

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE MATERIAL SPECIFICATION

Submitted for recognition as an American National Standard

AMS 2432B

Issued JAN 1990
Revised AUG 1996

Superseding AMS 2432A

SHOT PEENING, COMPUTER MONITORED

1. SCOPE:

1.1 Purpose:

This specification establishes the engineering requirements for computer monitored peening of parts surfaces.

1.2 Application:

This procedure has been used typically to induce, through cold working, a surface layer that is residually stressed in compression, thereby enhancing fatigue performance and resistance to stress-corrosion cracking, corrosion fatigue, fretting fatigue, spalling, and galling and to provide a means by which the shot peening process can be repeatedly performed on parts which rely on the benefits provided by shot peening in order to satisfy material component design, but usage is not limited to such applications.

- 1.3 Shot peening in conformance with this specification requires that locations of intensity verification (Almen test strip locations) be shown on the drawing.
- 1.4 Processes, such as tumbling of parts in peening, slurry peening, peen forming and straightening, peening for prevention of intergranular corrosion, and peening to produce a surface texture, are recognized but their requirements are not covered.

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001

AMS 2431 Peening Media

SAE J442 Test Strip, Holder and Gage for Shot Peening

2.2 ASTM Publications:

Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

ASTM E 18 Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials

2.3 U.S. Government Publications:

Available from DODSSP, Subscription Services Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094.

MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes

MIL-STD-2073-1 DOD Materiel, Procedures for Development and Application of Packaging Requirements

2.4 ISO Publications:

Available from ANSI, 11 West 42nd Street, New York, NY 10036-8002.

ISO 10012-1 Quality Assurance Requirements for Measuring Equipment - Part 1: Metrological Confirmation System for Measuring Equipment

3. TECHNICAL REQUIREMENTS:**3.1 General:**

3.1.1 Areas Designated to be Peened: Parts shall be peened on all surfaces, except peening is optional on the following: surfaces of holes and apertures under 0.125 inch (3.18 mm) diameter or width; surfaces of blind holes and recesses under 0.5 inch (13 mm) in diameter or width, if depth exceeds diameter or width or is allowed to be ricochet peened.

3.1.1.1 Areas designated not to be peened shall be masked from the peening stream (See 8.3.1).

3.1.1.2 Thin sections under 0.090 inch (2.29 mm) in nominal thickness shall not be peened unless specifically required on the drawing. When peening is required, shot size, intensity, and coverage shall be specified on the drawing.

3.1.1.3 Peening coverage is optional in areas where peening is neither specified nor prohibited.

3.1.2 Tolerance: When the masking tolerance is not indicated on the drawing, tolerances used on (R) dimensions shall be plus 0, minus 0.062 inch (1.57 mm), except for expendable masking, when approved by the cognizant engineering organization (See 8.2.3) which shall be plus 0, minus 0.125 inch (3.18 mm) (See 8.3.1).

3.1.3 Intensity Verification Locations: Shall be as indicated on the drawing; when not specified on the drawing, locations shall be as established by the cognizant engineering organization.

3.2 Material and Equipment:

3.2.1 Peening media shall conform to AMS 2431.

3.2.2 New cast steel shot shall be conditioned to remove any rust prior to use on parts. Peening on (R) dummy material or target plate for not less than five shot turnover cycles is recommended.

3.2.3 Measuring Instruments: Almen gages, scales, air pressure gages, tachometers, etc, used for (R) controlling shot peening, shall be calibrated against instruments whose calibration is traceable to National Institute of Standards and Technology (NIST) or other nationally accredited standards organization acceptable to purchaser.

3.2.4 Almen test strips used for intensity verification shall conform to SAE J442 except thickness and (R) flatness tolerance shall be ± 0.0005 inch (± 0.013 mm). A method of compensating for initial out of flatness may be used if approved by the cognizant engineering organization. Mechanically deforming strips to meet the flatness requirement is not permitted. Hardness shall be 73.0 to 74.5 HRA for N strips and 45 to 48 HRC, or equivalent, for other strips. Hardness shall be measured in accordance with ASTM E 18 at approximately 1/2 inch (12.7 mm) from either end on the longitudinal center line of a flat side using Rockwell "C" scale, or equivalent, for A and C strips. For N strips, the Rockwell "A" scale, or equivalent, shall be used. To avoid hardness tester impressions on strips a sampling plan for hardness, MIL-STD-105, AQL of 0.01 may be used.

