Core Properties
	H.5 Thumbnail
	H.6 Digital Signatures
	H.7 Pack URI

	Annex I. (informative) Differences Between ISO/IEC 29500 and ECMA-376:2006
	I.1 XML Elements
	I.2 XML Attributes
	I.3 XML Enumeration Values
	I.4 XML Simple Types

	Annex J. (informative) Index
	Blank Page
	Blank Page