3.2.4.1 Gages for determining flatness and arc height of Almen test strips shall conform to the (R) requirements of SAE J442, except that the gages shall have digital readout and have an accuracy of ± 0.0001 inch (± 0.0025 mm). Almen gages shall be zeroed, at a minimum, once daily using a flat gage block.

3.2.4.2 Masked or Subsize Test Strips: In locations where standard test strips cannot be placed to accurately reflect the peening intensity, masked or subsize test strips may be used. The relationship between the peening intensity on the masked or subsize test strips and that on the standard test strip shall be established. The intensity thus established for the masked or subsize test strip shall be used for control of the peening intensity. Masked or subsize test strips shall conform to all requirements of 3.2.4 except for length and width of exposed area. Location of support points on gages for measuring subsize test strips shall be approved by the cognizant engineering organization.

3.2.4.3 Reuse of Almen test strips is not permitted.

3.2.4.4 Almen Strip Fixture: Either a scrap part or a representative non-adjustable fixture shall be fitted with test strip support blocks (See 3.1.3). Support blocks used to hold Almen test strips, during tests to establish specified peening intensity, shall conform to SAE J442 and shall be secured to the Almen test strip fixture. If support blocks for masked or subsize test strips are used, they shall be approved by the cognizant engineering organization. The Almen strip fixture shall be oriented to the peening shot stream and rotated or translated in the same manner as the part. The design of the Almen strip fixture shall be approved by the cognizant engineering organization. It shall be numbered and recorded in the procedure sheet (See 3.7.2.1) and shall be used for all subsequent Almen intensity verifications.

3.2.5 Peening Machines: Shall be equipped with computers for continuously monitoring and
(R) recording the parameters shown in Table 1 within the tolerance indicated. Recording can be in hard copy and/or alternate record system approved by the cognizant engineering organization.

TABLE 1 - Parameters for Peening Machines

Paragraph	Parameter	Units	Process Tolerances Shutdown Limits Plus or minus
3.2.5.1 (R)	Shot Flow (for each nozzle)	Pounds/minute (kg/minute)	10%
3.2.5.2 (R)	Air Pressure (for each nozzle)	psi (kPa)	10%
3.2.5.3 (R)	Wheel Speed (for each wheel)	RPM	20 RPM
3.2.5.4 (R)	Nozzle or Wheel Translation Speed	Inch/minute (mm/minute)	10%
3.2.5.5 (R)	Deflector Speed	Inch/minute (mm/minute)	10%
3.2.5.6	Nozzle and/or Wheel Shut Down	Seconds	1
3.2.5.7 (R)	Turntable Speed	RPM	10%
3.2.5.8 (R)	Part Speed	RPM/Inch/minute (mm/minute)	10%
3.2.5.9 (R)	Conveyor Speed	Inch/Minute (mm/minute)	10%
3.2.5.10 (R)	Peening Cycle Time	Seconds	1
3.2.5.11 (R)	Nozzle/Wheel Position	Inch/degree (mm/degree)	0.062 inch (1.57 mm)/ 5 degrees
3.2.5.12 (R)	Table/Part Indexing	Inch/degree (mm/degree)	0.062 inch (1.57 mm)/ 5 degrees

Calibration of measuring devices used in the peening system shall be performed in accordance with ISO-10012-1.

3.2.6 Air Pressure Measurement: On direct pressure and suction systems, air pressure shall be (R) measured at or as close as practical to the nozzle. For gravity type systems, air pressure should be measured down stream of regulator for each nozzle.

3.2.7 Process Intensity Verification: Intensities measured during production verification shall not vary (R) from that of the initial procedure qualification at any specimen location by more than ± 0.0015 inch (± 0.038 mm) Almen A. At no time shall these measurements violate the intensity range specified on the engineering drawing.

3.2.8 The peening system shall be capable of interrupting the peening cycle within one second, when (R) excursions outside set tolerances are detected for shot flow (3.2.5.1), air pressure (3.2.5.2), wheel speed (3.2.5.3), nozzle and/or wheel translation speed (3.2.5.4), turntable speed (3.2.5.7), part speed (3.2.5.8), or conveyor speed (3.2.5.9). The peening system shall also retain in memory and print out any abort details for the parameters listed in Table 1 and be able to resume operations to complete the balance of the process cycle, from the position of shut-down, when the out-of-tolerance condition has been corrected. Parts processed during an aborted cycle shall be so identified on the peening certificate and/or computer print-out.

3.2.9 Peening machine shall be equipped with shot screening system and shot shape control mechanisms capable of continuously maintaining the quality of the peening media in the machine to no more than 2% broken or deformed pieces (by count). Table 5 may be used to determine the maximum number of allowable broken particles.

3.2.10 The combination of high shot flow/low air pressure, and low shot flow/high air pressure (R) limits selected within Table 1 values shall not vary at any specimen location more than ± 0.0015 inch (± 0.038 mm) intensity.

3.2.11 If media size and intensity are not specified, media size and intensity shall conform to the requirements of Table 3 and Table 4. If media type is not specified, refer to 8.5 for guidance in the selection of media.

3.2.12 Labeling of Gages: Use ISO 10012-1 for labeling of gages.
(R)

3.3 Prepeening Treatment:

3.3.1 Dimensions and Surface Finishes: Shall be as specified by the drawing prior to shot peening, unless otherwise noted.

3.3.2 All straightening and forming shall be completed prior to peening.

3.3.3 Heat treatment that requires temperatures above those in 8.3.3 shall be completed prior to peening.

3.3.4 All machining of areas to be peened shall be completed prior to peening unless additional (R) peening operations are to be carried out on subsequently machined areas (See 8.3.1). All burrs shall be removed and all sharp edges and external corners shall be radiused or chamfered.

3.3.5 Nondestructive inspection, such as magnetic particle, fluorescent penetrant, ultrasonic, or other flaw or crack detection processes, when required, shall be completed prior to peening.

3.3.6 Parts which exhibit corrosion or mechanical damage shall not be peened unless the noted condition is acceptable to the cognizant engineering organization.

3.3.7 Cleaning, prior to peening, shall be accomplished by methods that ensure the removal of (R) contaminants such as oil, grease, or paint.

3.3.7.1 Titanium alloys shall not be cleaned in solvents containing halogenated compounds.

3.4 Procedure Development:

(R)

3.4.1 Fillet radii requiring peening shall be peened with shot size whose nominal diameter does not exceed one half the fillet radii of the subject radii. If this requires a shot size that is smaller than that shown in Table 3 and Table 4, the fillet radius shall be peened in a separate setup subsequent to the one required for general peening of the part. An intensity for the fillet radius, compatible with the smaller shot size, shall be established by the cognizant engineering organization. No additional masking of previously peened areas is required. For slots or other apertures, through which shot must pass to peen other areas, the nominal shot diameter shall not be greater than one-quarter the diameter or width of such aperture.

3.4.2 Holes larger than 0.125 inch (3.18 mm) diameter (See 3.1.1) shall be peened to the requirements of Table 3 and Table 4, utilizing internal peening setups if required by drawing. No internal setups are required if the hole diameter is equal to or larger than half the hole depth, provided that the hole is open to direct impingement from both ends. If the hole diameter is equal to or larger than the hole depth and the hole is accessible to direct impingement from one end only, external peening with the shot size and intensity specified for the actual part is acceptable, provided that the hole receives complete coverage.

3.4.3 For internal peening, the part shall be positioned so as to ensure free exit of spent shot.

3.4.4 When media size is not specified and two or more thicknesses are present on the same part (R) and one is over 0.375 inch (9.52 mm) and the other is equal to or less than 0.375 inch (9.52 mm) (See Table 3 and Table 4), the part shall be peened as follows, or as otherwise directed by the cognizant engineering organization.

3.4.4.1 The thicker area shall be peened using the correct shot size and intensity for that thickness. (R) The thinner areas shall be masked at any outside corner where the change of cross-section occurs. Do not mask on an inside radius. If the change of cross-section is gradual, the peening intensity and coverage shall fade within 2.0 inches (51 mm) into the thinner area.

3.4.4.2 The thinner areas shall next be peened to the correct intensity and shot size with no masking of thicker sections, except as required by the drawing. Complete coverage with this second shot size and intensity is required for not less than a 2.0 inch (51 mm) overlap into the area previously peened.

3.4.5 Loads: No external loads shall be applied to the part during peening unless specified by the cognizant engineering organization.

3.5 Reproduction Setup Verification:

3.5.1 Saturation Curve: Intensity shall be determined by exposing individual Almen strips in a setup fixture (See 3.2.4) for increasing time periods and plotting the results as a saturation curve, represented in Figure 1 (See 8.2). Not less than four points, other than zero, shall be required to adequately define the saturation curve.

3.5.1.1 During procedure development for a new part in a given machine, a complete saturation curve shall be developed for each intensity verification location and the curves shall form part of the peening procedure sheet. The critical peening parameters, confirmed by the saturation curves and coverage determination, shall be entered into the computer program for the part (See 3.7.2).

3.5.2 Coverage: Unless otherwise designated on the part engineering drawing, 100% part coverage is required (See 8.2.2).

3.5.3 Production Peening Setups: Shall utilize the computer program and the procedure sheet to (R) designate the machine and all the machine settings, fixtures, and locations of part and fixtures. Intensity verification using test strips is required by peening a single set of test strips, at exposure time "T", after all monitored parameters, fixtures, and locations match the computer program and the procedure sheet. If any strips do not fall within required intensity range, the setup shall be corrected and requalified in accordance with 3.5.1.1.

3.5.4 Nozzle Holding Fixture: When non-robotic air nozzle peening machine is used, each nozzle (R) shall be held in a fixture so that the angle of impingement and stand-off distance conforms to the procedure sheet during peening. The nozzle holding fixture, when used, shall be numbered and recorded on the procedure sheet.

3.5.5 Control Cage Setting: When a centrifugal wheel machine is used, the control cage, which regulates the position and angle of the maximum intensity zone generated by the wheel, shall be set in respect to the part location, so that the angle of impingement of the maximum intensity zone will remain constant to procedure sheet requirements. A reference point on the impeller cage position indicator shall be part of the wheel system. The position of the control cage shall be recorded on the procedure sheet.

3.5.6 Part Holding Fixture: If part is held in a fixture, the fixture shall be designed to rotate and/or translate the part on its axis through the shot stream. The fixture shall be numbered and recorded on the peening procedure sheet (See 3.7.2 and 3.7.2.1).

3.6 Post-Peening Treatment:

3.6.1 After peening and removal of protective masking, all shot and shot fragments shall be removed from surfaces of parts. Only methods which will not erode or scratch surfaces shall be used.

3.6.2 When surface finish or dimensions after peening do not meet drawing requirements, they may (R) be corrected, with cognizant engineering approval, by a second peening operation at a lower intensity. Alternatively, unless material removal is prohibited, they may be corrected by one or more of the following: polishing, lapping, honing, or sanding. If material removal is selected, evidence of peening impressions shall remain after material removal. Grinding shall not be used unless approved by the cognizant engineering organization (See 8.2.3).

3.6.2.1 For parts with a specified minimum tensile strength of 220 ksi (1517 MPa) and over, no more than the equivalent of 5% of the specified minimum "A" intensity or equivalent "N" or "C" intensity (See 8.6) shall be removed from the surfaces.

3.6.2.2 For other parts, no more than the equivalent of 10% of the specified minimum "A" intensity or equivalent "N" or "C" intensity (See 8.3.4.2) shall be removed from the surfaces.

3.6.3 Removal of Surface Contaminants:

3.6.3.1 If required by purchaser, parts, other than those made from alloy or carbon steel which have been peened with carbon steel shot or with any media in an unlined steel cabinet, shall be decontaminated as follows:

3.6.3.1.1 Corrosion-resistant steel and titanium alloy parts shall be decontaminated in a 20 to 50% by (R) volume nitric acid solution at $140^{\circ}\text{F} \pm 5$ ($60^{\circ}\text{C} \pm 3$) for 15 to 30 minutes, rinsed with hot (140°F (60°C)) agitated water and dried. Alternatively, glass beads may be used for decontamination when approved by the cognizant engineering organization.

3.6.3.1.2 Aluminum alloy parts shall be decontaminated in a $50\% \pm 5$ by volume nitric acid solution at (R) ambient temperature or $20\% \pm 2$ by volume nitric acid solution at $140^{\circ}\text{F} \pm 5$ ($60^{\circ}\text{C} \pm 3$), rinsed with hot (140°F (60°C)) agitated water, and dried. Alternatively, glass beads may be used for decontamination when approved by the cognizant engineering organization

3.7 Process Control:

3.7.1 The setup shall be qualified by placing the Almen test strip setup fixture in the machine in the (R) identical orientation to the shot stream to which the part shall be exposed. Air pressures, shot flow, or wheel speeds shall be adjusted to yield designated intensities and coverage. Nozzle positions or wheel cages shall be set so that shot streams have an angle of impingement between 90 and 45 degrees to the Almen strip locations, unless other angles are required and/or allowed by the cognizant engineering organization.

3.7.2 Peening Procedure Sheet: Processor shall establish for each part number a procedure sheet showing process parameters which will be used for peening production parts. The procedure sheet shall be approved by the cognizant engineering organization prior to initial production peening and prior to peening in accordance with a revised procedure.

3.7.2.1 Procedure sheets shall include a sketch of the machine setup showing nozzle placement (R) and/or relation of wheel(s) to the part and the following information as applicable:

Procedure sheet number and approval date
Part number
Machine identification number (model and serial number)
Number of nozzles or wheels
Nozzle type: gravity, pressure, or suction
Fixture identification numbers (Almen strip fixture, part fixture, nozzle fixture, masking fixture)
Size of nozzles or wheels
Shot flow rate for each nozzle or wheel
Nozzle air orifice diameter
Nozzle or wheel translation speed, direction, and travel relative to part
Control cage position for each wheel and pattern relationship to part
Nozzle or wheel angles of impingement
Nozzle or wheel-to-part distance
Air pressure for each nozzle in gravity system
Air pressure at each nozzle for direct pressure and suction systems
Wheel speed in RPM for each wheel
Size and material of shot in accordance with AMS 2431
Speed, direction, and travel of part in translation and rotation
Areas to be masked including permissible areas for expendable maskant
Placement of test strips on intensity verification fixture in relation to the actual part
Saturation curve for each intensity verification point
Peening exposure time
Sequence of nozzle or wheel shut down (if required)
Intensity
Coverage
Prepeening cleaning method (See 3.3.7)
Postpeening cleaning method (See 3.6.3)
Corrosion protection method (See 5.1).

3.8 Peening Source Qualification:

Facilities performing computer controlled shot peening in accordance with this specification shall be approved by the cognizant quality assurance organization.

4. QUALITY ASSURANCE PROVISIONS:

4.1 Responsibility for Inspection and Process Control:

The processor shall be responsible for the performance of all inspection specified herein except pretreatment specified in 3.3. Purchaser reserves the right to perform any testing deemed necessary to ensure that processing conformed to specified requirements.

4.2 Classification of Tests:

All technical requirements are acceptance tests and shall be performed on each lot in accordance with 4.3.1, 4.3.2, and 4.3.3; a lot shall consist of parts of the same part number that are processed continuously using the same machine setup.

4.2.1 For direct U.S. Military procurement, substantiating test data and, when requested, preproduction test material shall be submitted to the cognizant agency as directed by the procuring activity, contracting officer, or request for procurement.

4.3 Sampling and Testing:

Shall be as follows:

4.3.1 Shot Size and Uniformity: One or more verifications of shot size and uniformity shall be made on samples taken from a nozzle or wheel. The samples shall be taken for each production run, and every eight hours of production on long runs, when using cast or cut wire steel shot. Ceramic shot shall be similarly verified at least every four hours of production and before and after each production run. Glass bead shot shall be similarly verified at least every two hours of production and before and after each production run. Media samples shall meet requirements of AMS 2431 except broken shot count shall conform to 3.2.9.

4.3.2 Intensity Verification: Strips shall be tested for conformance to hardness, thickness, and flatness requirements of 3.2.4.

4.3.2.1 One or more intensity determinations for all required locations shall be made immediately (R) before and after each production run and at least every four hours of production. For peening machinery whose nozzle or wheel and part motions are closed loop servo driven to an accuracy of ± 0.050 inch (± 1.27 mm), intensity verification may be performed with a single Almen strip location every four hours after initial process set-up (See 3.5.3).

4.3.3 Coverage Verification: Peened surfaces shall be examined for complete (100%) coverage on the first and last piece of a lot and on one piece at least after every four hours of continuous operation. Either of the following methods shall be used except as noted in 4.3.3.3.

4.3.3.1 Peened surfaces shall be inspected visually with the aid of a 10X, or higher, magnifier to determine that the surface has been completely covered with overlapping dimples.

4.3.3.2 Impact Sensitive Fluorescent Coatings: When used, shall be applied in accordance with (R) manufacturer's recommendations. After initial coverage is verified, coating of entire part may be reduced to critical areas with cognizant engineering organization approval.

4.3.3.3 For aluminum parts having large plan form surfaces (such as wing-skins), the areas outside of the Almen strip locations may be examined with the unaided eye.

4.3.3.4 All coverage inspection shall be performed prior to any material removal.

4.4 Reproduction Approval:

The process and control procedures and/or sample peened parts for each part number shall be approved by the cognizant engineering organization, unless such approval be waived by the cognizant engineering organization.

4.5 Records:

Procedure sheets, work sheets, computer records, test, and inspection records shall be kept available for not less than five years. The records shall contain all data necessary to verify conformance to specified requirements.

4.6 Reports:

Results of Almen test strip measurements by location and the actual Almen test strips used to verify intensity shall accompany each lot of parts. The Almen test strips shall be permanently marked with their location on the Almen test fixture by a method which will not change intensity measurements.

5. PREPARATION FOR DELIVERY:

5.1 Peened parts shall be handled and packaged to ensure protection from corrosion and damage during handling, transportation, and storage.

5.2 Peened parts shall be prepared for shipment in accordance with commercial practice and in compliance with applicable rules and regulations pertaining to the handling, packaging, and transportation of the parts to ensure carrier acceptance and safe delivery.

5.3 For direct U.S. Military procurement, packaging shall be in accordance with MIL-STD-2073-1, (R) Level C, unless Level A is specified in the request for procurement.

6. ACKNOWLEDGMENT:

Processor shall mention this specification number and its revision letter in all quotations and when acknowledging purchase orders.

7. REJECTIONS:

Parts on which peening does not conform to this specification, or to modifications not authorized by purchaser, will be subject to rejection.

8. NOTES:

8.1 The (R) symbol is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the previous issue of this specification. If the symbol is next to the specification title, it indicates a complete revision of the specification

8.2 Definitions:

Peening intensity (saturation point) is determined from a saturation curve. It is the minimum duration of peening which, when doubled, increases the Almen strip height by not greater than 10 percent. Arc height at saturation should correspond to arc height required for the part (See Figure 1).

8.2.1 100% coverage is defined as complete obliteration of the original surface finish by overlapping dimples.

8.2.2 Peening exposure time is determined by the time required to obtain 100% coverage of the part, unless the cognizant engineering organization directs it to be the time required to reach saturation.

8.2.3 Cognizant is the term applied to the engineering organization responsible for the design of the parts, its allied quality assurance organization, or a designee of that organization.

8.3 Design Recommendations:

8.3.1 In lieu of masking, designs may permit excess material to be left on surfaces where peening is prohibited so that it may be removed by subsequent machining; however, the residual stress distribution in the boundary zone will be altered.

8.3.2 The shot peening parameters shown in Table 3 and Table 4 may not be ideal for a specific part. It is, therefore, recommended that tests be conducted to optimize the shot peening parameters. The testing should include various shot sizes, types, and peening intensities. The optimum parameters should then be required by the drawing.

8.3.3 To preclude reduction of compressive stresses, temperature to which peened parts are subjected in subsequent processing should not exceed the following:

Alloy Steels	475 °F (246 °C)
--------------	--------------------

Corrosion-Resistant Steels	750 °F (399 °C)
----------------------------	--------------------

8.3.3 (Continued):

Aluminum Alloys	200 °F (93 °C)
Titanium Alloys	600 °F (316 °C)
Magnesium Alloys	200 °F (93 °C)
Nickel and Cobalt Alloys	1000 °F (538 °C)

8.3.3.1 Other maximum temperatures may be applicable for other reasons, e.g. depreciation of strength or corrosion resistance.

8.3.4 When requiring shot peening of sections under 0.090 inch (2.29 mm), design should utilize peening parameters which preclude high core tensile stresses.

8.3.4.1 The peening intensity used for thin sections should be such that the cross-sectional area under compressive stress should not exceed 10% of the total cross-sectional area.

8.3.4.2 Table 2 illustrates typical depths of compressive stress for shot peened components.

TABLE 2 – Depth of Compressive Stress

Almen Intensity	0.008 N Inch	0.20 N mm	0.008 A Inch	0.20 A mm	0.008 C Inch	0.20 C mm
Material						
Aluminum	0.003	0.08	0.010	0.25	0.027	0.69
Titanium	0.002	0.05	0.007	0.18	0.018	0.46
Steel under 200 ksi (1379 MPa) tensile strength	0.003	0.08	0.008	0.20	0.025	0.64
Steel 200 ksi (1379 MPa) tensile strength and over	0.002	0.05	0.005	0.13	0.015	0.38
Nickel alloys	0.002	0.05	0.006	0.15	0.020	0.51

8.4 Parts that are significantly softer (e.g. aluminum) than the Almen strips will become fully covered in much less time than that required for the test strips to attain saturation. Conversely, much harder parts will require increased exposure.

8.5 When the type of peening medium is not specified, the following selection criteria should be used. (R)

2431/1 ASR Cast Steel Shot, Regular

Most commonly used medium.

2431/2 ASH Cast Steel Shot, Hard

Used when part hardness exceeds 50 HRC and it is necessary to produce a higher magnitude compressive stress than possible with regular cast steel shot. In such applications, it will break down faster than regular cast steel shot.

2431/3 AWC Conditioned Carbon Steel Cut Wire Shot

Superior breakdown resistance to either type of cast steel shot. It has a higher cost than cast steel shot.

2431/4 AWS Conditioned Stainless Steel Cut Wire Shot

Superior breakdown resistance to cast steel shot and is selected when passivation and/or chemical decontamination of nonferrous shot peened parts is not desired. It has a higher cost than cast steel and carbon steel cut wire shot.

2431/5 APB Peening Balls

Superior breakdown resistance to cast steel shot. Superior sphericity over all types of medium. It has a higher cost than cast steel, conditioned carbon steel cut wire, and conditioned stainless cut wire shot.

2431/6 AGB Glass Shot

When new, glass shot provides less degradation of smooth surfaces, reduces roughness of rougher surfaces, eliminates necessity for post-peening passivation or other chemical decontamination of parts made from stainless steel or nonferrous materials. Glass shot exhibits a higher breakdown rate than all other types and, therefore, is not recommended for high peening intensities.

2431/7 AZB Ceramic

Used as an alternative to glass shot as its breakdown resistance is superior to glass shot for similar sizes and intensities. It has a higher cost than glass shot.

8.6 Intensity Comparisons:

For comparisons of the nominal intensity designations, Type C Almen test specimen deflection may be multiplied by 3.5 to obtain the approximate deflection of a Type A Almen test specimen when shot peened with the same intensity. Almen test strip "A" is ordinarily used for arc heights up to 0.024 inch (0.61 mm); for greater degrees of peening, Almen test strip C is used. For intensities below 0.004A, the Almen test strip Type "N" should be used. For comparison of the nominal intensity designations, Almen test strip Type "A" test specimen deflection may be multiplied by three to obtain the approximate deflection of any Almen test strip Type "N" specimen when shot peened at the same intensity.

8.7 Dimensions and properties in inch/pound units and the Fahrenheit temperatures are primary; dimensions and properties in SI units and the Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information.

8.8 For direct U.S. Military procurement, purchase documents should specify not less than the following:

Title, number, and date of this specification
Part number of parts to be peened
Quantity of parts to be peened
Level A packaging, if required (See 5.3).

8.9 Similar Specifications:

MIL-S-13165 is listed for information only and shall not be construed as an acceptable alternate unless all requirements of this AMS are met.

8.10 Processes meeting the requirements of this specification have been classified under Federal Standardization Area Symbol "MFFP."

8.11 Key Words:

Cold working, residually stressed, fatigue performance, fretting fatigue, stress-corrosion cracking.